organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-6-Bromo-3-{2-[2-(2-meth­­oxy­benzyl­­idene)hydrazin­yl]-1,3-thia­zol-4-yl}-2H-chromen-2-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 21 June 2011; accepted 22 June 2011; online 25 June 2011)

In the title compound, C20H14BrN3O3S, the mol­ecule adopts an E configuration about the central C=N double bond. The chromene ring system and the thia­zole ring are approximately planar [maximum deviations = 0.029 (3) and 0.007 (3) Å, respectively]. The chromene ring system is inclined at angles of 7.37 (12) and 13.90 (13)° with respect to the thia­zole and benzene rings, respectively, while the thia­zole ring makes a dihedral angle of 12.58 (15)° with the benzene ring. In the crystal, mol­ecules are connected by N—H⋯O hydrogen bonds, forming C(8) supra­molecular chains along the c axis.

Related literature

For related structures, further synthetic details and background references, see: Arshad et al. (2011a[Arshad, A., Osman, H., Lam, C. K., Hemamalini, M. & Fun, H.-K. (2011a). Acta Cryst. E67, o1072-o1073.],b[Arshad, A., Osman, H., Lam, C. K., Hemamalini, M. & Fun, H.-K. (2011b). Acta Cryst. E67, o1007-o1008.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14BrN3O3S

  • Mr = 456.31

  • Monoclinic, P 21 /c

  • a = 7.2802 (12) Å

  • b = 19.551 (3) Å

  • c = 14.0638 (18) Å

  • β = 113.352 (7)°

  • V = 1837.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.38 mm−1

  • T = 296 K

  • 0.43 × 0.07 × 0.04 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.427, Tmax = 0.921

  • 11951 measured reflections

  • 4266 independent reflections

  • 2786 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.089

  • S = 1.01

  • 4266 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O2i 0.94 2.10 3.021 (3) 164
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of substituted coumarins (Arshad et al., 2011a,b) we now present the crystal structure of the title compound, (I).

In (I), the molecule adopts an E configuration about the central C13N3 double bond. The chromene (O1/C1–C9) and the thiazole (S1/N1/C10–C12) rings are approximately planar [maximum deviations of 0.029 (3) Å for atom C4 and 0.007 (3) Å for atom C12, respectively]. The chromene (O1/C1–C9) ring system is inclined at angles of 7.37 (12)° and 13.90 (13)° with respect to the thiazole (S1/N1/C10–C12) and benzene (C14–C19) rings, respectively, while the thiazole (S1/N1/C10–C12) ring makes a dihedral angle of 12.58 (15)° with the benzene ((C14–C19) ring.

In the crystal (Fig. 2), the molecules are connected by N2—H1···O2 (Table 1) hydrogen bonds forming supramolecular chains along the c-axis.

Related literature top

For related structures, further synthetic details and background references, see: Arshad et al. (2011a,b).

Experimental top

The title compound was synthesized by the same procedure as mentioned in our previous papers (Arshad et al., 2011a,b). 2-Methoxy benzylidene thiosemicarbazone was reacted with 6-bromo-3- (2-bromoacetyl)-2H-chromen-2-one in chloroform-ethanol (2:1) mixture. The reaction mixture was refluxed for 2–3 hours at 60°C to get dense yellow precipitates. It was cooled in ice bath and basified with ammonia to pH 7–8. The title compound (I) was recrystallized from CHCl3–EtOH (1:1) as golden yellow needles.

Refinement top

All hydrogen atoms were positioned geometrically [N–H = 0.9449 Å and C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view of a one-dimensional supramolecular chain along the c-axis.
(E)-6-Bromo-3-{2-[2-(2-methoxybenzylidene)hydrazinyl]- 1,3-thiazol-4-yl}-2H-chromen-2-one top
Crystal data top
C20H14BrN3O3SF(000) = 920
Mr = 456.31Dx = 1.649 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2197 reflections
a = 7.2802 (12) Åθ = 3.0–22.4°
b = 19.551 (3) ŵ = 2.38 mm1
c = 14.0638 (18) ÅT = 296 K
β = 113.352 (7)°Needle, yellow
V = 1837.8 (5) Å30.43 × 0.07 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD
diffractometer
4266 independent reflections
Radiation source: fine-focus sealed tube2786 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 27.7°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.427, Tmax = 0.921k = 2524
11951 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.034P)2 + 0.488P]
where P = (Fo2 + 2Fc2)/3
4266 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H14BrN3O3SV = 1837.8 (5) Å3
Mr = 456.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2802 (12) ŵ = 2.38 mm1
b = 19.551 (3) ÅT = 296 K
c = 14.0638 (18) Å0.43 × 0.07 × 0.04 mm
β = 113.352 (7)°
Data collection top
Bruker APEXII DUO CCD
diffractometer
4266 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2786 reflections with I > 2σ(I)
Tmin = 0.427, Tmax = 0.921Rint = 0.036
11951 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.01Δρmax = 0.30 e Å3
4266 reflectionsΔρmin = 0.29 e Å3
253 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24394 (5)1.084300 (17)0.06129 (3)0.06481 (13)
S10.21746 (11)0.61887 (3)0.38892 (5)0.04655 (18)
O10.2719 (3)0.92795 (9)0.43367 (12)0.0453 (4)
O20.2679 (3)0.83501 (10)0.51902 (14)0.0567 (5)
O30.2197 (3)0.37198 (9)0.04438 (13)0.0518 (5)
N10.2186 (3)0.71059 (10)0.25691 (15)0.0403 (5)
N20.2131 (3)0.59752 (10)0.19923 (16)0.0459 (6)
H10.22640.61020.13750.055*
N30.2291 (3)0.53132 (10)0.23123 (16)0.0397 (5)
C10.2567 (4)0.85797 (13)0.43706 (19)0.0402 (6)
C20.2663 (4)0.96192 (13)0.34700 (19)0.0407 (6)
C30.2939 (4)1.03179 (15)0.3551 (2)0.0515 (7)
H3A0.31601.05410.41710.062*
C40.2880 (4)1.06785 (14)0.2703 (2)0.0523 (7)
H4A0.30681.11500.27440.063*
C50.2538 (4)1.03353 (14)0.1781 (2)0.0446 (6)
C60.2293 (4)0.96446 (14)0.1706 (2)0.0439 (6)
H6A0.20810.94240.10850.053*
C70.2358 (4)0.92670 (12)0.25618 (18)0.0372 (6)
C80.2190 (4)0.85417 (13)0.25783 (19)0.0401 (6)
H8A0.19910.82970.19780.048*
C90.2310 (4)0.81934 (13)0.34368 (18)0.0372 (6)
C100.2232 (4)0.74489 (13)0.34487 (18)0.0366 (6)
C110.2234 (4)0.70361 (13)0.42228 (19)0.0430 (6)
H11A0.22640.71920.48540.052*
C120.2177 (4)0.64534 (12)0.27085 (18)0.0363 (6)
C130.2343 (4)0.48370 (12)0.17014 (19)0.0375 (6)
H13A0.22090.49340.10300.045*
C140.2620 (4)0.41341 (12)0.20920 (18)0.0348 (5)
C150.3017 (4)0.40043 (13)0.3125 (2)0.0445 (6)
H15A0.30430.43670.35590.053*
C160.3374 (5)0.33511 (14)0.3522 (2)0.0544 (8)
H16A0.36180.32750.42150.065*
C170.3368 (5)0.28129 (14)0.2896 (2)0.0557 (8)
H17A0.36500.23740.31700.067*
C180.2947 (4)0.29182 (13)0.1862 (2)0.0479 (7)
H18A0.29170.25500.14370.057*
C190.2572 (4)0.35707 (13)0.14584 (18)0.0376 (6)
C200.2017 (5)0.31519 (14)0.0228 (2)0.0530 (7)
H20A0.16870.33150.09200.080*
H20B0.09790.28520.02200.080*
H20C0.32620.29080.00050.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0782 (2)0.0614 (2)0.0665 (2)0.00399 (17)0.04110 (19)0.01182 (16)
S10.0669 (5)0.0376 (4)0.0421 (4)0.0001 (3)0.0291 (3)0.0017 (3)
O10.0660 (12)0.0354 (10)0.0349 (10)0.0021 (9)0.0203 (9)0.0065 (8)
O20.0930 (16)0.0460 (11)0.0367 (11)0.0041 (10)0.0315 (11)0.0039 (9)
O30.0867 (14)0.0353 (10)0.0391 (10)0.0008 (10)0.0310 (10)0.0042 (8)
N10.0546 (13)0.0317 (12)0.0366 (12)0.0013 (10)0.0202 (10)0.0057 (9)
N20.0760 (16)0.0297 (12)0.0394 (12)0.0014 (11)0.0307 (12)0.0028 (9)
N30.0529 (13)0.0285 (11)0.0404 (12)0.0002 (10)0.0213 (10)0.0002 (9)
C10.0459 (15)0.0371 (15)0.0377 (14)0.0032 (12)0.0167 (12)0.0057 (12)
C20.0451 (15)0.0357 (15)0.0408 (15)0.0018 (12)0.0166 (12)0.0033 (12)
C30.0630 (19)0.0439 (17)0.0441 (16)0.0017 (14)0.0176 (14)0.0127 (13)
C40.0640 (19)0.0327 (15)0.0591 (18)0.0057 (14)0.0234 (16)0.0050 (13)
C50.0454 (16)0.0408 (16)0.0516 (16)0.0001 (13)0.0235 (13)0.0055 (13)
C60.0511 (16)0.0444 (16)0.0398 (15)0.0008 (13)0.0219 (13)0.0045 (12)
C70.0410 (14)0.0340 (14)0.0366 (14)0.0012 (11)0.0155 (12)0.0064 (11)
C80.0481 (16)0.0386 (15)0.0349 (14)0.0009 (12)0.0179 (12)0.0093 (11)
C90.0400 (14)0.0367 (14)0.0359 (14)0.0016 (11)0.0159 (12)0.0077 (11)
C100.0391 (14)0.0369 (14)0.0336 (13)0.0012 (11)0.0141 (11)0.0066 (11)
C110.0578 (17)0.0398 (15)0.0356 (14)0.0011 (13)0.0231 (13)0.0046 (11)
C120.0444 (15)0.0334 (14)0.0324 (13)0.0006 (11)0.0165 (12)0.0026 (11)
C130.0485 (15)0.0327 (14)0.0336 (13)0.0012 (12)0.0187 (12)0.0011 (11)
C140.0400 (13)0.0296 (13)0.0376 (14)0.0030 (11)0.0184 (11)0.0013 (11)
C150.0605 (18)0.0359 (15)0.0404 (15)0.0032 (13)0.0236 (14)0.0031 (12)
C160.082 (2)0.0437 (17)0.0405 (16)0.0001 (15)0.0280 (16)0.0043 (13)
C170.079 (2)0.0344 (15)0.0556 (18)0.0057 (15)0.0293 (17)0.0109 (13)
C180.0691 (19)0.0311 (15)0.0502 (16)0.0027 (13)0.0309 (15)0.0047 (12)
C190.0454 (15)0.0337 (14)0.0380 (14)0.0032 (11)0.0211 (12)0.0013 (11)
C200.073 (2)0.0473 (17)0.0419 (16)0.0035 (15)0.0259 (15)0.0133 (13)
Geometric parameters (Å, º) top
Br1—C51.896 (3)C6—H6A0.9300
S1—C111.718 (3)C7—C81.424 (3)
S1—C121.740 (2)C8—C91.359 (3)
O1—C21.375 (3)C8—H8A0.9300
O1—C11.375 (3)C9—C101.457 (3)
O2—C11.209 (3)C10—C111.355 (3)
O3—C191.374 (3)C11—H11A0.9300
O3—C201.430 (3)C13—C141.464 (3)
N1—C121.291 (3)C13—H13A0.9300
N1—C101.396 (3)C14—C151.387 (3)
N2—N31.360 (3)C14—C191.409 (3)
N2—C121.365 (3)C15—C161.377 (4)
N2—H10.9449C15—H15A0.9300
N3—C131.277 (3)C16—C171.371 (4)
C1—C91.461 (3)C16—H16A0.9300
C2—C31.379 (4)C17—C181.377 (4)
C2—C71.389 (3)C17—H17A0.9300
C3—C41.371 (4)C18—C191.379 (3)
C3—H3A0.9300C18—H18A0.9300
C4—C51.392 (4)C20—H20A0.9600
C4—H4A0.9300C20—H20B0.9600
C5—C61.361 (4)C20—H20C0.9600
C6—C71.397 (3)
C11—S1—C1287.96 (12)C11—C10—C9128.1 (2)
C2—O1—C1122.48 (18)N1—C10—C9117.2 (2)
C19—O3—C20116.75 (19)C10—C11—S1111.30 (18)
C12—N1—C10109.9 (2)C10—C11—H11A124.4
N3—N2—C12115.7 (2)S1—C11—H11A124.4
N3—N2—H1121.9N1—C12—N2124.4 (2)
C12—N2—H1121.1N1—C12—S1116.16 (17)
C13—N3—N2119.5 (2)N2—C12—S1119.44 (18)
O2—C1—O1115.2 (2)N3—C13—C14117.9 (2)
O2—C1—C9126.9 (2)N3—C13—H13A121.0
O1—C1—C9117.8 (2)C14—C13—H13A121.0
O1—C2—C3116.9 (2)C15—C14—C19117.5 (2)
O1—C2—C7120.9 (2)C15—C14—C13120.3 (2)
C3—C2—C7122.1 (2)C19—C14—C13122.1 (2)
C4—C3—C2118.9 (2)C16—C15—C14121.5 (2)
C4—C3—H3A120.5C16—C15—H15A119.3
C2—C3—H3A120.5C14—C15—H15A119.3
C3—C4—C5119.6 (3)C17—C16—C15119.9 (3)
C3—C4—H4A120.2C17—C16—H16A120.0
C5—C4—H4A120.2C15—C16—H16A120.0
C6—C5—C4121.4 (2)C16—C17—C18120.4 (3)
C6—C5—Br1119.5 (2)C16—C17—H17A119.8
C4—C5—Br1119.1 (2)C18—C17—H17A119.8
C5—C6—C7119.9 (2)C17—C18—C19119.8 (2)
C5—C6—H6A120.0C17—C18—H18A120.1
C7—C6—H6A120.0C19—C18—H18A120.1
C2—C7—C6118.0 (2)O3—C19—C18123.3 (2)
C2—C7—C8117.5 (2)O3—C19—C14115.9 (2)
C6—C7—C8124.5 (2)C18—C19—C14120.8 (2)
C9—C8—C7122.5 (2)O3—C20—H20A109.5
C9—C8—H8A118.7O3—C20—H20B109.5
C7—C8—H8A118.7H20A—C20—H20B109.5
C8—C9—C10121.4 (2)O3—C20—H20C109.5
C8—C9—C1118.7 (2)H20A—C20—H20C109.5
C10—C9—C1119.9 (2)H20B—C20—H20C109.5
C11—C10—N1114.7 (2)
C12—N2—N3—C13177.2 (2)C1—C9—C10—C114.9 (4)
C2—O1—C1—O2178.6 (2)C8—C9—C10—N14.9 (4)
C2—O1—C1—C90.9 (3)C1—C9—C10—N1173.7 (2)
C1—O1—C2—C3176.6 (2)N1—C10—C11—S10.1 (3)
C1—O1—C2—C72.9 (4)C9—C10—C11—S1178.8 (2)
O1—C2—C3—C4179.5 (3)C12—S1—C11—C100.6 (2)
C7—C2—C3—C41.0 (4)C10—N1—C12—N2179.9 (2)
C2—C3—C4—C50.3 (4)C10—N1—C12—S11.2 (3)
C3—C4—C5—C61.1 (4)N3—N2—C12—N1174.9 (2)
C3—C4—C5—Br1179.5 (2)N3—N2—C12—S16.4 (3)
C4—C5—C6—C70.8 (4)C11—S1—C12—N11.1 (2)
Br1—C5—C6—C7179.84 (19)C11—S1—C12—N2179.8 (2)
O1—C2—C7—C6179.2 (2)N2—N3—C13—C14176.9 (2)
C3—C2—C7—C61.3 (4)N3—C13—C14—C156.5 (4)
O1—C2—C7—C82.6 (4)N3—C13—C14—C19176.0 (2)
C3—C2—C7—C8176.9 (2)C19—C14—C15—C160.7 (4)
C5—C6—C7—C20.4 (4)C13—C14—C15—C16177.0 (3)
C5—C6—C7—C8177.7 (2)C14—C15—C16—C170.9 (5)
C2—C7—C8—C90.3 (4)C15—C16—C17—C182.0 (5)
C6—C7—C8—C9178.4 (3)C16—C17—C18—C191.4 (5)
C7—C8—C9—C10176.9 (2)C20—O3—C19—C185.8 (4)
C7—C8—C9—C11.7 (4)C20—O3—C19—C14176.2 (2)
O2—C1—C9—C8179.2 (3)C17—C18—C19—O3178.1 (3)
O1—C1—C9—C81.4 (4)C17—C18—C19—C140.2 (4)
O2—C1—C9—C102.1 (4)C15—C14—C19—O3179.3 (2)
O1—C1—C9—C10177.3 (2)C13—C14—C19—O31.7 (4)
C12—N1—C10—C110.7 (3)C15—C14—C19—C181.3 (4)
C12—N1—C10—C9178.2 (2)C13—C14—C19—C18176.4 (2)
C8—C9—C10—C11176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O2i0.942.103.021 (3)164
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H14BrN3O3S
Mr456.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.2802 (12), 19.551 (3), 14.0638 (18)
β (°) 113.352 (7)
V3)1837.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.38
Crystal size (mm)0.43 × 0.07 × 0.04
Data collection
DiffractometerBruker APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.427, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
11951, 4266, 2786
Rint0.036
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 1.01
No. of reflections4266
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O2i0.942.103.021 (3)164
Symmetry code: (i) x, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AA, HO, CKL thank the Malaysian Government and Universiti Sains Malaysia (USM) for a grant [1001/PKimia/811133] to conduct this work. AA also thanks Universiti Sains Malaysia for a fellowship. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationArshad, A., Osman, H., Lam, C. K., Hemamalini, M. & Fun, H.-K. (2011a). Acta Cryst. E67, o1072–o1073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, A., Osman, H., Lam, C. K., Hemamalini, M. & Fun, H.-K. (2011b). Acta Cryst. E67, o1007–o1008.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds