organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1566-o1567

6-Hy­dr­oxy-5,7,8-tri­methyl­chroman-2-one

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

(Received 25 May 2011; accepted 26 May 2011; online 4 June 2011)

The title compound, C12H14O3, consists of a chromanone unit with an –OH substituent at the 4-position and methyl substituents on the remaining C atoms of the aromatic ring. The fused pyran­one ring adopts a distorted envelope conformation with the methyl­ene group adjacent to the carbonyl carbon as the flap atom. The crystal structure is stabilized by classical O—H⋯O hydrogen bonds and weak C—H⋯O and C—H⋯π inter­actions, generating a three-dimensional network.

Related literature

For the synthesis, see: Ong et al. (2008[Ong, W., Yang, Y., Cruciano, A. C. & McCarley, R. L. (2008). J. Am. Chem. Soc. 130, 14739-14744.]). For a related structure, see: Budzianowski & Katrusiak (2002[Budzianowski, A. & Katrusiak, A. (2002). Acta Cryst. B58, 125-133.]). For current applications of this compound, see: Ong et al. (2008[Ong, W., Yang, Y., Cruciano, A. C. & McCarley, R. L. (2008). J. Am. Chem. Soc. 130, 14739-14744.]); Harada et al. (1987[Harada, T., Hayashiya, T., Wada, I., Iwa-ake, N. & Oku, A. (1987). J. Am. Chem. Soc. 109, 527-532.]); Hernández-Torres et al. (2009[Hernández-Torres, G., Urbano, A., Carreño, M. C. & Colobert, F. (2009). Org. Lett. 11, 4930-4933.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14O3

  • Mr = 206.23

  • Monoclinic, P 21 /c

  • a = 4.5339 (6) Å

  • b = 16.815 (2) Å

  • c = 13.302 (2) Å

  • β = 96.495 (8)°

  • V = 1007.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 89 K

  • 0.38 × 0.11 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.809, Tmax = 1.00

  • 12531 measured reflections

  • 2021 independent reflections

  • 1535 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.201

  • S = 1.13

  • 2021 reflections

  • 142 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O9i 0.85 (2) 2.02 (3) 2.754 (3) 144 (3)
C8—H8B⋯O9ii 0.99 2.58 3.395 (4) 140
C8—H8B⋯O4iii 0.99 2.66 3.440 (4) 136
C7—H7BCg2iv 0.99 2.61 3.505 (3) 150
C31—H31CCg2v 0.98 2.62 3.512 (3) 151
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x-1, y, z; (v) x+1, y, z.

Data collection: APEX2 (Bruker 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (I) has been utilized in the synthesis of important members of the Vitamin E family (Harada et al., 1987; Hernández-Torres et al., 2009) and as a redox-trigger in liposome research (Ong et al., 2008). We have utilized (I) in synthesis of redox-active quinone monomers as part of our current interest in electro-mechanical actuators.

The structure of (I), Fig. 1, consists of a chromanone unit with an OH substituent at the 4-position and methyl substituents on C2, C3 and C5. The fused pyranone ring adopts a distorted envelope conformation with the C8 atom as the flap atom. Bond distances (Allen et al., 1987) and angles are normal and similar to those in the closely related compound with two methyl substituents at C7 (4,4-dimethyl-6-hydroxy-5,7,8-trimethylchroman-2-one) (Budzianowski & Katrusiak, 2002).

In the crystal structure classical O4–H4O···O9 hydrogen bonds form zigzag chains down the b axis. Weaker C8–H8B···O4 and C8–H8B···O9 interactions link the chains into sheets in the bc plane (Fig. 2). The structure is further stabilized by C7–H7B···π and C31–H31C···π interactions forming stacks down a, Fig 3.

Related literature top

For the synthesis, see: Ong et al. (2008). For a related structure, see: Budzianowski & Katrusiak (2002). For current applications of this compound, see: Ong et al. (2008); Harada et al. (1987); Hernández-Torres et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared (Ong et al., 2008) by a Friedel-Crafts type addition reaction of trimethylhydroquinone with acrylic acid using methanesulfonic acid as the acid catalyst in dichloroethane at 100°C for 2 h. X-ray quality crystals were grown from aqueous ethanol.

Refinement top

The OH hydrogen atom was located in a difference Fourier map and refined with the O–H distance restrained to 0.85 (2) Å and Uiso = 1.2Ueq (O). Methyl and methylene H-atoms were refined using a riding model with d(C—H) = 0.98 Å, Uiso=1.5Ueq (C) for methyl and 0.99 Å, Uiso=1.2Ueq (C) for methylene.

Computing details top

Data collection: APEX2 (Bruker 2009); cell refinement: SAINT (Bruker 2009); data reduction: SAINT (Bruker 2009); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing the atom numbering with ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. bc layer of (I). Dashed lines show O–H···O hydrogen bonds and C–H···O interactions.
[Figure 3] Fig. 3. Crystal packing of (I) showing the three dimensional network structure. Hydrogen bonds are drawn as dashed lines.
6-Hydroxy-5,7,8-trimethylchroman-2-one top
Crystal data top
C12H14O3F(000) = 440
Mr = 206.23Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1569 reflections
a = 4.5339 (6) Åθ = 2.4–25.9°
b = 16.815 (2) ŵ = 0.10 mm1
c = 13.302 (2) ÅT = 89 K
β = 96.495 (8)°Block, colourless
V = 1007.6 (2) Å30.38 × 0.11 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2021 independent reflections
Radiation source: fine-focus sealed tube1535 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 26.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker 2009)
h = 55
Tmin = 0.809, Tmax = 1.00k = 2020
12531 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0733P)2 + 1.6783P]
where P = (Fo2 + 2Fc2)/3
2021 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C12H14O3V = 1007.6 (2) Å3
Mr = 206.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.5339 (6) ŵ = 0.10 mm1
b = 16.815 (2) ÅT = 89 K
c = 13.302 (2) Å0.38 × 0.11 × 0.06 mm
β = 96.495 (8)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2021 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2009)
1535 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 1.00Rint = 0.063
12531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0701 restraint
wR(F2) = 0.201H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.39 e Å3
2021 reflectionsΔρmin = 0.27 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0748 (4)0.96722 (11)0.22522 (15)0.0219 (5)
C10.0405 (6)0.89510 (16)0.2597 (2)0.0194 (6)
C20.2136 (6)0.90381 (17)0.3392 (2)0.0199 (6)
C210.2918 (7)0.98596 (17)0.3742 (2)0.0269 (7)
H21A0.48540.98430.40020.040*
H21B0.30031.02310.31710.040*
H21C0.14021.00370.42780.040*
C30.3075 (6)0.83491 (17)0.3848 (2)0.0207 (6)
C310.4844 (7)0.83761 (18)0.4734 (2)0.0253 (7)
H31A0.45230.88880.50820.038*
H31B0.42080.79440.52030.038*
H31C0.69570.83140.44960.038*
C40.2276 (6)0.76058 (17)0.3479 (2)0.0207 (6)
O40.3260 (5)0.69559 (12)0.39722 (16)0.0261 (5)
H4O0.292 (8)0.6515 (14)0.369 (2)0.031*
C50.0575 (6)0.75268 (17)0.2672 (2)0.0210 (6)
C510.0261 (7)0.67095 (17)0.2340 (2)0.0258 (7)
H51A0.13170.64250.29160.039*
H51B0.15500.67560.17990.039*
H51C0.15390.64150.20900.039*
C60.0368 (6)0.82203 (17)0.2215 (2)0.0195 (6)
C70.2168 (6)0.82110 (17)0.1330 (2)0.0209 (6)
H7A0.15590.77530.08860.025*
H7B0.42970.81480.15780.025*
C80.1714 (7)0.89840 (18)0.0725 (2)0.0254 (7)
H8A0.31880.90100.02310.031*
H8B0.02880.89800.03410.031*
C90.2022 (6)0.97048 (17)0.1380 (2)0.0224 (6)
O90.3212 (5)1.03231 (12)0.11866 (16)0.0283 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0275 (11)0.0175 (10)0.0222 (11)0.0005 (8)0.0097 (8)0.0005 (8)
C10.0225 (14)0.0163 (14)0.0189 (14)0.0006 (11)0.0010 (11)0.0019 (11)
C20.0190 (14)0.0215 (14)0.0195 (14)0.0027 (11)0.0043 (11)0.0027 (11)
C210.0324 (16)0.0215 (15)0.0274 (16)0.0017 (13)0.0066 (13)0.0017 (12)
C30.0212 (14)0.0230 (14)0.0180 (14)0.0017 (11)0.0024 (11)0.0004 (11)
C310.0302 (16)0.0233 (15)0.0241 (16)0.0018 (12)0.0100 (13)0.0006 (12)
C40.0200 (14)0.0205 (14)0.0211 (14)0.0006 (11)0.0000 (11)0.0012 (12)
O40.0331 (12)0.0175 (10)0.0296 (12)0.0004 (9)0.0117 (9)0.0031 (9)
C50.0230 (15)0.0193 (15)0.0210 (15)0.0009 (11)0.0033 (12)0.0008 (11)
C510.0297 (16)0.0200 (15)0.0289 (16)0.0031 (12)0.0087 (13)0.0007 (12)
C60.0172 (13)0.0224 (14)0.0188 (14)0.0020 (11)0.0020 (11)0.0002 (11)
C70.0212 (14)0.0206 (14)0.0214 (15)0.0012 (11)0.0047 (12)0.0007 (12)
C80.0317 (17)0.0247 (15)0.0207 (15)0.0006 (13)0.0065 (13)0.0012 (12)
C90.0231 (14)0.0231 (15)0.0214 (15)0.0024 (12)0.0042 (12)0.0027 (12)
O90.0360 (12)0.0206 (11)0.0300 (12)0.0021 (9)0.0111 (10)0.0025 (9)
Geometric parameters (Å, º) top
O1—C91.354 (3)C4—C51.398 (4)
O1—C11.417 (3)O4—H4O0.854 (18)
C1—C61.390 (4)C5—C61.404 (4)
C1—C21.394 (4)C5—C511.505 (4)
C2—C31.397 (4)C51—H51A0.9800
C2—C211.512 (4)C51—H51B0.9800
C21—H21A0.9800C51—H51C0.9800
C21—H21B0.9800C6—C71.506 (4)
C21—H21C0.9800C7—C81.530 (4)
C3—C41.405 (4)C7—H7A0.9900
C3—C311.500 (4)C7—H7B0.9900
C31—H31A0.9800C8—C91.490 (4)
C31—H31B0.9800C8—H8A0.9900
C31—H31C0.9800C8—H8B0.9900
C4—O41.374 (3)C9—O91.212 (4)
C9—O1—C1121.4 (2)C4—C5—C51119.4 (3)
C6—C1—C2123.9 (3)C6—C5—C51122.2 (3)
C6—C1—O1121.3 (2)C5—C51—H51A109.5
C2—C1—O1114.6 (2)C5—C51—H51B109.5
C1—C2—C3117.9 (3)H51A—C51—H51B109.5
C1—C2—C21120.1 (3)C5—C51—H51C109.5
C3—C2—C21122.0 (3)H51A—C51—H51C109.5
C2—C21—H21A109.5H51B—C51—H51C109.5
C2—C21—H21B109.5C1—C6—C5118.3 (3)
H21A—C21—H21B109.5C1—C6—C7118.5 (3)
C2—C21—H21C109.5C5—C6—C7123.3 (2)
H21A—C21—H21C109.5C6—C7—C8110.5 (2)
H21B—C21—H21C109.5C6—C7—H7A109.6
C2—C3—C4118.9 (3)C8—C7—H7A109.6
C2—C3—C31122.2 (3)C6—C7—H7B109.6
C4—C3—C31118.9 (3)C8—C7—H7B109.6
C3—C31—H31A109.5H7A—C7—H7B108.1
C3—C31—H31B109.5C9—C8—C7112.6 (2)
H31A—C31—H31B109.5C9—C8—H8A109.1
C3—C31—H31C109.5C7—C8—H8A109.1
H31A—C31—H31C109.5C9—C8—H8B109.1
H31B—C31—H31C109.5C7—C8—H8B109.1
O4—C4—C5121.9 (2)H8A—C8—H8B107.8
O4—C4—C3115.5 (2)O9—C9—O1117.4 (3)
C5—C4—C3122.6 (3)O9—C9—C8126.0 (3)
C4—O4—H4O113 (2)O1—C9—C8116.6 (2)
C4—C5—C6118.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O4—H4O···O9i0.85 (2)2.02 (3)2.754 (3)144 (3)
C8—H8B···O9ii0.992.583.395 (4)140
C8—H8B···O4iii0.992.663.440 (4)136
C7—H7B···Cg2iv0.992.613.505 (3)150
C31—H31C···Cg2v0.982.623.512 (3)151
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+2, z; (iii) x, y+3/2, z1/2; (iv) x1, y, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H14O3
Mr206.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)89
a, b, c (Å)4.5339 (6), 16.815 (2), 13.302 (2)
β (°) 96.495 (8)
V3)1007.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.38 × 0.11 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2009)
Tmin, Tmax0.809, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
12531, 2021, 1535
Rint0.063
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.201, 1.13
No. of reflections2021
No. of parameters142
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.27

Computer programs: APEX2 (Bruker 2009), SAINT (Bruker 2009), OLEX2 (Dolomanov et al., 2009), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O4—H4O···O9i0.854 (18)2.02 (3)2.754 (3)144 (3)
C8—H8B···O9ii0.992.583.395 (4)140
C8—H8B···O4iii0.992.663.440 (4)136
C7—H7B···Cg2iv0.992.613.505 (3)150
C31—H31C···Cg2v0.982.623.512 (3)151
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+2, z; (iii) x, y+3/2, z1/2; (iv) x1, y, z; (v) x+1, y, z.
 

Acknowledgements

We thank the New Economy Research Fund (grant No. UOO-X0808) for support of this work and the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBudzianowski, A. & Katrusiak, A. (2002). Acta Cryst. B58, 125–133.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarada, T., Hayashiya, T., Wada, I., Iwa-ake, N. & Oku, A. (1987). J. Am. Chem. Soc. 109, 527–532.  CrossRef CAS Google Scholar
First citationHernández-Torres, G., Urbano, A., Carreño, M. C. & Colobert, F. (2009). Org. Lett. 11, 4930–4933.  Web of Science PubMed Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOng, W., Yang, Y., Cruciano, A. C. & McCarley, R. L. (2008). J. Am. Chem. Soc. 130, 14739–14744.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1566-o1567
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds