organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)-2-oxo­ethyl benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bOrganic Electronics Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cDepartment of Physics, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 17 June 2011; accepted 17 June 2011; online 25 June 2011)

In the title compound, C15H11ClO3, the dihedral angle between the aromatic rings is 84.29 (8)°. In the crystal, mol­ecules are linked by weak C—H⋯π inter­actions.

Related literature

For applications of phenacyl benzoate derivatives, see: Rather & Reid (1919[Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75-83.]); Litera et al. (2006[Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713-723.]); Huang et al. (1996[Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.]); Gandhi et al. (1995[Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.]). For related structures, see: Ogata et al. (1987[Ogata, M., Matsumoto, H., Takahashi, K., Shimizu, S., Kida, S. & Murabayashi, A. (1987). J. Med. Chem. 30, 1054-1068.]); Wan et al. (2006[Wan, J., Li, X.-M., Peng, Z.-Z., Ouyang, P.-K. & Zhang, S.-S. (2006). Acta Cryst. E62, o2793-o2794.]); Zhang et al. (2006[Zhang, S.-S., Wan, J., Peng, Z.-Z. & Bi, S. (2006). Acta Cryst. E62, o4348-o4349.]). For reported melting-point details, see: Le et al. (2009[Le, Z.-G., Xie, Z.-B. & Xu, J.-P. (2009). Synth. Commun. 39, 743-747.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11ClO3

  • Mr = 274.69

  • Monoclinic, P 21 /c

  • a = 8.1955 (9) Å

  • b = 10.8717 (12) Å

  • c = 16.5420 (15) Å

  • β = 117.816 (4)°

  • V = 1303.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.34 × 0.19 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]) Tmin = 0.908, Tmax = 0.948

  • 11201 measured reflections

  • 4052 independent reflections

  • 2720 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.126

  • S = 1.03

  • 4052 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8ACg2i 0.97 2.96 3.4952 (17) 116
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenacyl benzoate derivatives are very important in identification of organic acids (Rather & Reid, 1919) as they undergo photolysis in neutral and mild conditions (Litera et al., 2006). They find applications in the field of synthetic chemistry for the synthesis of oxazoles, imidazoles (Huang et al., 1996) and benzoxazepine (Gandhi et al., 1995). We hereby report the crystal structure of the title compound, (I).

The asymmetric unit of title compound is shown in Fig. 1. The dihedral angle between the phenyl (C10–C15) ring and the chloro-substituted phenyl (C1–C6) ring is 84.29 (8)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those closely related structures (Ogata et al., 1987; Wan et al., 2006; Zhang et al., 2006).

In the crystal (Fig. 2), there are no classical hydrogen bonds but stabilization is provided by weak C—H···π (Table 1) interactions, involving the Cg2 (C10–C15) ring.

Related literature top

For applications of phenacyl benzoate derivatives, see: Rather & Reid (1919); Litera et al. (2006); Huang et al. (1996); Gandhi et al. (1995). For related structures, see: Ogata et al. (1987); Wan et al. (2006); Zhang et al. (2006). For reported melting-point details, see: Le et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of benzoic acid (1.0 g, 0.0081 mol), potassium carbonate (1.23 g, 0.0089 mol) and 2-bromo-1-(4-chlorophenyl) ethanone (1.81 g, 0.0081 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, colorless needle-shaped crystals of 2-(4-chlorophenyl)-2-oxoethyl benzoate begin to separate out. These were collected by filtration and recrystallized from ethanol to yield colourless blocks of (I). Yield: 2.10 g, 93.7%, Mp: 119–120 °C (Le et al., 2009).

Refinement top

All the H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) =1.2. Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound (I).
2-(4-Chlorophenyl)-2-oxoethyl benzoate top
Crystal data top
C15H11ClO3F(000) = 568
Mr = 274.69Dx = 1.400 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2797 reflections
a = 8.1955 (9) Åθ = 2.3–27.1°
b = 10.8717 (12) ŵ = 0.29 mm1
c = 16.5420 (15) ÅT = 296 K
β = 117.816 (4)°Block, colourless
V = 1303.6 (2) Å30.34 × 0.19 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4052 independent reflections
Radiation source: fine-focus sealed tube2720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 30.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.908, Tmax = 0.948k = 1515
11201 measured reflectionsl = 2023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.2649P]
where P = (Fo2 + 2Fc2)/3
4052 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C15H11ClO3V = 1303.6 (2) Å3
Mr = 274.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1955 (9) ŵ = 0.29 mm1
b = 10.8717 (12) ÅT = 296 K
c = 16.5420 (15) Å0.34 × 0.19 × 0.19 mm
β = 117.816 (4)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4052 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2720 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.948Rint = 0.021
11201 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
4052 reflectionsΔρmin = 0.49 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.98407 (8)1.29129 (4)1.01748 (4)0.07410 (18)
O10.41826 (16)0.81706 (12)0.81726 (7)0.0648 (3)
O20.41542 (15)0.64299 (10)0.93059 (7)0.0544 (3)
O30.59892 (16)0.55553 (13)0.87990 (9)0.0722 (4)
C10.6218 (2)1.03708 (15)0.86536 (10)0.0509 (3)
H1A0.53941.02500.80400.061*
C20.7272 (2)1.14249 (14)0.89170 (12)0.0545 (4)
H2A0.71701.20110.84860.065*
C30.8484 (2)1.15975 (14)0.98327 (11)0.0507 (3)
C40.8651 (2)1.07434 (15)1.04787 (11)0.0555 (4)
H4A0.94691.08741.10920.067*
C50.7593 (2)0.96902 (14)1.02070 (10)0.0505 (3)
H5A0.77010.91091.06420.061*
C60.63658 (18)0.94852 (13)0.92902 (9)0.0435 (3)
C70.52322 (18)0.83503 (14)0.89703 (10)0.0458 (3)
C80.5435 (2)0.74141 (15)0.96859 (10)0.0524 (4)
H8A0.66800.70870.99670.063*
H8B0.52430.78141.01590.063*
C90.4586 (2)0.55549 (15)0.88590 (10)0.0510 (3)
C100.3128 (2)0.46016 (14)0.84710 (9)0.0473 (3)
C110.1476 (2)0.47129 (15)0.85064 (10)0.0520 (3)
H11A0.12610.53970.87810.062*
C120.0150 (2)0.38051 (17)0.81327 (11)0.0622 (4)
H12A0.09660.38880.81470.075*
C130.0468 (3)0.27865 (18)0.77419 (12)0.0688 (5)
H13A0.04240.21740.74980.083*
C140.2104 (3)0.26665 (17)0.77089 (12)0.0706 (5)
H14A0.23170.19700.74450.085*
C150.3436 (3)0.35746 (15)0.80651 (11)0.0587 (4)
H15A0.45340.34960.80320.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0961 (4)0.0549 (3)0.0902 (4)0.0203 (2)0.0593 (3)0.0167 (2)
O10.0575 (7)0.0764 (8)0.0440 (6)0.0114 (6)0.0100 (5)0.0018 (5)
O20.0573 (6)0.0533 (6)0.0590 (6)0.0116 (5)0.0325 (5)0.0065 (5)
O30.0551 (7)0.0808 (9)0.0885 (9)0.0061 (6)0.0399 (7)0.0124 (7)
C10.0525 (8)0.0567 (9)0.0423 (7)0.0060 (7)0.0212 (6)0.0066 (6)
C20.0646 (9)0.0483 (8)0.0593 (9)0.0064 (7)0.0361 (8)0.0109 (7)
C30.0559 (8)0.0453 (7)0.0615 (9)0.0017 (6)0.0362 (7)0.0066 (7)
C40.0624 (9)0.0564 (9)0.0471 (8)0.0057 (7)0.0251 (7)0.0062 (7)
C50.0583 (8)0.0518 (8)0.0404 (7)0.0027 (7)0.0222 (6)0.0035 (6)
C60.0434 (7)0.0475 (7)0.0411 (7)0.0036 (6)0.0210 (6)0.0020 (6)
C70.0404 (7)0.0535 (8)0.0419 (7)0.0010 (6)0.0179 (6)0.0008 (6)
C80.0554 (8)0.0541 (8)0.0462 (8)0.0102 (7)0.0224 (7)0.0010 (7)
C90.0506 (8)0.0537 (8)0.0485 (8)0.0010 (7)0.0229 (7)0.0053 (7)
C100.0526 (8)0.0463 (7)0.0405 (7)0.0016 (6)0.0196 (6)0.0066 (6)
C110.0545 (8)0.0520 (8)0.0486 (8)0.0029 (7)0.0233 (7)0.0030 (7)
C120.0579 (9)0.0679 (10)0.0539 (9)0.0110 (8)0.0203 (8)0.0042 (8)
C130.0739 (12)0.0609 (10)0.0541 (10)0.0154 (9)0.0151 (9)0.0009 (8)
C140.0960 (14)0.0496 (9)0.0526 (10)0.0016 (9)0.0233 (10)0.0037 (8)
C150.0692 (10)0.0547 (9)0.0520 (9)0.0092 (8)0.0282 (8)0.0051 (7)
Geometric parameters (Å, º) top
Cl1—C31.7362 (16)C7—C81.510 (2)
O1—C71.2083 (17)C8—H8A0.9700
O2—C91.3492 (19)C8—H8B0.9700
O2—C81.4235 (18)C9—C101.482 (2)
O3—C91.1996 (18)C10—C151.385 (2)
C1—C21.378 (2)C10—C111.388 (2)
C1—C61.390 (2)C11—C121.382 (2)
C1—H1A0.9300C11—H11A0.9300
C2—C31.383 (2)C12—C131.367 (3)
C2—H2A0.9300C12—H12A0.9300
C3—C41.373 (2)C13—C141.373 (3)
C4—C51.379 (2)C13—H13A0.9300
C4—H4A0.9300C14—C151.384 (3)
C5—C61.3920 (19)C14—H14A0.9300
C5—H5A0.9300C15—H15A0.9300
C6—C71.486 (2)
C9—O2—C8116.36 (12)O2—C8—H8B109.3
C2—C1—C6121.10 (14)C7—C8—H8B109.3
C2—C1—H1A119.5H8A—C8—H8B107.9
C6—C1—H1A119.5O3—C9—O2123.48 (15)
C1—C2—C3118.90 (14)O3—C9—C10125.06 (15)
C1—C2—H2A120.6O2—C9—C10111.46 (13)
C3—C2—H2A120.6C15—C10—C11119.52 (15)
C4—C3—C2121.36 (15)C15—C10—C9118.75 (14)
C4—C3—Cl1119.15 (13)C11—C10—C9121.72 (14)
C2—C3—Cl1119.49 (13)C12—C11—C10119.86 (16)
C3—C4—C5119.25 (15)C12—C11—H11A120.1
C3—C4—H4A120.4C10—C11—H11A120.1
C5—C4—H4A120.4C13—C12—C11120.41 (18)
C4—C5—C6120.85 (14)C13—C12—H12A119.8
C4—C5—H5A119.6C11—C12—H12A119.8
C6—C5—H5A119.6C12—C13—C14120.06 (17)
C1—C6—C5118.54 (14)C12—C13—H13A120.0
C1—C6—C7119.12 (13)C14—C13—H13A120.0
C5—C6—C7122.34 (13)C13—C14—C15120.43 (17)
O1—C7—C6122.11 (14)C13—C14—H14A119.8
O1—C7—C8120.59 (14)C15—C14—H14A119.8
C6—C7—C8117.30 (12)C14—C15—C10119.69 (17)
O2—C8—C7111.81 (12)C14—C15—H15A120.2
O2—C8—H8A109.3C10—C15—H15A120.2
C7—C8—H8A109.3
C6—C1—C2—C30.4 (2)C6—C7—C8—O2174.36 (12)
C1—C2—C3—C40.1 (2)C8—O2—C9—O32.5 (2)
C1—C2—C3—Cl1179.31 (11)C8—O2—C9—C10178.30 (12)
C2—C3—C4—C50.3 (2)O3—C9—C10—C155.2 (2)
Cl1—C3—C4—C5179.14 (12)O2—C9—C10—C15173.94 (13)
C3—C4—C5—C60.0 (2)O3—C9—C10—C11174.87 (16)
C2—C1—C6—C50.7 (2)O2—C9—C10—C115.9 (2)
C2—C1—C6—C7178.58 (13)C15—C10—C11—C120.4 (2)
C4—C5—C6—C10.5 (2)C9—C10—C11—C12179.72 (14)
C4—C5—C6—C7178.73 (14)C10—C11—C12—C131.1 (2)
C1—C6—C7—O10.0 (2)C11—C12—C13—C140.8 (3)
C5—C6—C7—O1179.21 (15)C12—C13—C14—C150.3 (3)
C1—C6—C7—C8179.92 (13)C13—C14—C15—C101.1 (3)
C5—C6—C7—C80.9 (2)C11—C10—C15—C140.7 (2)
C9—O2—C8—C779.04 (17)C9—C10—C15—C14179.19 (15)
O1—C7—C8—O25.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···Cg2i0.972.963.4952 (17)116
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H11ClO3
Mr274.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.1955 (9), 10.8717 (12), 16.5420 (15)
β (°) 117.816 (4)
V3)1303.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.34 × 0.19 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.908, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
11201, 4052, 2720
Rint0.021
(sin θ/λ)max1)0.721
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 1.03
No. of reflections4052
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.49

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···Cg2i0.972.963.4952 (17)116
Symmetry code: (i) x+1, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship. AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for the Young Scientist award. GB thanks the Department of Information Technology, New Delhi, India, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.  Google Scholar
First citationGandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.  CrossRef CAS Web of Science Google Scholar
First citationHuang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.  CrossRef CAS Web of Science Google Scholar
First citationLe, Z.-G., Xie, Z.-B. & Xu, J.-P. (2009). Synth. Commun. 39, 743–747.  CrossRef CAS Google Scholar
First citationLitera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713–723.  Web of Science PubMed Google Scholar
First citationOgata, M., Matsumoto, H., Takahashi, K., Shimizu, S., Kida, S. & Murabayashi, A. (1987). J. Med. Chem. 30, 1054–1068.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, J., Li, X.-M., Peng, Z.-Z., Ouyang, P.-K. & Zhang, S.-S. (2006). Acta Cryst. E62, o2793–o2794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-S., Wan, J., Peng, Z.-Z. & Bi, S. (2006). Acta Cryst. E62, o4348–o4349.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds