organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1571-o1572

(5R)-3-(2-Chloro­acet­yl)-4-methyl-5-phenyl-1,3,4-oxadiazinan-2-one

aBioMat-Departamento de Física, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil, bLaboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Universidade Federal de São Carlos, Departamento de Quïmica, CP 676, 13565-905 São Carlos, SP, Brazil, cUniversidade de São Paulo, Conformational Analysis and Electronic Interactions Laboratory, Instituto de Química, São Paulo, SP, Brazil, dDepartamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, UNIFESP, Diadema, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@ufscar.br

(Received 25 May 2011; accepted 27 May 2011; online 4 June 2011)

The 1,3,4-oxadiazinan-2-one ring in the title compound, C12H13ClN2O3, is in a distorted half-chair conformation. The phenyl and chloro­acetyl groups occupy axial and equatorial positions, respectively, and lie to the opposite side of the mol­ecule to the N-bound methyl substituent. Mol­ecules are consolidated in the crystal structure by C—H⋯O inter­actions.

Related literature

For background to 1,3,4-oxadiazin-2-ones, see: Trepanier et al. (1968[Trepanier, D. L., Elbe, J. N. & Harris, G. H. (1968). J. Med. Chem. 11, 357-360.]); Roussi et al. (1998[Roussi, F., Bonin, M., Chiaroni, A., Micouin, L., Riche, C. & Husson, H.-P. (1998). Tetrahedron Lett. 39, 8081-8084.], 1999[Roussi, F., Bonin, M., Chiaroni, A., Micouin, L., Riche, C. & Husson, H.-P. (1999). Tetrahedron Lett. 40, 3727-3730.], 2000[Roussi, F., Chauveau, A., Bonin, M., Micouin, L. & Husson, H.-P. (2000). Synthesis, pp. 1170-1179.]); Casper et al. (2002a[Casper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002a). J. Org. Chem. 67, 8871-8876.],b[Casper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002b). Org. Lett. 4, 3739-3742.]); Bonin et al. (2006[Bonin, M., Chauveau, A. & Micouin, L. (2006). Synlett, pp. 2349-2363.]). For a related structure, see: Zukerman-Schpector et al. (2009[Zukerman-Schpector, J., Sousa Madureira, L., Rodrigues, A., Vinhato, E. & Olivato, P. R. (2009). Acta Cryst. E65, o1468.]). For the synthesis, see: Rodrigues et al. (2005[Rodrigues, A., Olivato, P. R. & Rittner, R. (2005). Synthesis, pp. 2578-2582.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13ClN2O3

  • Mr = 268.69

  • Orthorhombic, P 21 21 21

  • a = 9.4862 (2) Å

  • b = 9.6237 (2) Å

  • c = 13.2433 (3) Å

  • V = 1209.01 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 29813 measured reflections

  • 2378 independent reflections

  • 2334 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.054

  • S = 1.07

  • 2378 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 993 Friedel pairs

  • Flack parameter: 0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 1.00 2.60 3.5142 (15) 153
C8—H8⋯O2ii 0.95 2.60 3.2689 (16) 128
C11—H11b⋯O2iii 0.99 2.54 3.3675 (16) 141
C12—H12a⋯O2iii 0.98 2.57 3.5448 (16) 173
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010[Chemaxon (2010). Marvinsketch. http://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

About forty years ago Trepanier and collaborators reported the first synthesis of some 3,4,5,6-tetrahydro-2H-1,3,4-oxadiazin-2-ones as candidates for central nervous system stimulant activity (Trepanier et al., 1968). After three decades from the discovery of 1,3,4-oxadiazin-2-ones, Husson, Micouin and co-workers (Roussi et al., 1998) successfully employed this class of compound as chiral auxiliaries in diastereoselective alkylations and in dipolar cycloadditions (Roussi et al., 1999, 2000, Bonin et al., 2006). In a different approach, Hitchcock and collaborators have been successfully applying 1,3,4-oxadiazinan-2-one derivatives as chiral auxiliaries in asymmetric aldol addition reactions (Casper et al., 2002b). Besides their applications in asymmetric synthesis, this class of compounds show a very interesting conformational behaviour (Casper et al., 2002a). To explore the adopted conformation of the title compound, (I), in the solid-state, an X-ray study was performed.

The crystal structure analysis of (I) confirms the R configuration at atom C2, Fig. 1, in accord with expectation from the synthesis. The 1,3,4-oxadiazinan-2-one ring is in a distorted half-chair conformation, as shown by the ring-puckering parameters: q2 = 0.364 (1) Å, q3 = -0.333 (1) Å, Q = 493 (1) Å and ϕ2 = 32.0 (2) ° (Cremer and Pople, 1975). The deviations of the O1, C1, N1, N2, C2 and C3 atoms from their least-squares plane are 0.0424 (10) -0.0497 (13), -0.1285 (11), 0.3139 (11), -0.3212 (13) and 0.1430 (13) Å, respectively. The observed conformation contrasts the twisted chair conformation found in the only other single-ring 1,3,4-oxadiazinan-2-one structure known (Zukerman-Schpector et al., 2009). The chloridoacetyl and phenyl groups lie to the same side of the molecule and opposite to that of the N-bound methyl group. The dihedral angles formed between the 1,3,4-oxadiazinan-2-one ring and the phenyl and chloridoacetyl (Cl,O3,C10,C11) groups are 87.69 (6) and 14.41 (3) °, respectively, consistent with axial and equatorial substitution. Molecules are consolidated in the crystal packing by C—H···O interactions operating in three-dimensions, Table 1 and Fig. 2.

Related literature top

For background to 1,3,4-oxadiazin-2-ones, see: Trepanier et al. (1968); Roussi et al. (1998, 1999, 2000); Casper et al. (2002a,b); Bonin et al. (2006). For a related structure, see: Zukerman-Schpector et al. (2009). For the synthesis, see: Rodrigues et al. (2005). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

The starting (R)-4-methyl-5-phenyl-1,3,4-oxadiazinan-2-one was synthesized by using the same procedure as previously reported (Rodrigues et al. 2005). The chlorooacetyl-1,3,4-oxadiazinan-2-one (I) species was prepared by the acylation reaction of 1,3,4-oxadiazinan-2-one. A solution of BuLi (2.00 M in hexane, 1.45 ml, 2.86 mmol) was added drop wise to a solution of 1,3,4-oxadiazinan-2-one (500 mg, 2.60 mmol) in dry THF (10 ml) at 195 K and the reaction was stirred for an additional 15 min. A chloroacetyl chloride (230 µL, 2.86 mmol) solution in THF (1 ml) was added slowly to the reaction mixture. After 15 min, the light-yellow solution was warmed to RT for a further 30 min. The reaction was quenched with saturated aqueous ammonium chloride solution (5 ml). The mixture was concentrated under reduced pressure, taken up in water (5 ml) and extracted with DCM (3 times; 15 ml) then dried (MgSO4). Evaporation of the solvent in vacuo gave the crude product which was purified by flash column chromatography on silica gel with 40% EtOAc in hexanes to give the pure product as a colourless solid (572 mg, 82%). Colourless crystals of (I) were obtained by vapour diffusion from hexane/acetone at 298 K. mp = 408 – 410 K; [α]D25 +52,5° (c 1,02, CHCl3); 1H NMR (500 MHz, CDCl3/TMS), δ (p.p.m.): 7.40–7.35 (m, 5H), 4.88 (dd, 2J = 11.5 Hz, 3J = 5.3 Hz, 1H), 4.77 (dd, 2J = 11.5 Hz, 3J = 7.7 Hz, 1H), 4.43 (AB spin system, Dn = 36.0 Hz, 2J = 15.3 Hz, 2H), 4.40 (dd, 3J = 7.7 Hz, 3J = 5.3 Hz, 1H), 2.81 (s, 3H). 1H NMR (125 MHz, CDCl3/TMS), δ (p.p.m.): 166.07, 149.54, 134.69, 129.16, 128.90, 127.02, 67.65, 61.54, 44.75, 42.12. Anal. calcd for C12H13ClN2O3: C, 53.64%; H, 4.88%; N, 10.43%. Found: C, 53.46%; H, 4.92%; N, 10.49%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl-C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A view of the unit-cell contents in (I) viewed in projection down the b axis showing the C—H···O interactions as orange dashed lines.
(5R)-3-(2-Chloroacetyl)-4-methyl-5-phenyl-1,3,4-oxadiazinan-2-one top
Crystal data top
C12H13ClN2O3F(000) = 560
Mr = 268.69Dx = 1.476 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2003 reflections
a = 9.4862 (2) Åθ = 2.8–16.3°
b = 9.6237 (2) ŵ = 0.32 mm1
c = 13.2433 (3) ÅT = 100 K
V = 1209.01 (5) Å3Block, colourless
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
2334 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 26.0°, θmin = 2.6°
ω scansh = 1111
29813 measured reflectionsk = 1111
2378 independent reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.028P)2 + 0.320P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2378 reflectionsΔρmax = 0.19 e Å3
164 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 993 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C12H13ClN2O3V = 1209.01 (5) Å3
Mr = 268.69Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.4862 (2) ŵ = 0.32 mm1
b = 9.6237 (2) ÅT = 100 K
c = 13.2433 (3) Å0.35 × 0.30 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
2334 reflections with I > 2σ(I)
29813 measured reflectionsRint = 0.026
2378 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.054Δρmax = 0.19 e Å3
S = 1.07Δρmin = 0.20 e Å3
2378 reflectionsAbsolute structure: Flack (1983), 993 Friedel pairs
164 parametersAbsolute structure parameter: 0.01 (5)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.24739 (4)0.34782 (3)0.91280 (2)0.02998 (10)
O10.05085 (9)0.22385 (9)0.73203 (7)0.0182 (2)
O20.07381 (9)0.09934 (10)0.83862 (7)0.0196 (2)
O30.09385 (10)0.08909 (10)0.93619 (7)0.0200 (2)
N10.13328 (11)0.00514 (11)0.77991 (8)0.0146 (2)
N20.22794 (11)0.00168 (11)0.69603 (7)0.0156 (2)
C10.02961 (13)0.10834 (13)0.78683 (9)0.0153 (2)
C20.28807 (12)0.14314 (13)0.68462 (9)0.0165 (2)
H20.35170.14210.62440.020*
C30.16885 (13)0.24374 (14)0.66273 (9)0.0184 (3)
H3A0.20410.34020.66890.022*
H3B0.13590.23010.59250.022*
C40.37768 (13)0.17604 (13)0.77675 (9)0.0163 (2)
C50.49224 (13)0.08997 (14)0.79745 (10)0.0200 (3)
H50.51160.01320.75450.024*
C60.57847 (14)0.11524 (15)0.88025 (11)0.0228 (3)
H60.65560.05530.89420.027*
C70.55191 (14)0.22803 (15)0.94258 (10)0.0221 (3)
H70.61130.24580.99880.027*
C80.43859 (15)0.31474 (13)0.92274 (10)0.0212 (3)
H80.42030.39210.96540.025*
C90.35165 (14)0.28841 (13)0.84028 (10)0.0185 (3)
H90.27370.34770.82720.022*
C100.15311 (13)0.09421 (13)0.85593 (9)0.0157 (2)
C110.25837 (14)0.20626 (13)0.82638 (9)0.0194 (3)
H11A0.35500.16740.82710.023*
H11B0.23780.23940.75710.023*
C120.15380 (14)0.04923 (14)0.60530 (9)0.0195 (3)
H12A0.12860.14720.61460.029*
H12B0.21550.03990.54640.029*
H12C0.06800.00560.59470.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0483 (2)0.01763 (15)0.02398 (16)0.00875 (16)0.00658 (16)0.00243 (12)
O10.0178 (4)0.0164 (4)0.0205 (4)0.0022 (4)0.0018 (4)0.0041 (4)
O20.0179 (4)0.0206 (5)0.0202 (4)0.0031 (4)0.0031 (4)0.0011 (4)
O30.0249 (5)0.0204 (4)0.0148 (4)0.0010 (4)0.0004 (4)0.0004 (4)
N10.0149 (5)0.0139 (5)0.0150 (5)0.0001 (4)0.0019 (4)0.0008 (4)
N20.0170 (5)0.0159 (5)0.0138 (5)0.0026 (4)0.0035 (4)0.0031 (4)
C10.0170 (6)0.0150 (6)0.0137 (5)0.0002 (5)0.0030 (5)0.0017 (5)
C20.0177 (6)0.0157 (6)0.0162 (5)0.0024 (5)0.0035 (4)0.0002 (5)
C30.0196 (6)0.0191 (6)0.0164 (6)0.0026 (5)0.0014 (5)0.0025 (5)
C40.0157 (6)0.0163 (6)0.0170 (5)0.0050 (5)0.0035 (5)0.0016 (5)
C50.0160 (6)0.0195 (6)0.0245 (7)0.0014 (5)0.0050 (5)0.0024 (5)
C60.0142 (6)0.0263 (7)0.0280 (7)0.0014 (5)0.0016 (5)0.0039 (6)
C70.0200 (6)0.0271 (7)0.0193 (6)0.0099 (5)0.0015 (5)0.0034 (5)
C80.0270 (7)0.0181 (6)0.0186 (6)0.0052 (5)0.0019 (5)0.0011 (5)
C90.0210 (6)0.0153 (6)0.0192 (6)0.0001 (5)0.0029 (5)0.0012 (5)
C100.0169 (6)0.0141 (6)0.0160 (6)0.0031 (5)0.0046 (5)0.0024 (5)
C110.0210 (6)0.0156 (6)0.0218 (6)0.0012 (5)0.0027 (5)0.0017 (5)
C120.0233 (7)0.0199 (6)0.0154 (6)0.0024 (5)0.0006 (5)0.0034 (5)
Geometric parameters (Å, º) top
Cl—C111.7823 (13)C4—C51.3937 (18)
O1—C11.3428 (15)C5—C61.3895 (19)
O1—C31.4601 (15)C5—H50.9500
O2—C11.2001 (15)C6—C71.387 (2)
O3—C101.2034 (16)C6—H60.9500
N1—C11.4006 (16)C7—C81.386 (2)
N1—C101.4012 (16)C7—H70.9500
N1—N21.4287 (14)C8—C91.3917 (19)
N2—C121.4760 (15)C8—H80.9500
N2—C21.4838 (16)C9—H90.9500
C2—C31.5167 (18)C10—C111.5209 (17)
C2—C41.5203 (17)C11—H11A0.9900
C2—H21.0000C11—H11B0.9900
C3—H3A0.9900C12—H12A0.9800
C3—H3B0.9900C12—H12B0.9800
C4—C91.3923 (18)C12—H12C0.9800
C1—O1—C3124.28 (10)C7—C6—C5119.99 (12)
C1—N1—C10122.08 (11)C7—C6—H6120.0
C1—N1—N2120.58 (10)C5—C6—H6120.0
C10—N1—N2117.28 (10)C8—C7—C6119.96 (12)
N1—N2—C12109.95 (9)C8—C7—H7120.0
N1—N2—C2107.42 (9)C6—C7—H7120.0
C12—N2—C2113.88 (10)C7—C8—C9119.92 (13)
O2—C1—O1119.42 (11)C7—C8—H8120.0
O2—C1—N1124.07 (12)C9—C8—H8120.0
O1—C1—N1116.50 (10)C8—C9—C4120.70 (12)
N2—C2—C3108.57 (10)C8—C9—H9119.7
N2—C2—C4108.92 (10)C4—C9—H9119.7
C3—C2—C4115.94 (11)O3—C10—N1122.96 (12)
N2—C2—H2107.7O3—C10—C11124.27 (12)
C3—C2—H2107.7N1—C10—C11112.77 (11)
C4—C2—H2107.7C10—C11—Cl109.77 (9)
O1—C3—C2111.58 (10)C10—C11—H11A109.7
O1—C3—H3A109.3Cl—C11—H11A109.7
C2—C3—H3A109.3C10—C11—H11B109.7
O1—C3—H3B109.3Cl—C11—H11B109.7
C2—C3—H3B109.3H11A—C11—H11B108.2
H3A—C3—H3B108.0N2—C12—H12A109.5
C9—C4—C5118.75 (12)N2—C12—H12B109.5
C9—C4—C2123.20 (12)H12A—C12—H12B109.5
C5—C4—C2118.04 (12)N2—C12—H12C109.5
C6—C5—C4120.68 (12)H12A—C12—H12C109.5
C6—C5—H5119.7H12B—C12—H12C109.5
C4—C5—H5119.7
C1—N1—N2—C1274.26 (13)C3—C2—C4—C91.96 (17)
C10—N1—N2—C12108.57 (12)N2—C2—C4—C559.96 (14)
C1—N1—N2—C250.16 (13)C3—C2—C4—C5177.28 (11)
C10—N1—N2—C2127.01 (11)C9—C4—C5—C60.36 (19)
C3—O1—C1—O2176.89 (11)C2—C4—C5—C6179.64 (11)
C3—O1—C1—N13.76 (17)C4—C5—C6—C70.77 (19)
C10—N1—C1—O222.68 (18)C5—C6—C7—C80.57 (19)
N2—N1—C1—O2160.29 (11)C6—C7—C8—C90.02 (19)
C10—N1—C1—O1156.64 (11)C7—C8—C9—C40.42 (19)
N2—N1—C1—O120.39 (16)C5—C4—C9—C80.23 (19)
N1—N2—C2—C361.59 (12)C2—C4—C9—C8179.00 (11)
C12—N2—C2—C360.42 (12)C1—N1—C10—O38.18 (18)
N1—N2—C2—C465.49 (12)N2—N1—C10—O3168.94 (11)
C12—N2—C2—C4172.50 (10)C1—N1—C10—C11172.73 (11)
C1—O1—C3—C218.86 (16)N2—N1—C10—C1110.15 (15)
N2—C2—C3—O147.44 (13)O3—C10—C11—Cl14.29 (16)
C4—C2—C3—O175.51 (14)N1—C10—C11—Cl166.64 (8)
N2—C2—C4—C9120.81 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i1.002.603.5142 (15)153
C8—H8···O2ii0.952.603.2689 (16)128
C11—H11b···O2iii0.992.543.3675 (16)141
C12—H12a···O2iii0.982.573.5448 (16)173
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y+1/2, z+2; (iii) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H13ClN2O3
Mr268.69
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.4862 (2), 9.6237 (2), 13.2433 (3)
V3)1209.01 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
29813, 2378, 2334
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.054, 1.07
No. of reflections2378
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20
Absolute structureFlack (1983), 993 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i1.002.603.5142 (15)153
C8—H8···O2ii0.952.603.2689 (16)128
C11—H11b···O2iii0.992.543.3675 (16)141
C12—H12a···O2iii0.982.573.5448 (16)173
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y+1/2, z+2; (iii) x, y1/2, z+3/2.
 

Acknowledgements

We thank the Brazilian agencies FAPESP, CNPq (fellowships 308116/2010–0 to IC and 303544/2009–0 to PRO) and CAPES (808/2009 to IC) for financial support. We also thank Dr Charles H. Lake from Indiana University of Pennsylvania for the data collection during the American Crystallographic Association Summer Course in small mol­ecule crystallography.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBonin, M., Chauveau, A. & Micouin, L. (2006). Synlett, pp. 2349–2363.  CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002a). J. Org. Chem. 67, 8871–8876.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCasper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002b). Org. Lett. 4, 3739–3742.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChemaxon (2010). Marvinsketch. http://www.chemaxon.com.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRodrigues, A., Olivato, P. R. & Rittner, R. (2005). Synthesis, pp. 2578–2582.  Web of Science CrossRef Google Scholar
First citationRoussi, F., Bonin, M., Chiaroni, A., Micouin, L., Riche, C. & Husson, H.-P. (1998). Tetrahedron Lett. 39, 8081–8084.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoussi, F., Bonin, M., Chiaroni, A., Micouin, L., Riche, C. & Husson, H.-P. (1999). Tetrahedron Lett. 40, 3727–3730.  CrossRef CAS Google Scholar
First citationRoussi, F., Chauveau, A., Bonin, M., Micouin, L. & Husson, H.-P. (2000). Synthesis, pp. 1170–1179.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrepanier, D. L., Elbe, J. N. & Harris, G. H. (1968). J. Med. Chem. 11, 357–360.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Sousa Madureira, L., Rodrigues, A., Vinhato, E. & Olivato, P. R. (2009). Acta Cryst. E65, o1468.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1571-o1572
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds