metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m824-m825

Di-μ-oxido-bis­­[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N,N′,N′′,N′′′)dimangan­ese(III,IV)] bis­­(tetra­phenyl­borate) chloride aceto­nitrile disolvate

aDepartment of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
*Correspondence e-mail: olmstead@chem.ucdavis.edu

(Received 19 May 2011; accepted 25 May 2011; online 4 June 2011)

The title compound, [Mn2O2(C10H24N4)2](C24H20B)2Cl·2CH3CN, is a mixed-valent MnIII/MnIV oxide-bridged mangan­ese dimer with one chloride and two tetra­phenyl­borate counter-anions. There are two non-coordinated mol­ecules of acetonitrile in the formula unit. A center of inversion is present between the two metal atoms, and, consequently, there is no distinction between MnIII and MnIV metal centers. In the Mn2O2 core, the Mn—O distances are 1.817 (3) and 1.821 (3) Å. The cyclam ligand is in the cis configuration. The chloride counter-anion resides on a center of symmetry, whereas the tetra­phenyl­borate counter-anion is in a general position. The cyclam ligand is hydrogen bonded to the acetonitrile as well as to the chloride anion. One of the phenyl rings of the anion and the acetonitrile solvent molecule are each disordered over two sets of sites.

Related literature

For structures of different salts containing the disordered mixed-valent {[(cyclam)MnO]2}3+ cation, see: Goodson et al. (1990[Goodson, P. A., Hodgson, D. J. & Michelsen, K. (1990). Inorg. Chim. Acta, 172, 49-57.]); Lu et al. (2001[Lu, Y.-H., Fun, H.-K., Chantrapromma, S., Razak, I. A., Shen, Z., Zuo, J.-L. & You, X.-Z. (2001). Acta Cryst. C57, 911-913.]). For structures of the non-disordered MnIII—MnIVO2 core, see: Brewer et al. (1989[Brewer, K. J., Calvin, M., Lumpkin, R. S., Otvos, J. W. & Spreer, L. O. (1989). Inorg. Chem. 28, 4446-4451.]); Levaton & Olmstead (2010[Levaton, B. B. & Olmstead, M. M. (2010). Acta Cryst. E66, m1226-m1227.]). For cyclam configurations, see: Bosnich et al. (1965[Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102-1108.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2O2(C10H24N4)2](C24H20B)2Cl·2C2H3N

  • Mr = 1298.52

  • Triclinic, [P \overline 1]

  • a = 11.437 (2) Å

  • b = 11.713 (2) Å

  • c = 13.967 (3) Å

  • α = 104.136 (3)°

  • β = 97.697 (3)°

  • γ = 107.627 (3)°

  • V = 1684.9 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 90 K

  • 0.15 × 0.11 × 0.08 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.972

  • 17931 measured reflections

  • 6092 independent reflections

  • 4083 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.173

  • S = 1.03

  • 6092 reflections

  • 433 parameters

  • 258 restraints

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 1.817 (3)
Mn1—O1i 1.821 (3)
Mn1—N1 2.187 (5)
Mn1—N2 2.092 (3)
Mn1—N3 2.178 (3)
Mn1—N4 2.116 (3)
Symmetry code: (i) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N5 0.93 2.42 3.313 (11) 160
N1—H1⋯N5B 0.93 1.98 2.832 (10) 151
N2—H2⋯Cl1 0.93 2.37 3.289 (4) 169
N3—H3⋯N5i 0.93 2.22 3.034 (9) 146
N3—H3⋯N5Bi 0.93 2.23 3.120 (9) 160
N4—H4⋯Cl1 0.93 2.42 3.330 (4) 168
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title compound (Fig. 1), the MnIII—MnIV centrosymmetric, dinuclear cation is bridged by two oxo ligands. Each manganese atom also binds to a tetradentate cyclam (cyclam = 1,4,8,11-tetraazacyclotetradecane) to achieve a distorted octahedral coordination environment. Due to the center of inversion, there is no distinction between the two different oxidation states in the structure, and it is disordered mixed valent. The dinuclear cation bears a +3 charge, and the charge is balanced by a chloride anion and two tetraphenylborate anions. The chloride resides on a center of symmetry. The configuration of the cyclam ligand is cis-V, in which the N—H bonds alternate above and below the N4 plane (Bosnich et al., 1965).

The structures of similar disordered mixed valent (III/IV) µ-oxo bridged manganese cyclam complexes are reported in Lu, et al., 2001, with two perchlorate and one nitrate anions; Goodson, et al., 1990, with dithionate and thiosulfate anions, and a second structure with three bromides. In the title compound, the Mn2O2 core has Mn—O distances of 1.817 (3) and 1.821 (3) Å. All of the above referenced structures show similar coordination geometry, and the mean Mn—O bond distances in the Mn2O2 core for these complexes is 1.824 Å. A trifluoromethanesulfonate salt (Brewer, et al., 1989) crystallized with discrete MnIII and MnIV metal centers, and these mean Mn—O distances are characteristic of the oxidation states of Mn: MnIII—O, 1.861 Å and MnIV—O, 1.788 Å. Related values were also seen in the structure of a large Mn12 cluster with three units of Mn2O2 core geometry. Average values with average deviations from the mean were MnIII—O, 1.879 (7) Å and MnIV—O, 1.787 (6) Å (Levaton & Olmstead, 2010). Thus, the disordered distances agree well with the average III/IV values.

In the structure of the title compound, all of the available hydrogen atoms bonded to the N atoms in the cyclam ligand participate in hydrogen bonding (Fig. 2 and Table 2). The hydrogen atoms bonded to N atoms N2 and N4 are hydrogen bonded to chloride atom. The hydrogen atoms on N atoms N1 and N3 hydrogen bond to the acetonitrile N atoms.

Related literature top

For structures of different salts containing the disordered mixed-valent {[(cyclam)MnO]2}3+ cation, see: Goodson et al. (1990); Lu et al. (2001). For structures of the non-disordered MnIII—MnIVO2 core, see Brewer et al. (1989); Levaton & Olmstead (2010). For cyclam configurations, see Bosnich et al. (1965).

Experimental top

The title compound was obtained while attempting to prepare an azido derivative. To a stirred solution of 1,4,8,11-tetraazacyclotetradecane (cyclam), (200 mg, 1 mmol) in 5 ml of methanol was added a solution of MnCl2.4H2O (200 mg, 1 mmol) in 25 ml of methanol. Over the one hour course of the addition, the reaction color progressed from red to dark green. After stirring for 1 hr an excess of NaN3 (200 mg, 2.5 mmol) was added to the reaction mixture in a solution of 9 ml me thanol and 1 ml H2O. No color change was observed upon addition of the azide. After 20 min of stirring NaBPh4 (350 mg, 1 mmol) was added. Addition of the tetraphenylborate salt caused a precipitate to form and the solution turned red-brown. Subsequently, 18 ml of a 5:1 acetonitrile:water and 10 ml of 0.1 M HClO4 were added. The orange-brown solid was collected by filtration. Dichroic, red-green crystals of the product were obtained by slow evaporation of a toluene solution.

Refinement top

The C-bound and N-bound H atoms were positioned geometrically with C—H = 0.95—0.98 Å, N—H = 0.88 Å, and allowed to ride on their parent atoms with Uiso(H) = 1.2—1.5 Ueq(C). One of the BPh4- phenyl rings was disordered and was refined in two parts with a rigid group refinement. The acetonitrile molecule was disordered in two parts, each assigned 50% occupancy. Atoms of the disordered acetonitriles were kept isotropic. The atoms of the disordered BPh4- phenyl group were allowed to refine with anisotropic thermal parameters and a similarity restraint (SIMU) of 0.008. The cation displayed large thermal motion and thermal ellipsoids for these atoms were refined with an ISOR 0.01 restraint. An attempt was made to solve and refine the structure in the non-centrosymmetric space group P1 but atoms of the cation became N.P.D.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex with displacement parameters drawn at the 30% probability level. Disordered components of the acetonitrile and [BPh4]- group are shown.
[Figure 2] Fig. 2. The centrosymmetric dimer of the title cation is shown with H-bonds involving the N—H groups, acetonitriles and chlorides depicted with dashed lines.
Di-µ-oxido-bis[(1,4,8,11-tetraazacyclotetradecane- κ4N,N',N'',N''')dimanganese(III,IV)] bis(tetraphenylborate) chloride acetonitrile disolvate top
Crystal data top
[Mn2O2(C10H24N4)2](C24H20B)2Cl·2C2H3NZ = 1
Mr = 1298.52F(000) = 689
Triclinic, P1Dx = 1.280 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.437 (2) ÅCell parameters from 3568 reflections
b = 11.713 (2) Åθ = 2.8–24.6°
c = 13.967 (3) ŵ = 0.47 mm1
α = 104.136 (3)°T = 90 K
β = 97.697 (3)°Block, red
γ = 107.627 (3)°0.15 × 0.11 × 0.08 mm
V = 1684.9 (6) Å3
Data collection top
Bruker SMART APEXII
diffractometer
6092 independent reflections
Radiation source: fine-focus sealed tube4083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 8.3 pixels mm-1θmax = 25.3°, θmin = 2.8°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.952, Tmax = 0.972l = 1616
17931 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.080P)2 + 1.3759P]
where P = (Fo2 + 2Fc2)/3
6092 reflections(Δ/σ)max = 0.007
433 parametersΔρmax = 0.54 e Å3
258 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Mn2O2(C10H24N4)2](C24H20B)2Cl·2C2H3Nγ = 107.627 (3)°
Mr = 1298.52V = 1684.9 (6) Å3
Triclinic, P1Z = 1
a = 11.437 (2) ÅMo Kα radiation
b = 11.713 (2) ŵ = 0.47 mm1
c = 13.967 (3) ÅT = 90 K
α = 104.136 (3)°0.15 × 0.11 × 0.08 mm
β = 97.697 (3)°
Data collection top
Bruker SMART APEXII
diffractometer
6092 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4083 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.972Rint = 0.064
17931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.061258 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.03Δρmax = 0.54 e Å3
6092 reflectionsΔρmin = 0.81 e Å3
433 parameters
Special details top

Experimental. Crystals were dichroic.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.50000.50000.50000.0774 (7)
Mn10.11925 (5)0.50038 (5)0.50106 (5)0.0434 (2)
O10.0251 (3)0.4058 (2)0.5257 (2)0.0480 (8)
N10.2187 (3)0.6175 (4)0.6555 (4)0.0738 (14)
H10.17420.67090.67380.089*
N20.2773 (3)0.6205 (3)0.4709 (3)0.0509 (10)
H20.33800.58260.46950.061*
N30.0891 (3)0.3830 (3)0.3463 (2)0.0357 (7)
H30.00490.33160.32960.043*
N40.2090 (3)0.3743 (3)0.5289 (3)0.0579 (11)
H40.29420.41070.53120.069*
C10.3437 (4)0.7009 (5)0.6530 (4)0.0686 (15)
H1B0.40480.65650.65280.082*
H1C0.37510.77650.71300.082*
C20.3272 (5)0.7373 (4)0.5578 (4)0.0658 (15)
H2A0.26770.78370.55900.079*
H2B0.40900.79230.55180.079*
C30.2571 (4)0.6510 (4)0.3745 (3)0.0479 (11)
H3A0.33270.72010.37440.058*
H3B0.18500.68110.37050.058*
C40.2318 (4)0.5416 (4)0.2834 (4)0.0547 (12)
H4A0.29720.50340.29250.066*
H4B0.23840.57200.22340.066*
C50.1037 (4)0.4420 (4)0.2635 (3)0.0538 (12)
H5A0.03810.48020.25540.065*
H5B0.09030.37600.19910.065*
C60.1589 (4)0.2975 (4)0.3453 (4)0.0594 (13)
H6A0.24710.33970.34280.071*
H6B0.12020.22260.28490.071*
C70.1555 (4)0.2593 (4)0.4390 (4)0.0676 (15)
H7A0.20540.20380.44170.081*
H7B0.06760.21230.43930.081*
C80.1982 (4)0.3418 (5)0.6219 (4)0.0695 (16)
H8A0.22780.27040.62090.083*
H8B0.10860.31450.62560.083*
C90.2735 (5)0.4502 (5)0.7142 (4)0.0677 (15)
H9A0.36080.48290.70570.081*
H9B0.27700.41810.77350.081*
C100.2253 (6)0.5587 (6)0.7381 (6)0.098 (2)
H10A0.14030.52810.75150.117*
H10B0.28120.62350.80060.117*
B10.2591 (4)0.1045 (4)0.1854 (3)0.0326 (9)
C110.3193 (5)0.0254 (4)0.1481 (3)0.0315 (16)0.542 (4)
C120.3289 (5)0.1438 (5)0.2064 (3)0.0257 (15)0.542 (4)
H120.30150.15350.26820.031*0.542 (4)
C130.3786 (5)0.2481 (4)0.1743 (4)0.0308 (17)0.542 (4)
H130.38520.32910.21410.037*0.542 (4)
C140.4187 (5)0.2339 (4)0.0838 (4)0.0334 (15)0.542 (4)
H140.45270.30510.06180.040*0.542 (4)
C150.4090 (4)0.1154 (4)0.0255 (3)0.0401 (16)0.542 (4)
H150.43640.10570.03630.048*0.542 (4)
C160.3593 (5)0.0112 (3)0.0577 (3)0.0356 (15)0.542 (4)
H160.35270.06980.01780.043*0.542 (4)
C11B0.3432 (5)0.0282 (5)0.1656 (4)0.0263 (17)0.458 (4)
C12B0.2979 (5)0.1267 (7)0.1898 (5)0.0306 (19)0.458 (4)
H12B0.22760.11780.22030.037*0.458 (4)
C13B0.3555 (6)0.2381 (5)0.1693 (5)0.0330 (19)0.458 (4)
H13B0.32450.30540.18580.040*0.458 (4)
C14B0.4583 (5)0.2511 (4)0.1246 (4)0.0325 (18)0.458 (4)
H14B0.49770.32730.11060.039*0.458 (4)
C15B0.5037 (5)0.1527 (5)0.1004 (4)0.0371 (17)0.458 (4)
H15B0.57400.16150.06980.045*0.458 (4)
C16B0.4461 (5)0.0412 (4)0.1209 (4)0.0309 (16)0.458 (4)
H16B0.47710.02610.10430.037*0.458 (4)
C170.3410 (3)0.1988 (3)0.1658 (3)0.0321 (8)
C180.4455 (4)0.1898 (4)0.2359 (3)0.0385 (9)
H180.47180.12490.29870.046*
C190.5126 (4)0.2704 (4)0.2186 (3)0.0434 (10)
H190.58230.26020.26940.052*
C200.4795 (4)0.3655 (4)0.1283 (3)0.0413 (9)
H200.52470.42160.11630.050*
C210.3785 (4)0.3764 (3)0.0563 (3)0.0387 (9)
H210.35430.44010.00710.046*
C220.3121 (3)0.2956 (3)0.0752 (3)0.0350 (9)
H220.24270.30650.02380.042*
C230.1172 (3)0.1789 (3)0.1131 (3)0.0338 (8)
C240.0576 (4)0.1332 (4)0.0454 (3)0.0405 (9)
H240.10150.05320.03930.049*
C250.0642 (4)0.2001 (4)0.0140 (3)0.0444 (10)
H250.10100.16550.05950.053*
C260.1310 (4)0.3161 (4)0.0067 (3)0.0428 (10)
H260.21450.36110.04580.051*
C270.0750 (4)0.3662 (4)0.0581 (3)0.0403 (9)
H270.11900.44690.06260.048*
C280.0459 (3)0.2981 (3)0.1165 (3)0.0357 (9)
H280.08220.33400.16110.043*
C290.2486 (3)0.0639 (3)0.3049 (3)0.0291 (8)
C300.1384 (3)0.0995 (3)0.3392 (3)0.0341 (8)
H300.06210.15000.29080.041*
C310.1344 (4)0.0647 (3)0.4414 (3)0.0393 (9)
H310.05640.09090.46080.047*
C320.2429 (4)0.0075 (3)0.5140 (3)0.0380 (9)
H320.24130.02890.58380.046*
C330.3534 (4)0.0479 (3)0.4835 (3)0.0373 (9)
H330.42900.09970.53230.045*
C340.3548 (3)0.0130 (3)0.3813 (3)0.0353 (9)
H340.43250.04320.36240.042*
N50.1329 (9)0.8609 (9)0.7468 (7)0.053 (2)*0.50
C350.1548 (8)0.9672 (8)0.7751 (6)0.0402 (18)*0.50
C360.1803 (8)1.0976 (8)0.8123 (7)0.050 (2)*0.50
H36A0.10581.11230.83220.076*0.50
H36B0.20141.13650.75930.076*0.50
H36C0.25141.13460.87130.076*0.50
N5B0.1679 (8)0.8389 (8)0.7379 (6)0.047 (2)*0.50
C35B0.2034 (8)0.9323 (8)0.7992 (6)0.0432 (19)*0.50
C36B0.2519 (9)1.0513 (9)0.8797 (7)0.059 (2)*0.50
H36D0.27961.03720.94400.088*0.50
H36E0.18561.08770.88540.088*0.50
H36F0.32341.10910.86410.088*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0257 (8)0.0762 (12)0.1513 (19)0.0152 (8)0.0083 (9)0.0805 (13)
Mn10.0283 (3)0.0300 (3)0.0637 (4)0.0002 (2)0.0153 (3)0.0263 (3)
O10.0452 (16)0.0273 (13)0.0557 (17)0.0017 (12)0.0218 (13)0.0209 (13)
N10.034 (2)0.083 (3)0.134 (4)0.026 (2)0.020 (2)0.079 (3)
N20.0361 (18)0.0423 (19)0.070 (2)0.0029 (15)0.0116 (17)0.0352 (18)
N30.0269 (16)0.0314 (16)0.0460 (19)0.0098 (13)0.0047 (14)0.0092 (14)
N40.0307 (18)0.045 (2)0.097 (3)0.0030 (15)0.0096 (18)0.045 (2)
C10.032 (2)0.086 (4)0.081 (3)0.002 (2)0.006 (2)0.047 (3)
C20.052 (3)0.049 (3)0.065 (3)0.020 (2)0.023 (2)0.030 (2)
C30.043 (2)0.041 (2)0.065 (3)0.0157 (19)0.001 (2)0.029 (2)
C40.051 (3)0.047 (2)0.078 (3)0.020 (2)0.034 (2)0.026 (2)
C50.061 (3)0.054 (3)0.040 (2)0.010 (2)0.019 (2)0.013 (2)
C60.041 (2)0.039 (2)0.094 (4)0.019 (2)0.011 (2)0.009 (2)
C70.044 (3)0.032 (2)0.120 (4)0.011 (2)0.013 (3)0.030 (3)
C80.037 (2)0.070 (3)0.115 (4)0.012 (2)0.001 (3)0.070 (3)
C90.068 (3)0.092 (4)0.089 (4)0.053 (3)0.035 (3)0.068 (3)
C100.099 (4)0.115 (4)0.154 (5)0.072 (4)0.082 (4)0.100 (4)
B10.033 (2)0.026 (2)0.032 (2)0.0078 (18)0.0034 (18)0.0023 (18)
C110.020 (3)0.033 (3)0.030 (3)0.006 (2)0.005 (2)0.001 (2)
C120.014 (3)0.028 (3)0.027 (3)0.005 (2)0.007 (2)0.006 (2)
C130.021 (3)0.030 (3)0.036 (3)0.007 (2)0.005 (3)0.007 (3)
C140.025 (3)0.039 (3)0.038 (3)0.010 (2)0.000 (3)0.022 (2)
C150.035 (3)0.046 (3)0.042 (3)0.018 (3)0.007 (3)0.015 (3)
C160.034 (3)0.037 (3)0.034 (3)0.013 (2)0.006 (2)0.010 (2)
C11B0.028 (3)0.028 (3)0.021 (3)0.012 (2)0.006 (3)0.009 (2)
C12B0.023 (3)0.030 (3)0.027 (3)0.006 (3)0.011 (3)0.002 (3)
C13B0.024 (3)0.032 (3)0.034 (3)0.010 (3)0.010 (3)0.005 (3)
C14B0.033 (3)0.033 (3)0.024 (3)0.005 (3)0.006 (3)0.009 (3)
C15B0.037 (3)0.039 (3)0.032 (3)0.010 (3)0.007 (3)0.010 (3)
C16B0.033 (3)0.032 (3)0.027 (3)0.014 (3)0.003 (3)0.006 (3)
C170.0302 (19)0.0253 (18)0.035 (2)0.0055 (15)0.0050 (16)0.0053 (15)
C180.034 (2)0.036 (2)0.038 (2)0.0101 (17)0.0039 (17)0.0038 (17)
C190.038 (2)0.044 (2)0.047 (2)0.0149 (19)0.0024 (18)0.014 (2)
C200.043 (2)0.035 (2)0.049 (2)0.0177 (18)0.0129 (19)0.0111 (19)
C210.042 (2)0.0259 (19)0.043 (2)0.0102 (17)0.0102 (18)0.0023 (17)
C220.032 (2)0.0282 (19)0.037 (2)0.0063 (16)0.0026 (16)0.0037 (16)
C230.038 (2)0.0288 (19)0.0294 (19)0.0145 (17)0.0036 (16)0.0010 (15)
C240.045 (2)0.032 (2)0.038 (2)0.0120 (18)0.0007 (18)0.0047 (17)
C250.045 (2)0.042 (2)0.039 (2)0.018 (2)0.0056 (18)0.0048 (18)
C260.036 (2)0.039 (2)0.038 (2)0.0102 (18)0.0070 (18)0.0029 (18)
C270.037 (2)0.032 (2)0.042 (2)0.0108 (17)0.0014 (18)0.0001 (17)
C280.032 (2)0.032 (2)0.035 (2)0.0112 (16)0.0029 (16)0.0024 (16)
C290.0282 (19)0.0228 (17)0.034 (2)0.0090 (15)0.0036 (15)0.0065 (15)
C300.031 (2)0.0270 (18)0.040 (2)0.0086 (16)0.0029 (16)0.0073 (16)
C310.042 (2)0.033 (2)0.051 (2)0.0133 (18)0.0187 (19)0.0204 (18)
C320.056 (3)0.035 (2)0.031 (2)0.0222 (19)0.0103 (18)0.0146 (17)
C330.037 (2)0.036 (2)0.033 (2)0.0134 (17)0.0016 (17)0.0041 (17)
C340.032 (2)0.035 (2)0.033 (2)0.0094 (16)0.0041 (16)0.0040 (16)
Geometric parameters (Å, º) top
Mn1—O11.817 (3)C15—C161.3900
Mn1—O1i1.821 (3)C15—H150.9500
Mn1—N12.187 (5)C16—H160.9500
Mn1—N22.092 (3)C11B—C12B1.3900
Mn1—N32.178 (3)C11B—C16B1.3900
Mn1—N42.116 (3)C12B—C13B1.3900
Mn1—Mn1i2.7211 (13)C12B—H12B0.9500
N1—C11.478 (6)C13B—C14B1.3900
N1—C101.485 (7)C13B—H13B0.9500
N1—H10.9300C14B—C15B1.3900
N2—C31.482 (5)C14B—H14B0.9500
N2—C21.484 (6)C15B—C16B1.3900
N2—H20.9300C15B—H15B0.9500
N3—C61.456 (5)C16B—H16B0.9500
N3—C51.488 (5)C17—C181.399 (5)
N3—H30.9300C17—C221.399 (5)
N4—C81.450 (6)C18—C191.385 (5)
N4—C71.495 (6)C18—H180.9500
N4—H40.9300C19—C201.380 (6)
C1—C21.497 (6)C19—H190.9500
C1—H1B0.9900C20—C211.379 (5)
C1—H1C0.9900C20—H200.9500
C2—H2A0.9900C21—C221.382 (5)
C2—H2B0.9900C21—H210.9500
C3—C41.492 (6)C22—H220.9500
C3—H3A0.9900C23—C241.393 (5)
C3—H3B0.9900C23—C281.404 (5)
C4—C51.511 (6)C24—C251.398 (5)
C4—H4A0.9900C24—H240.9500
C4—H4B0.9900C25—C261.379 (6)
C5—H5A0.9900C25—H250.9500
C5—H5B0.9900C26—C271.379 (5)
C6—C71.484 (7)C26—H260.9500
C6—H6A0.9900C27—C281.387 (5)
C6—H6B0.9900C27—H270.9500
C7—H7A0.9900C28—H280.9500
C7—H7B0.9900C29—C301.391 (5)
C8—C91.503 (7)C29—C341.395 (5)
C8—H8A0.9900C30—C311.396 (5)
C8—H8B0.9900C30—H300.9500
C9—C101.516 (7)C31—C321.375 (5)
C9—H9A0.9900C31—H310.9500
C9—H9B0.9900C32—C331.372 (6)
C10—H10A0.9900C32—H320.9500
C10—H10B0.9900C33—C341.389 (5)
B1—C231.639 (5)C33—H330.9500
B1—C171.649 (5)C34—H340.9500
B1—C291.651 (5)N5—C351.146 (11)
B1—C11B1.672 (6)C35—C361.411 (11)
B1—C111.705 (6)C36—H36A0.9800
C11—C121.3900C36—H36B0.9800
C11—C161.3900C36—H36C0.9800
C12—C131.3900N5B—C35B1.129 (11)
C12—H120.9500C35B—C36B1.454 (12)
C13—C141.3900C36B—H36D0.9800
C13—H130.9500C36B—H36E0.9800
C14—C151.3900C36B—H36F0.9800
C14—H140.9500
O1—Mn1—O1i83.18 (11)C17—B1—C11B106.0 (4)
O1—Mn1—N1100.05 (14)C29—B1—C11B105.6 (3)
O1—Mn1—N2174.88 (13)C23—B1—C11105.4 (3)
O1—Mn1—N395.63 (12)C17—B1—C11111.8 (3)
O1—Mn1—N490.76 (13)C29—B1—C11110.7 (3)
O1i—Mn1—N197.81 (13)C12—C11—C16120.0
O1i—Mn1—N291.73 (13)C12—C11—B1121.2 (3)
O1i—Mn1—N397.79 (12)C16—C11—B1118.8 (3)
O1i—Mn1—N4173.47 (12)C13—C12—C11120.0
N1—Mn1—N280.14 (14)C13—C12—H12120.0
N1—Mn1—N3159.04 (14)C11—C12—H12120.0
N1—Mn1—N485.59 (15)C12—C13—C14120.0
N2—Mn1—N385.49 (13)C12—C13—H13120.0
N2—Mn1—N494.35 (14)C14—C13—H13120.0
N3—Mn1—N480.34 (14)C15—C14—C13120.0
Mn1—O1—Mn1i96.82 (11)C15—C14—H14120.0
C1—N1—C10112.3 (4)C13—C14—H14120.0
C1—N1—Mn1108.9 (3)C14—C15—C16120.0
C10—N1—Mn1119.8 (4)C14—C15—H15120.0
C1—N1—H1104.8C16—C15—H15120.0
C10—N1—H1104.8C15—C16—C11120.0
Mn1—N1—H1104.8C15—C16—H16120.0
C3—N2—C2110.2 (3)C11—C16—H16120.0
C3—N2—Mn1116.2 (2)C12B—C11B—C16B120.0
C2—N2—Mn1107.2 (3)C12B—C11B—B1115.4 (4)
C3—N2—H2107.7C16B—C11B—B1124.5 (4)
C2—N2—H2107.7C13B—C12B—C11B120.0
Mn1—N2—H2107.7C13B—C12B—H12B120.0
C6—N3—C5112.2 (3)C11B—C12B—H12B120.0
C6—N3—Mn1109.4 (3)C12B—C13B—C14B120.0
C5—N3—Mn1119.7 (2)C12B—C13B—H13B120.0
C6—N3—H3104.7C14B—C13B—H13B120.0
C5—N3—H3104.7C15B—C14B—C13B120.0
Mn1—N3—H3104.7C15B—C14B—H14B120.0
C8—N4—C7110.7 (4)C13B—C14B—H14B120.0
C8—N4—Mn1115.8 (3)C14B—C15B—C16B120.0
C7—N4—Mn1106.5 (2)C14B—C15B—H15B120.0
C8—N4—H4107.8C16B—C15B—H15B120.0
C7—N4—H4107.8C15B—C16B—C11B120.0
Mn1—N4—H4107.8C15B—C16B—H16B120.0
N1—C1—C2106.8 (4)C11B—C16B—H16B120.0
N1—C1—H1B110.4C18—C17—C22113.6 (3)
C2—C1—H1B110.4C18—C17—B1124.2 (3)
N1—C1—H1C110.4C22—C17—B1122.2 (3)
C2—C1—H1C110.4C19—C18—C17123.4 (4)
H1B—C1—H1C108.6C19—C18—H18118.3
N2—C2—C1107.9 (4)C17—C18—H18118.3
N2—C2—H2A110.1C20—C19—C18120.8 (4)
C1—C2—H2A110.1C20—C19—H19119.6
N2—C2—H2B110.1C18—C19—H19119.6
C1—C2—H2B110.1C21—C20—C19117.7 (4)
H2A—C2—H2B108.4C21—C20—H20121.1
N2—C3—C4113.0 (3)C19—C20—H20121.1
N2—C3—H3A109.0C20—C21—C22120.7 (4)
C4—C3—H3A109.0C20—C21—H21119.7
N2—C3—H3B109.0C22—C21—H21119.7
C4—C3—H3B109.0C21—C22—C17123.8 (3)
H3A—C3—H3B107.8C21—C22—H22118.1
C3—C4—C5113.3 (4)C17—C22—H22118.1
C3—C4—H4A108.9C24—C23—C28114.8 (3)
C5—C4—H4A108.9C24—C23—B1125.1 (3)
C3—C4—H4B108.9C28—C23—B1120.2 (3)
C5—C4—H4B108.9C23—C24—C25122.8 (4)
H4A—C4—H4B107.7C23—C24—H24118.6
N3—C5—C4112.7 (4)C25—C24—H24118.6
N3—C5—H5A109.1C26—C25—C24120.1 (4)
C4—C5—H5A109.1C26—C25—H25119.9
N3—C5—H5B109.1C24—C25—H25119.9
C4—C5—H5B109.1C25—C26—C27119.2 (4)
H5A—C5—H5B107.8C25—C26—H26120.4
N3—C6—C7108.2 (4)C27—C26—H26120.4
N3—C6—H6A110.1C26—C27—C28119.8 (4)
C7—C6—H6A110.1C26—C27—H27120.1
N3—C6—H6B110.1C28—C27—H27120.1
C7—C6—H6B110.1C27—C28—C23123.4 (4)
H6A—C6—H6B108.4C27—C28—H28118.3
C6—C7—N4109.0 (3)C23—C28—H28118.3
C6—C7—H7A109.9C30—C29—C34114.1 (3)
N4—C7—H7A109.9C30—C29—B1125.2 (3)
C6—C7—H7B109.9C34—C29—B1120.7 (3)
N4—C7—H7B109.9C29—C30—C31123.2 (3)
H7A—C7—H7B108.3C29—C30—H30118.4
N4—C8—C9112.1 (4)C31—C30—H30118.4
N4—C8—H8A109.2C32—C31—C30120.2 (4)
C9—C8—H8A109.2C32—C31—H31119.9
N4—C8—H8B109.2C30—C31—H31119.9
C9—C8—H8B109.2C33—C32—C31118.7 (4)
H8A—C8—H8B107.9C33—C32—H32120.7
C8—C9—C10116.1 (5)C31—C32—H32120.7
C8—C9—H9A108.3C32—C33—C34120.0 (4)
C10—C9—H9A108.3C32—C33—H33120.0
C8—C9—H9B108.3C34—C33—H33120.0
C10—C9—H9B108.3C33—C34—C29123.7 (4)
H9A—C9—H9B107.4C33—C34—H34118.1
N1—C10—C9113.5 (5)C29—C34—H34118.1
N1—C10—H10A108.9N5—C35—C36178.4 (10)
C9—C10—H10A108.9N5B—C35B—C36B178.2 (11)
N1—C10—H10B108.9C35B—C36B—H36D109.5
C9—C10—H10B108.9C35B—C36B—H36E109.5
H10A—C10—H10B107.7H36D—C36B—H36E109.5
C23—B1—C17108.1 (3)C35B—C36B—H36F109.5
C23—B1—C29109.1 (3)H36D—C36B—H36F109.5
C17—B1—C29111.6 (3)H36E—C36B—H36F109.5
C23—B1—C11B116.5 (4)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N50.932.423.313 (11)160
N1—H1···N5B0.931.982.832 (10)151
N2—H2···Cl10.932.373.289 (4)169
N3—H3···N5i0.932.223.034 (9)146
N3—H3···N5Bi0.932.233.120 (9)160
N4—H4···Cl10.932.423.330 (4)168
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn2O2(C10H24N4)2](C24H20B)2Cl·2C2H3N
Mr1298.52
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)11.437 (2), 11.713 (2), 13.967 (3)
α, β, γ (°)104.136 (3), 97.697 (3), 107.627 (3)
V3)1684.9 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.15 × 0.11 × 0.08
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
17931, 6092, 4083
Rint0.064
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.173, 1.03
No. of reflections6092
No. of parameters433
No. of restraints258
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.81

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O11.817 (3)Mn1—N22.092 (3)
Mn1—O1i1.821 (3)Mn1—N32.178 (3)
Mn1—N12.187 (5)Mn1—N42.116 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N50.932.423.313 (11)160
N1—H1···N5B0.931.982.832 (10)151
N2—H2···Cl10.932.373.289 (4)169
N3—H3···N5i0.932.223.034 (9)146
N3—H3···N5Bi0.932.233.120 (9)160
N4—H4···Cl10.932.423.330 (4)168
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors thank the University of California, Davis, for acquisition of the Bruker SMART APEXII diffractometer and the support of the Summer Undergraduate Research Program of the University of California, Davis.

References

First citationBosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationBrewer, K. J., Calvin, M., Lumpkin, R. S., Otvos, J. W. & Spreer, L. O. (1989). Inorg. Chem. 28, 4446–4451.  CrossRef Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGoodson, P. A., Hodgson, D. J. & Michelsen, K. (1990). Inorg. Chim. Acta, 172, 49–57.  CSD CrossRef CAS Google Scholar
First citationLevaton, B. B. & Olmstead, M. M. (2010). Acta Cryst. E66, m1226–m1227.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, Y.-H., Fun, H.-K., Chantrapromma, S., Razak, I. A., Shen, Z., Zuo, J.-L. & You, X.-Z. (2001). Acta Cryst. C57, 911–913.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m824-m825
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds