organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1805-o1806

tert-Butyl N-((1S)-2-hy­dr­oxy-1-{N′-[(1E)-4-meth­­oxy­benzyl­­idene]hydrazinecarbon­yl}eth­yl)carbamate

aFundação Oswaldo Cruz, Instituto de Tecnologia, em Fármacos – Farmanguinhos, R. Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 June 2011; accepted 20 June 2011; online 25 June 2011)

The mol­ecule of the title compound, C16H23N3O5, is twisted about the chiral C atom, the dihedral angle formed between the amide residues being 79.6 (3)°. The conformation about the imine bond [1.278 (5) Å] is E. In the crystal, O—H⋯O and N—H⋯O hydrogen bonding between the hy­droxy, amine and carbonyl groups leads to the formation of supra­molecular layers, which stack along the c-axis direction.

Related literature

For background to the use of L-serine derivatives in anti-tumour therapy, see: Jiao et al. (2009[Jiao, X., Wang, L., Xiao, Q., Xie, P. & Liang, X. (2009). J. Asian Nat. Prod. Res. 11, 274-280.]); Yakura et al. (2007[Yakura, T., Yoshimoto, Y., Ishida, C. & Mabuchi, S. (2007). Tetrahedron, 63, 4429-4438.]). For background to N-acyl­hydrazone derivatives from L-serine for anti-tumour testing, see: Pinheiro et al. (2010[Pinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o1004-o1005.], 2011[Pinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2011). Acta Cryst. E67, o581-o582.]); de Souza et al. (2010[Souza, M. V. N. de, Pinheiro, A. C., Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2010). Acta Cryst. E66, o3253-o3254.]); Howie et al. (2011[Howie, R. A., de Souza, M. V. N., Pinheiro, A. C., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2011). Z. Kristallogr. 226, 483-491.]).

[Scheme 1]

Experimental

Crystal data
  • C16H23N3O5

  • Mr = 337.38

  • Triclinic, P 1

  • a = 5.3323 (4) Å

  • b = 5.7200 (4) Å

  • c = 14.3319 (10) Å

  • α = 79.919 (4)°

  • β = 83.686 (4)°

  • γ = 76.505 (4)°

  • V = 417.41 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 K

  • 0.16 × 0.07 × 0.04 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.887, Tmax = 1.000

  • 7495 measured reflections

  • 1900 independent reflections

  • 1661 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.113

  • S = 1.09

  • 1900 reflections

  • 230 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯O2i 0.84 (3) 1.87 (3) 2.651 (4) 153 (4)
N2—H2n⋯O3ii 0.88 (3) 1.93 (3) 2.803 (4) 169 (3)
N3—H3n⋯O5iii 0.88 (3) 2.34 (3) 3.188 (4) 164 (4)
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z; (iii) x+1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The anti-tumour activity of L-serine derivatives (Jiao et al., 2009; Yakura et al.,2007) and the development of N-acylhydrazone derivatives from L-serine for use in anti-tumour testing (Pinheiro et al., 2010; de Souza et al., 2010; Pinheiro et al., 2011: Howie et al.,2011) is well documented.

Although the absolute structure of (I), Fig. 1, could not be determined experimentally, the assignment of the S-configuration at the C10 atom is based on a starting reagent. The synthetic protocols led to the formation of both the E and Z isomers (see Experimental). Recrystallization provided one isomer only, with the conformation about the N1C8 imine bond [1.278 (5) Å] being E. The molecule is twisted about the chiral centre as seen in the value of the N2—C9—C10—N3 torsion angle of 77.5 (4) °; the dihedral angle formed between the two amide residues, i.e. N2,C9,O2 and N3,C12,O5, is 79.6 (3) °. This arrangement precludes the formation of intramolecular hydrogen bonds. The methoxy residue is co-planar with the benzene ring to which it is attached as seen in the C7—O1—C4—C3 torsion angle of -0.5 (5) °.

The crystal packing is dominated by hydrogen bonding interactions whereby each of the acidic hydrogen atoms forms a hydrogen bond. Thus, the hydroxy-OH forms a hydrogen bond with the hydrazine-carbonyl, and at the same time accepts a hydrogen bond from the hydrazine-amine. The carbamate-amine forms a hydrogen bond with the carbamate-carbonyl; details are given in Table 1. The hydrogen bonding leads to layers in the ab plane, Fig. 2, which stack along the c axis, Fig. 3.

Related literature top

For background to the use of L-serine derivatives in anti-tumour therapy, see: Jiao et al. (2009); Yakura et al. (2007). For background to N-acylhydrazone derivatives from L-serine for anti-tumour testing, see: Pinheiro et al. (2010, 2011); de Souza et al. (2010); Pinheiro et al. (2010); Howie et al. (2011).

Experimental top

A reaction mixture of (S)-t-BuOCONHCH(CH2OH)CONHNH2 (1.0 mmol), prepared from L-serine (Howie et al., 2011), and 4-methoxybenzaldehyde (1.05 mmol) in EtOH (10 ml) was refluxed for 4 h. The reaction mixture was rotary evaporated, and the residue was purified by washing with cold ethanol (3 x 10 ml): M.pt. 409 K, yield 80%. The solution NMR spectra in DMSO-d6 solution indicated the presence of both E and Z isomers. On recrystallization from EtOH for the structure determination, only the E isomer was obtained. 1H NMR (400 MHz, DMSO-d6): δ (p.p.m.): 11.28 and 11.21 (1H, s, NHN, E & Z isomers), 8.17 and 7.92 (1H, s, N=CH, E & Z isomers), 7.63 (1H, s, H1 or H5), 7.61 (1H, s, H1 or H5), 7.00 (2H, m, H2 and H4), 6.73 (d, J= 7.4) and 6.58 (d, J= 8.6), (1H, NHCH, E & Z isomers)), 4.91 (m) and 4.76 (t, J= 6.6), (1H, OH, E & Z isomers)), 4.91 and 4.02 (1H, m, CH, E & Z isomers)), 3.80 (3H, s, CH3O), 3.70–3.50 (2H, m, CH2OH), 1.39 (9H, s, (CH3)3C–). 13C NMR (100 MHz, DMSO-d6) δ (p.p.m.): 171.3 and 166.9 (COCH, E & Z isomers), 160.7 and 160.6 (C3, E & Z isomers), 155.2 (COO), 146.6 and 143.0 (N=CH, E & Z isomers), 128.5 and 128.3 (C1 and C5), 126.8 (C6), 114.3 (C2 and C4), 78.2 and 78.0 ((CH3)3C–, E & Z isomers)), 61.6 and 61.2 (CH2OH, E & Z isomers), 56.0 and 54.0 (CH, E & Z isomers), 55.3 (CH3O), 28.1 ((CH3)3C). IR (cm-1, KBr): 3306 (O—H), 1697 (COCH), 1678 (COO). EM/ESI: [M—H]: 336.1.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with the distance restraints O–H = 0.84 ± 0.01 and N–H = 0.88±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N. In the absence of significant anomalous scattering effects, 1575 Friedel pairs were averaged in the final refinement. However, the absolute configuration was assigned on the basis of the chirality of the L-serine starting material.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular array in the ab plane in (I) with the O—H···O and N—H···O hydrogen bonding shown as orange and blue dashed lines, respectively. Hydrogen atoms not participating in the hydrogen bonding scheme are omitted for reasons of clariy.
[Figure 3] Fig. 3. A view in projection down the a axis of the stacking of 2-D supramolecular arrays in the ab plane in (I), and with the O—H···O and N—H···O hydrogen bonding shown as orange and blue dashed lines, respectively.
tert-Butyl N-((1S)-2-hydroxy-1-{N'-[(1E)- 4-methoxybenzylidene]hydrazinecarbonyl}ethyl)carbamate top
Crystal data top
C16H23N3O5Z = 1
Mr = 337.38F(000) = 180
Triclinic, P1Dx = 1.342 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3323 (4) ÅCell parameters from 14323 reflections
b = 5.7200 (4) Åθ = 2.9–27.5°
c = 14.3319 (10) ŵ = 0.10 mm1
α = 79.919 (4)°T = 120 K
β = 83.686 (4)°Block, colourless
γ = 76.505 (4)°0.16 × 0.07 × 0.04 mm
V = 417.41 (5) Å3
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
1900 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1661 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.7°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 77
Tmin = 0.887, Tmax = 1.000l = 1818
7495 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.3732P]
where P = (Fo2 + 2Fc2)/3
1900 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.24 e Å3
6 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H23N3O5γ = 76.505 (4)°
Mr = 337.38V = 417.41 (5) Å3
Triclinic, P1Z = 1
a = 5.3323 (4) ÅMo Kα radiation
b = 5.7200 (4) ŵ = 0.10 mm1
c = 14.3319 (10) ÅT = 120 K
α = 79.919 (4)°0.16 × 0.07 × 0.04 mm
β = 83.686 (4)°
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
1900 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1661 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 1.000Rint = 0.046
7495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0516 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.24 e Å3
1900 reflectionsΔρmin = 0.25 e Å3
230 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.6917 (5)0.8513 (5)0.7563 (2)0.0280 (7)
O20.9933 (5)0.3081 (5)0.3426 (2)0.0259 (6)
O30.4988 (5)0.1450 (5)0.3533 (2)0.0244 (6)
H3O0.340 (3)0.190 (9)0.369 (3)0.037*
O40.4967 (5)0.9626 (5)0.06608 (19)0.0228 (6)
O50.2010 (5)0.7831 (5)0.1623 (2)0.0250 (6)
N11.0286 (6)0.6618 (6)0.4406 (2)0.0215 (7)
N20.8274 (6)0.6827 (6)0.3836 (2)0.0209 (7)
H2N0.709 (6)0.818 (5)0.373 (3)0.025*
N30.6282 (6)0.6919 (6)0.1906 (2)0.0212 (7)
H3N0.777 (5)0.731 (8)0.171 (3)0.025*
C11.2010 (7)0.8412 (7)0.5502 (3)0.0194 (8)
C21.4019 (7)0.6394 (7)0.5725 (3)0.0211 (8)
H21.42440.50280.54060.025*
C31.5699 (7)0.6361 (7)0.6412 (3)0.0222 (8)
H31.70530.49750.65600.027*
C41.5392 (7)0.8349 (7)0.6876 (3)0.0229 (8)
C51.3430 (8)1.0405 (7)0.6634 (3)0.0256 (9)
H51.32421.17930.69370.031*
C61.1777 (8)1.0429 (7)0.5961 (3)0.0251 (9)
H61.04531.18360.58050.030*
C71.8959 (8)0.6473 (8)0.7822 (3)0.0280 (9)
H7A1.82490.50170.80270.042*
H7B1.98270.67730.83430.042*
H7C2.02070.62250.72740.042*
C81.0108 (8)0.8446 (7)0.4829 (3)0.0229 (8)
H80.87380.98330.47090.027*
C90.8245 (7)0.4972 (7)0.3388 (3)0.0195 (7)
C100.5925 (7)0.5327 (7)0.2797 (3)0.0188 (7)
H100.43360.61170.31610.023*
C110.5605 (7)0.2847 (7)0.2643 (3)0.0226 (8)
H11A0.42060.30630.22140.027*
H11B0.72270.19720.23390.027*
C120.4209 (7)0.8111 (7)0.1416 (3)0.0188 (7)
C130.3072 (7)1.1111 (7)0.0009 (3)0.0213 (8)
C140.4761 (8)1.2529 (7)0.0707 (3)0.0264 (9)
H14A0.56071.34260.03600.040*
H14B0.36841.36780.11720.040*
H14C0.60791.13950.10370.040*
C150.0964 (8)1.2826 (7)0.0503 (3)0.0250 (8)
H15A0.01521.18860.09200.038*
H15B0.00701.40080.00340.038*
H15C0.17591.36880.08820.038*
C160.1993 (8)0.9468 (7)0.0514 (3)0.0244 (8)
H16A0.34230.82810.07700.037*
H16B0.09951.04570.10360.037*
H16C0.08680.86100.00630.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0280 (15)0.0329 (16)0.0243 (15)0.0048 (13)0.0056 (12)0.0074 (12)
O20.0193 (14)0.0193 (13)0.0391 (17)0.0037 (11)0.0067 (12)0.0026 (12)
O30.0160 (13)0.0238 (14)0.0286 (15)0.0031 (11)0.0011 (11)0.0066 (11)
O40.0181 (13)0.0237 (14)0.0246 (14)0.0042 (11)0.0059 (11)0.0041 (11)
O50.0229 (15)0.0279 (15)0.0241 (15)0.0076 (12)0.0041 (11)0.0006 (12)
N10.0212 (16)0.0245 (16)0.0186 (16)0.0052 (13)0.0055 (12)0.0005 (13)
N20.0183 (16)0.0231 (17)0.0203 (17)0.0016 (13)0.0073 (13)0.0007 (13)
N30.0152 (15)0.0221 (17)0.0242 (17)0.0044 (12)0.0026 (13)0.0034 (13)
C10.0201 (18)0.0232 (19)0.0155 (18)0.0087 (15)0.0010 (14)0.0007 (14)
C20.0208 (19)0.0228 (19)0.0201 (19)0.0046 (16)0.0018 (15)0.0072 (15)
C30.0189 (19)0.026 (2)0.0206 (19)0.0025 (15)0.0029 (15)0.0012 (16)
C40.0205 (19)0.027 (2)0.022 (2)0.0094 (16)0.0011 (16)0.0001 (16)
C50.028 (2)0.0212 (19)0.027 (2)0.0024 (16)0.0023 (17)0.0058 (16)
C60.026 (2)0.0185 (18)0.029 (2)0.0007 (15)0.0069 (17)0.0021 (15)
C70.025 (2)0.035 (2)0.023 (2)0.0076 (18)0.0057 (16)0.0015 (17)
C80.0228 (19)0.0221 (19)0.022 (2)0.0055 (15)0.0005 (15)0.0016 (15)
C90.0176 (18)0.0182 (17)0.0209 (19)0.0059 (14)0.0027 (14)0.0020 (14)
C100.0157 (17)0.0221 (18)0.0180 (18)0.0044 (14)0.0016 (14)0.0008 (14)
C110.023 (2)0.0199 (19)0.025 (2)0.0073 (15)0.0042 (16)0.0023 (15)
C120.0202 (19)0.0202 (18)0.0161 (18)0.0072 (14)0.0012 (14)0.0001 (14)
C130.0178 (18)0.0227 (19)0.0209 (19)0.0029 (15)0.0051 (15)0.0042 (15)
C140.027 (2)0.022 (2)0.027 (2)0.0028 (16)0.0056 (17)0.0027 (16)
C150.027 (2)0.022 (2)0.024 (2)0.0027 (16)0.0046 (16)0.0024 (15)
C160.026 (2)0.0255 (19)0.022 (2)0.0068 (16)0.0025 (16)0.0036 (16)
Geometric parameters (Å, º) top
O1—C41.372 (5)C5—H50.9500
O1—C71.425 (5)C6—H60.9500
O2—C91.233 (5)C7—H7A0.9800
O3—C111.431 (4)C7—H7B0.9800
O3—H3O0.841 (10)C7—H7C0.9800
O4—C121.350 (4)C8—H80.9500
O4—C131.480 (4)C9—C101.530 (5)
O5—C121.218 (4)C10—C111.524 (5)
N1—C81.278 (5)C10—H101.0000
N1—N21.389 (4)C11—H11A0.9900
N2—C91.336 (5)C11—H11B0.9900
N2—H2N0.880 (10)C13—C151.523 (5)
N3—C121.353 (5)C13—C161.523 (5)
N3—C101.455 (5)C13—C141.526 (5)
N3—H3N0.880 (10)C14—H14A0.9800
C1—C21.397 (5)C14—H14B0.9800
C1—C61.401 (6)C14—H14C0.9800
C1—C81.469 (5)C15—H15A0.9800
C2—C31.397 (5)C15—H15B0.9800
C2—H20.9500C15—H15C0.9800
C3—C41.385 (5)C16—H16A0.9800
C3—H30.9500C16—H16B0.9800
C4—C51.400 (6)C16—H16C0.9800
C5—C61.372 (6)
C4—O1—C7117.4 (3)N3—C10—C11112.2 (3)
C11—O3—H3O109 (3)N3—C10—C9109.8 (3)
C12—O4—C13120.5 (3)C11—C10—C9109.1 (3)
C8—N1—N2114.4 (3)N3—C10—H10108.6
C9—N2—N1118.8 (3)C11—C10—H10108.6
C9—N2—H2N119 (3)C9—C10—H10108.6
N1—N2—H2N122 (3)O3—C11—C10110.0 (3)
C12—N3—C10119.8 (3)O3—C11—H11A109.7
C12—N3—H3N117 (3)C10—C11—H11A109.7
C10—N3—H3N122 (3)O3—C11—H11B109.7
C2—C1—C6118.3 (4)C10—C11—H11B109.7
C2—C1—C8122.2 (3)H11A—C11—H11B108.2
C6—C1—C8119.5 (3)O5—C12—N3124.9 (3)
C1—C2—C3120.8 (3)O5—C12—O4125.6 (3)
C1—C2—H2119.6N3—C12—O4109.5 (3)
C3—C2—H2119.6O4—C13—C15110.6 (3)
C4—C3—C2120.0 (3)O4—C13—C16110.2 (3)
C4—C3—H3120.0C15—C13—C16112.6 (3)
C2—C3—H3120.0O4—C13—C14101.7 (3)
O1—C4—C3125.0 (3)C15—C13—C14110.9 (3)
O1—C4—C5115.6 (3)C16—C13—C14110.4 (3)
C3—C4—C5119.4 (3)C13—C14—H14A109.5
C6—C5—C4120.4 (4)C13—C14—H14B109.5
C6—C5—H5119.8H14A—C14—H14B109.5
C4—C5—H5119.8C13—C14—H14C109.5
C5—C6—C1121.0 (4)H14A—C14—H14C109.5
C5—C6—H6119.5H14B—C14—H14C109.5
C1—C6—H6119.5C13—C15—H15A109.5
O1—C7—H7A109.5C13—C15—H15B109.5
O1—C7—H7B109.5H15A—C15—H15B109.5
H7A—C7—H7B109.5C13—C15—H15C109.5
O1—C7—H7C109.5H15A—C15—H15C109.5
H7A—C7—H7C109.5H15B—C15—H15C109.5
H7B—C7—H7C109.5C13—C16—H16A109.5
N1—C8—C1120.4 (3)C13—C16—H16B109.5
N1—C8—H8119.8H16A—C16—H16B109.5
C1—C8—H8119.8C13—C16—H16C109.5
O2—C9—N2124.3 (4)H16A—C16—H16C109.5
O2—C9—C10120.3 (3)H16B—C16—H16C109.5
N2—C9—C10115.4 (3)
C8—N1—N2—C9177.8 (3)N1—N2—C9—C10178.5 (3)
C6—C1—C2—C32.0 (6)C12—N3—C10—C1179.8 (4)
C8—C1—C2—C3176.0 (4)C12—N3—C10—C9158.7 (3)
C1—C2—C3—C40.3 (6)O2—C9—C10—N3102.2 (4)
C7—O1—C4—C30.5 (5)N2—C9—C10—N377.5 (4)
C7—O1—C4—C5179.2 (4)O2—C9—C10—C1121.1 (5)
C2—C3—C4—O1179.7 (4)N2—C9—C10—C11159.2 (3)
C2—C3—C4—C51.6 (6)N3—C10—C11—O3173.9 (3)
O1—C4—C5—C6179.4 (4)C9—C10—C11—O364.3 (4)
C3—C4—C5—C61.8 (6)C10—N3—C12—O55.9 (6)
C4—C5—C6—C10.1 (6)C10—N3—C12—O4174.9 (3)
C2—C1—C6—C51.8 (6)C13—O4—C12—O50.7 (5)
C8—C1—C6—C5176.2 (4)C13—O4—C12—N3178.6 (3)
N2—N1—C8—C1176.1 (3)C12—O4—C13—C1560.9 (4)
C2—C1—C8—N11.8 (5)C12—O4—C13—C1664.3 (4)
C6—C1—C8—N1179.8 (4)C12—O4—C13—C14178.7 (3)
N1—N2—C9—O21.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O2i0.84 (3)1.87 (3)2.651 (4)153 (4)
N2—H2n···O3ii0.88 (3)1.93 (3)2.803 (4)169 (3)
N3—H3n···O5iii0.88 (3)2.34 (3)3.188 (4)164 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H23N3O5
Mr337.38
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)5.3323 (4), 5.7200 (4), 14.3319 (10)
α, β, γ (°)79.919 (4), 83.686 (4), 76.505 (4)
V3)417.41 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.16 × 0.07 × 0.04
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.887, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7495, 1900, 1661
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.113, 1.09
No. of reflections1900
No. of parameters230
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O2i0.84 (3)1.87 (3)2.651 (4)153 (4)
N2—H2n···O3ii0.88 (3)1.93 (3)2.803 (4)169 (3)
N3—H3n···O5iii0.88 (3)2.34 (3)3.188 (4)164 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHowie, R. A., de Souza, M. V. N., Pinheiro, A. C., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2011). Z. Kristallogr. 226, 483–491.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiao, X., Wang, L., Xiao, Q., Xie, P. & Liang, X. (2009). J. Asian Nat. Prod. Res. 11, 274–280.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o1004–o1005.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2011). Acta Cryst. E67, o581–o582.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Pinheiro, A. C., Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2010). Acta Cryst. E66, o3253–o3254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakura, T., Yoshimoto, Y., Ishida, C. & Mabuchi, S. (2007). Tetrahedron, 63, 4429–4438.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1805-o1806
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds