organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1868-o1869

Benzyl N-(1-{N′-[(E)-2-chloro­benzyl­­idene]hydrazinecarbon­yl}-2-hy­dr­oxy­eth­yl)carbamate

aFundação Oswaldo Cruz, Instituto de Tecnologia, em Fármacos – Farmanguinhos, R. Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 21 June 2011; accepted 24 June 2011; online 30 June 2011)

The mol­ecule of the title compound, C18H18ClN3O4, is twisted about the chiral C atom with the dihedral angle between the two amide residues being 87.8 (5)°, but, overall, it can be described as curved, with the benzene rings lying on the same side of the mol­ecule [dihedral angle = 62.8 (4)°]. The conformation about the imine bond [1.294 (7) Å] is E. In the crystal, a two-dimensional array in the ab plane is mediated by O—H⋯O and N—H⋯O hydrogen bonds as well as C—H⋯Cl inter­actions. The layers stack along the c-axis direction, being connected by C—H⋯.π contacts.

Related literature

For background to the use of L-serine derivatives in anti-tumour therapy, see: Jiao et al. (2009[Jiao, X., Wang, L., Xiao, Q., Xie, P. & Liang, X. (2009). J. Asian Nat. Prod. Res. 11, 274-280.]); Yakura et al. (2007[Yakura, T., Yoshimoto, Y., Ishida, C. & Mabuchi, S. (2007). Tetrahedron, 63, 4429-4438.]). For background to N-acyl­hydrazone derivatives from L-serine for anti-tumour testing, see: Pinheiro et al. (2010[Pinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o1004-o1005.], 2011a[Pinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2011a). Acta Cryst. E67, o581-o582.],b[Pinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2011b). Acta Cryst. E67, o1805-o1806.]); de Souza et al. (2010[Souza, M. V. N. de, Pinheiro, A. C., Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2010). Acta Cryst. E66, o3253-o3254.]); Howie et al. (2011[Howie, R. A., de Souza, M. V. N., Pinheiro, A. C., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2011). Z. Kristallogr. 226, 483-491.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18ClN3O4

  • Mr = 375.80

  • Triclinic, P 1

  • a = 4.6804 (4) Å

  • b = 5.6037 (7) Å

  • c = 16.946 (2) Å

  • α = 95.669 (6)°

  • β = 95.886 (7)°

  • γ = 94.467 (6)°

  • V = 438.20 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 120 K

  • 0.12 × 0.03 × 0.02 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 1.000

  • 6351 measured reflections

  • 3438 independent reflections

  • 2520 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.196

  • S = 1.10

  • 3438 reflections

  • 244 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1476 Friedel pairs

  • Flack parameter: 0.15 (12)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯O3i 0.84 (8) 1.89 (9) 2.728 (7) 171 (9)
N3—H3n⋯O2ii 0.88 (6) 2.20 (6) 3.006 (8) 153 (7)
N2—H2n⋯O1iii 0.88 (3) 1.93 (4) 2.758 (8) 158 (7)
C6—H6⋯Cliv 0.95 2.81 3.734 (8) 166
C12—H12b⋯Cg1iii 0.99 2.69 3.474 (8) 137
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) x+1, y, z; (iv) x-1, y-1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Interest in the development of N-acylhydrazone derivatives from L-serine for use in anti-tumour testing (Pinheiro et al., 2010; de Souza et al., 2010; Pinheiro et al., 2011a: Pinheiro et al., 2011b; Howie et al., 2011) arises from the known anti-tumour activity of L-serine derivatives (Jiao et al., 2009; Yakura et al., 2007), and motivated the study of the title compound, (I).

Overall, the molecule of (I), Fig. 1, is curved with the benzene rings lying on the same side of the molecule. Nevertheless, the molecule is twisted about the chiral centre with the dihedral angle formed between the two amide residues, i.e. N2,C8,O1 and N3,C11,O3,O4, being 87.8 (5) °. The benzyl group is approximately co-planar with the carboxylate group with the dihedral angle between the carbamate group (N3,C11,O3,O4) and benzene ring (C13–C18) being 9.9 (2) °. By contrast, the benzene ring connected to the hydrazine group is twisted out of the plane through the latter as seen in the value of the C2—C1—C7—N1 torsion angle of 146.7 (5) °. The dihedral angle formed between the terminal benzene rings is 62.8 (4) °. The conformation about the N1C7 imine bond [1.294 (7) Å] is E.

The crystal packing is dominated by hydrogen bonding interactions, Table 1. The hydroxyl group forms a O—H···O hydrogen bond with the carbamate-carbonyl group, and simultaneously accepts a hydrogen bond from carbamate-amine. The hydrazine-amine forms a N—H···O hydrogen bond with the carbonyl adjacent to the hydrazine group. The result of the hydrogen bonds is the formation of a two-dimensional array in the ab plane, Fig. 2. Additional stabilization to the layer is afforded by C—H···Cl interactions, Table 1. Layers stack along the c direction and are connected via C—H···π interactions, Table 1 and Fig. 3.

Related literature top

For background to the use of L-serine derivatives in anti-tumour therapy, see: Jiao et al. (2009); Yakura et al. (2007). For background to N-acylhydrazone derivatives from L-serine for anti-tumour testing, see: Pinheiro et al. (2010, 2011a,b); de Souza et al. (2010); Howie et al. (2011).

Experimental top

To a stirred solution of methyl (2S)-2-[(benzyloxycarbonyl)amino]-3-hydroxypropanoate (0.3 g, 1.17 mmol), prepared from (2S)-2-amino-3-hydroxypropanoate hydrochloride and benzyl chloroformate (21 ml, 0.15 mol), in ethanol (10 ml) was added N2H4.H2O (80%, 5.5 mmol). The reaction mixture was stirred for 24 h at room temperature, rotary evaporated and the residue washed with cold ethanol (3 x 10 ml) to give benzyl (1S)-2-hydrazino-1-(hydroxymethyl)-2-oxoethylcarbamate in 78% yield, which was used as such for the next stage. To a stirred solution of (S)-PhCH2OCONHCH(CH2OH)CONHNH2 (1.0 mmol) in ethanol (10 ml) at room temperature was added 2-chlorobenzaldehyde (1.05 mmol). The reaction mixture was refluxed for 4 h, rotary evaporated and the residue purified by washing with cold ethanol (3 x 10 ml), affording the title compound, M.pt. 438 K, yield 73%. Yellow needles of (I) for the structure determination were recrystallized from EtOH. 1H NMR (500 MHz, DMSO-d6) δ (p.p.m.): 11.79 (1H, s, NHN), 8.67 (1H, s, NCH, (E)-diastereomer), 7.97 (1H, d, J= 6.4, H5), 7.55–7.20 (9H, m, Ph, H2, H3, H4 and NHCH), 5.05 (2H, s, CH2Ph), 4.94 (1H, m, OH), 4.15 (1H, m, CH), 3.80–3.60 (2H, m, CH2OH). 13C NMR (125 MHz, DMSO-d6) δ (p.p.m.): 172.1, 156.5, 143.5, 137.5, 133.6, 132.0, 131.8, 130.4, 128.8, 128.3, 128.2, 128.1, 127.3, 66.1, 61.9, 57.0. IR (cm-1, KBr): 3202 ν(O—H), 1682 ν(COCH and COO). MS/ESI: [M—H]: 374.8.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O– and N-bound H atoms were located from a difference map and refined with the distance restraints O–H = 0.84 ± 0.01 and N–H = 0.88±0.01 Å, and with Uiso(H) = zUeq(carrier atom); z = 1.5 for O and z = 1.2 for N.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular array in the ab plane in (I) with the O—H···O and N—H···O hydrogen bonding shown as orange and blue dashed lines, respectively. Hydrogen atoms not participating in the hydrogen bonding scheme are omitted for reasons of clariy.
[Figure 3] Fig. 3. A view in projection down the a axis of the stacking of 2-D supramolecular arrays in the ab plane in (I), and with the O—H···O and N—H···O hydrogen bonding shown as orange and blue dashed lines, respectively.
Benzyl N-(1-{N'-[(E)-2- chlorobenzylidene]hydrazinecarbonyl}-2-hydroxyethyl)carbamate top
Crystal data top
C18H18ClN3O4Z = 1
Mr = 375.80F(000) = 196
Triclinic, P1Dx = 1.424 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.6804 (4) ÅCell parameters from 13950 reflections
b = 5.6037 (7) Åθ = 2.9–27.5°
c = 16.946 (2) ŵ = 0.25 mm1
α = 95.669 (6)°T = 120 K
β = 95.886 (7)°Needle, yellow
γ = 94.467 (6)°0.12 × 0.03 × 0.02 mm
V = 438.20 (8) Å3
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
3438 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2520 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.7°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 77
Tmin = 0.682, Tmax = 1.000l = 2121
6351 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.196 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3438 reflectionsΔρmax = 0.38 e Å3
244 parametersΔρmin = 0.39 e Å3
6 restraintsAbsolute structure: Flack (1983), 1476 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.15 (12)
Crystal data top
C18H18ClN3O4γ = 94.467 (6)°
Mr = 375.80V = 438.20 (8) Å3
Triclinic, P1Z = 1
a = 4.6804 (4) ÅMo Kα radiation
b = 5.6037 (7) ŵ = 0.25 mm1
c = 16.946 (2) ÅT = 120 K
α = 95.669 (6)°0.12 × 0.03 × 0.02 mm
β = 95.886 (7)°
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
3438 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2520 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 1.000Rint = 0.062
6351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.070H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.196Δρmax = 0.38 e Å3
S = 1.10Δρmin = 0.39 e Å3
3438 reflectionsAbsolute structure: Flack (1983), 1476 Friedel pairs
244 parametersAbsolute structure parameter: 0.15 (12)
6 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1.3824 (2)1.3694 (2)0.28152 (10)0.0301 (4)
O10.5726 (7)0.6300 (8)0.4667 (3)0.0298 (10)
O21.2666 (8)0.1671 (7)0.5712 (3)0.0270 (10)
H2O1.181 (14)0.079 (11)0.600 (4)0.041*
O30.9314 (8)0.8947 (7)0.6569 (2)0.0273 (10)
O40.5835 (8)0.6630 (7)0.7041 (2)0.0265 (9)
N10.8863 (9)0.7934 (8)0.3539 (3)0.0198 (10)
N21.0058 (10)0.6984 (9)0.4208 (3)0.0221 (10)
H2N1.195 (3)0.713 (11)0.429 (4)0.026*
N30.8117 (10)0.4981 (8)0.6072 (3)0.0230 (11)
H3N0.683 (10)0.377 (7)0.610 (4)0.028*
C10.9669 (12)0.9974 (11)0.2410 (4)0.0233 (13)
C21.1001 (11)1.2101 (10)0.2184 (4)0.0248 (13)
C30.9976 (13)1.3025 (11)0.1494 (4)0.0287 (14)
H31.08441.44980.13590.034*
C40.7682 (13)1.1799 (12)0.1000 (4)0.0315 (15)
H40.69961.24190.05210.038*
C50.6399 (13)0.9705 (12)0.1198 (4)0.0308 (15)
H50.48420.88660.08510.037*
C60.7337 (12)0.8786 (11)0.1900 (3)0.0228 (12)
H60.63940.73440.20350.027*
C71.0712 (12)0.9037 (10)0.3152 (3)0.0223 (12)
H71.27040.92330.33450.027*
C80.8341 (11)0.6206 (10)0.4736 (3)0.0212 (12)
C90.9896 (11)0.5108 (10)0.5429 (3)0.0207 (12)
H91.17100.61480.56290.025*
C101.0689 (11)0.2567 (11)0.5148 (3)0.0218 (12)
H10A0.89100.14540.50480.026*
H10B1.15400.26130.46380.026*
C110.7900 (11)0.7019 (10)0.6551 (3)0.0190 (11)
C120.5549 (12)0.8631 (11)0.7614 (3)0.0236 (13)
H12A0.47890.99620.73370.028*
H12B0.74650.92170.79000.028*
C130.3567 (11)0.7911 (11)0.8197 (4)0.0244 (13)
C140.2025 (12)0.5668 (11)0.8127 (4)0.0286 (14)
H140.22190.45100.76910.034*
C150.0196 (14)0.5110 (13)0.8693 (5)0.0373 (16)
H150.08300.35630.86480.045*
C160.0126 (13)0.6770 (13)0.9310 (4)0.0363 (16)
H160.14060.63830.96880.044*
C170.1389 (13)0.9020 (13)0.9394 (4)0.0336 (15)
H170.11621.01660.98300.040*
C180.3217 (12)0.9584 (11)0.8845 (4)0.0275 (13)
H180.42611.11270.89030.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0278 (7)0.0258 (8)0.0367 (9)0.0003 (6)0.0059 (6)0.0024 (6)
O10.017 (2)0.048 (3)0.029 (2)0.0077 (19)0.0078 (17)0.016 (2)
O20.025 (2)0.025 (2)0.034 (3)0.0034 (18)0.0036 (18)0.0113 (19)
O30.025 (2)0.028 (2)0.028 (2)0.0022 (18)0.0054 (17)0.0004 (18)
O40.024 (2)0.031 (2)0.023 (2)0.0005 (18)0.0069 (17)0.0022 (17)
N10.020 (2)0.020 (2)0.018 (2)0.0046 (19)0.0017 (18)0.001 (2)
N20.017 (2)0.027 (3)0.022 (3)0.0034 (19)0.0024 (19)0.005 (2)
N30.019 (2)0.023 (3)0.028 (3)0.0027 (19)0.008 (2)0.004 (2)
C10.022 (3)0.029 (3)0.022 (3)0.008 (2)0.009 (2)0.002 (3)
C20.022 (3)0.028 (3)0.025 (3)0.008 (2)0.008 (2)0.007 (3)
C30.034 (3)0.027 (3)0.031 (3)0.007 (3)0.016 (3)0.012 (3)
C40.036 (3)0.044 (4)0.017 (3)0.009 (3)0.006 (3)0.010 (3)
C50.028 (3)0.040 (4)0.025 (3)0.005 (3)0.004 (3)0.004 (3)
C60.022 (3)0.025 (3)0.023 (3)0.007 (2)0.001 (2)0.009 (2)
C70.020 (3)0.020 (3)0.025 (3)0.001 (2)0.002 (2)0.001 (2)
C80.012 (2)0.023 (3)0.027 (3)0.001 (2)0.004 (2)0.000 (2)
C90.015 (2)0.026 (3)0.020 (3)0.001 (2)0.001 (2)0.002 (2)
C100.019 (3)0.028 (3)0.018 (3)0.002 (2)0.002 (2)0.000 (2)
C110.012 (2)0.027 (3)0.019 (3)0.003 (2)0.004 (2)0.004 (2)
C120.021 (3)0.029 (3)0.022 (3)0.005 (2)0.005 (2)0.001 (2)
C130.014 (3)0.035 (3)0.025 (3)0.012 (2)0.003 (2)0.001 (3)
C140.024 (3)0.035 (4)0.030 (3)0.012 (3)0.008 (3)0.000 (3)
C150.027 (3)0.035 (4)0.053 (4)0.003 (3)0.013 (3)0.014 (3)
C160.031 (3)0.053 (4)0.032 (4)0.019 (3)0.014 (3)0.015 (3)
C170.027 (3)0.047 (4)0.026 (3)0.011 (3)0.003 (3)0.003 (3)
C180.021 (3)0.032 (3)0.028 (3)0.001 (3)0.003 (2)0.000 (3)
Geometric parameters (Å, º) top
Cl—C21.739 (6)C5—H50.9500
O1—C81.223 (6)C6—H60.9500
O2—C101.417 (7)C7—H70.9500
O2—H2O0.842 (10)C8—C91.525 (8)
O3—C111.218 (7)C9—C101.541 (8)
O4—C111.357 (6)C9—H91.0000
O4—C121.433 (6)C10—H10A0.9900
N1—C71.294 (7)C10—H10B0.9900
N1—N21.385 (6)C12—C131.485 (8)
N2—C81.343 (7)C12—H12A0.9900
N2—H2N0.877 (10)C12—H12B0.9900
N3—C111.351 (7)C13—C141.388 (9)
N3—C91.441 (7)C13—C181.403 (8)
N3—H3N0.878 (10)C14—C151.391 (9)
C1—C61.400 (8)C14—H140.9500
C1—C21.407 (8)C15—C161.357 (10)
C1—C71.462 (8)C15—H150.9500
C2—C31.381 (8)C16—C171.385 (10)
C3—C41.383 (9)C16—H160.9500
C3—H30.9500C17—C181.371 (8)
C4—C51.364 (9)C17—H170.9500
C4—H40.9500C18—H180.9500
C5—C61.386 (9)
C10—O2—H2O111 (5)N3—C9—H9108.7
C11—O4—C12114.7 (4)C8—C9—H9108.7
C7—N1—N2114.6 (4)C10—C9—H9108.7
C8—N2—N1119.6 (4)O2—C10—C9112.6 (4)
C8—N2—H2N124 (4)O2—C10—H10A109.1
N1—N2—H2N115 (4)C9—C10—H10A109.1
C11—N3—C9118.3 (5)O2—C10—H10B109.1
C11—N3—H3N117 (4)C9—C10—H10B109.1
C9—N3—H3N123 (4)H10A—C10—H10B107.8
C6—C1—C2117.8 (5)O3—C11—N3127.3 (5)
C6—C1—C7121.4 (5)O3—C11—O4122.9 (5)
C2—C1—C7120.7 (5)N3—C11—O4109.8 (5)
C3—C2—C1120.9 (5)O4—C12—C13110.4 (5)
C3—C2—Cl119.5 (5)O4—C12—H12A109.6
C1—C2—Cl119.4 (5)C13—C12—H12A109.6
C2—C3—C4119.8 (6)O4—C12—H12B109.6
C2—C3—H3120.1C13—C12—H12B109.6
C4—C3—H3120.1H12A—C12—H12B108.1
C5—C4—C3120.3 (6)C14—C13—C18118.4 (5)
C5—C4—H4119.9C14—C13—C12123.1 (5)
C3—C4—H4119.9C18—C13—C12118.5 (5)
C4—C5—C6120.8 (6)C13—C14—C15120.2 (6)
C4—C5—H5119.6C13—C14—H14119.9
C6—C5—H5119.6C15—C14—H14119.9
C5—C6—C1120.3 (6)C16—C15—C14120.2 (7)
C5—C6—H6119.9C16—C15—H15119.9
C1—C6—H6119.9C14—C15—H15119.9
N1—C7—C1118.5 (5)C15—C16—C17120.8 (6)
N1—C7—H7120.7C15—C16—H16119.6
C1—C7—H7120.7C17—C16—H16119.6
O1—C8—N2123.7 (5)C18—C17—C16119.6 (6)
O1—C8—C9121.7 (5)C18—C17—H17120.2
N2—C8—C9114.6 (4)C16—C17—H17120.2
N3—C9—C8110.6 (4)C17—C18—C13120.8 (6)
N3—C9—C10109.7 (5)C17—C18—H18119.6
C8—C9—C10110.2 (5)C13—C18—H18119.6
C7—N1—N2—C8167.6 (5)N2—C8—C9—N3163.1 (5)
C6—C1—C2—C32.1 (8)O1—C8—C9—C10102.9 (6)
C7—C1—C2—C3178.3 (5)N2—C8—C9—C1075.4 (6)
C6—C1—C2—Cl177.8 (4)N3—C9—C10—O270.8 (5)
C7—C1—C2—Cl2.6 (7)C8—C9—C10—O2167.1 (4)
C1—C2—C3—C42.6 (8)C9—N3—C11—O39.6 (8)
Cl—C2—C3—C4178.3 (5)C9—N3—C11—O4171.2 (5)
C2—C3—C4—C51.1 (9)C12—O4—C11—O33.2 (7)
C3—C4—C5—C60.9 (10)C12—O4—C11—N3176.0 (4)
C4—C5—C6—C11.4 (9)C11—O4—C12—C13171.5 (5)
C2—C1—C6—C50.1 (8)O4—C12—C13—C146.0 (7)
C7—C1—C6—C5179.7 (5)O4—C12—C13—C18174.6 (5)
N2—N1—C7—C1176.4 (5)C18—C13—C14—C150.4 (8)
C6—C1—C7—N133.8 (8)C12—C13—C14—C15179.8 (6)
C2—C1—C7—N1146.7 (5)C13—C14—C15—C161.0 (10)
N1—N2—C8—O10.6 (8)C14—C15—C16—C171.1 (10)
N1—N2—C8—C9177.6 (5)C15—C16—C17—C180.5 (10)
C11—N3—C9—C877.4 (6)C16—C17—C18—C130.2 (9)
C11—N3—C9—C10160.8 (5)C14—C13—C18—C170.2 (8)
O1—C8—C9—N318.6 (7)C12—C13—C18—C17179.3 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
O2—H2o···O3i0.84 (8)1.89 (9)2.728 (7)171 (9)
N3—H3n···O2ii0.88 (6)2.20 (6)3.006 (8)153 (7)
N2—H2n···O1iii0.88 (3)1.93 (4)2.758 (8)158 (7)
C6—H6···Cliv0.952.813.734 (8)166
C12—H12b···Cg1iii0.992.693.474 (8)137
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC18H18ClN3O4
Mr375.80
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)4.6804 (4), 5.6037 (7), 16.946 (2)
α, β, γ (°)95.669 (6), 95.886 (7), 94.467 (6)
V3)438.20 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.12 × 0.03 × 0.02
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.682, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6351, 3438, 2520
Rint0.062
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.196, 1.10
No. of reflections3438
No. of parameters244
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.39
Absolute structureFlack (1983), 1476 Friedel pairs
Absolute structure parameter0.15 (12)

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
O2—H2o···O3i0.84 (8)1.89 (9)2.728 (7)171 (9)
N3—H3n···O2ii0.88 (6)2.20 (6)3.006 (8)153 (7)
N2—H2n···O1iii0.88 (3)1.93 (4)2.758 (8)158 (7)
C6—H6···Cliv0.952.813.734 (8)166
C12—H12b···Cg1iii0.992.693.474 (8)137
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x1, y1, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHowie, R. A., de Souza, M. V. N., Pinheiro, A. C., Kaiser, C. R., Wardell, J. L. & Wardell, S. M. S. V. (2011). Z. Kristallogr. 226, 483–491.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiao, X., Wang, L., Xiao, Q., Xie, P. & Liang, X. (2009). J. Asian Nat. Prod. Res. 11, 274–280.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o1004–o1005.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2011a). Acta Cryst. E67, o581–o582.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPinheiro, A. C., Souza, M. V. N. de, Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2011b). Acta Cryst. E67, o1805–o1806.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Pinheiro, A. C., Tiekink, E. R. T., Wardell, S. M. S. V. & Wardell, J. L. (2010). Acta Cryst. E66, o3253–o3254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYakura, T., Yoshimoto, Y., Ishida, C. & Mabuchi, S. (2007). Tetrahedron, 63, 4429–4438.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1868-o1869
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds