organic compounds
(5R)-3-(2-Chloroacetyl)-4-methyl-5-phenyl-1,3,4-oxadiazinan-2-one
aBioMat-Departamento de Física, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil, bLaboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Universidade Federal de São Carlos, Departamento de Quïmica, CP 676, 13565-905 São Carlos, SP, Brazil, cUniversidade de São Paulo, Conformational Analysis and Electronic Interactions Laboratory, Instituto de Química, São Paulo, SP, Brazil, dDepartamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, UNIFESP, Diadema, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@ufscar.br
The 1,3,4-oxadiazinan-2-one ring in the title compound, C12H13ClN2O3, is in a distorted half-chair conformation. The phenyl and chloroacetyl groups occupy axial and equatorial positions, respectively, and lie to the opposite side of the molecule to the N-bound methyl substituent. Molecules are consolidated in the by C—H⋯O interactions.
Related literature
For background to 1,3,4-oxadiazin-2-ones, see: Trepanier et al. (1968); Roussi et al. (1998, 1999, 2000); Casper et al. (2002a,b); Bonin et al. (2006). For a related structure, see: Zukerman-Schpector et al. (2009). For the synthesis, see: Rodrigues et al. (2005). For see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811020356/hg5045sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811020356/hg5045Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811020356/hg5045Isup3.cml
The starting (R)-4-methyl-5-phenyl-1,3,4-oxadiazinan-2-one was synthesized by using the same procedure as previously reported (Rodrigues et al. 2005). The chlorooacetyl-1,3,4-oxadiazinan-2-one (I) species was prepared by the acylation reaction of 1,3,4-oxadiazinan-2-one. A solution of BuLi (2.00 M in hexane, 1.45 ml, 2.86 mmol) was added drop wise to a solution of 1,3,4-oxadiazinan-2-one (500 mg, 2.60 mmol) in dry THF (10 ml) at 195 K and the reaction was stirred for an additional 15 min. A chloroacetyl chloride (230 µL, 2.86 mmol) solution in THF (1 ml) was added slowly to the reaction mixture. After 15 min, the light-yellow solution was warmed to RT for a further 30 min. The reaction was quenched with saturated aqueous ammonium chloride solution (5 ml). The mixture was concentrated under reduced pressure, taken up in water (5 ml) and extracted with DCM (3 times; 15 ml) then dried (MgSO4). Evaporation of the solvent in vacuo gave the crude product which was purified by flash α]D25 +52,5° (c 1,02, CHCl3); 1H NMR (500 MHz, CDCl3/TMS), δ (p.p.m.): 7.40–7.35 (m, 5H), 4.88 (dd, 2J = 11.5 Hz, 3J = 5.3 Hz, 1H), 4.77 (dd, 2J = 11.5 Hz, 3J = 7.7 Hz, 1H), 4.43 (AB spin system, Dn = 36.0 Hz, 2J = 15.3 Hz, 2H), 4.40 (dd, 3J = 7.7 Hz, 3J = 5.3 Hz, 1H), 2.81 (s, 3H). 1H NMR (125 MHz, CDCl3/TMS), δ (p.p.m.): 166.07, 149.54, 134.69, 129.16, 128.90, 127.02, 67.65, 61.54, 44.75, 42.12. Anal. calcd for C12H13ClN2O3: C, 53.64%; H, 4.88%; N, 10.43%. Found: C, 53.46%; H, 4.92%; N, 10.49%.
on silica gel with 40% EtOAc in hexanes to give the pure product as a colourless solid (572 mg, 82%). Colourless crystals of (I) were obtained by vapour diffusion from hexane/acetone at 298 K. mp = 408 – 410 K; [Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the
in the riding model approximation, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl-C).Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).C12H13ClN2O3 | F(000) = 560 |
Mr = 268.69 | Dx = 1.476 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2003 reflections |
a = 9.4862 (2) Å | θ = 2.8–16.3° |
b = 9.6237 (2) Å | µ = 0.32 mm−1 |
c = 13.2433 (3) Å | T = 100 K |
V = 1209.01 (5) Å3 | Block, colourless |
Z = 4 | 0.35 × 0.30 × 0.25 mm |
Bruker APEXII CCD diffractometer | 2334 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.026 |
Graphite monochromator | θmax = 26.0°, θmin = 2.6° |
ω scans | h = −11→11 |
29813 measured reflections | k = −11→11 |
2378 independent reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.020 | H-atom parameters constrained |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.028P)2 + 0.320P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
2378 reflections | Δρmax = 0.19 e Å−3 |
164 parameters | Δρmin = −0.20 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 993 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (5) |
C12H13ClN2O3 | V = 1209.01 (5) Å3 |
Mr = 268.69 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.4862 (2) Å | µ = 0.32 mm−1 |
b = 9.6237 (2) Å | T = 100 K |
c = 13.2433 (3) Å | 0.35 × 0.30 × 0.25 mm |
Bruker APEXII CCD diffractometer | 2334 reflections with I > 2σ(I) |
29813 measured reflections | Rint = 0.026 |
2378 independent reflections |
R[F2 > 2σ(F2)] = 0.020 | H-atom parameters constrained |
wR(F2) = 0.054 | Δρmax = 0.19 e Å−3 |
S = 1.07 | Δρmin = −0.20 e Å−3 |
2378 reflections | Absolute structure: Flack (1983), 993 Friedel pairs |
164 parameters | Absolute structure parameter: 0.01 (5) |
0 restraints |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl | 0.24739 (4) | −0.34782 (3) | 0.91280 (2) | 0.02998 (10) | |
O1 | 0.05085 (9) | 0.22385 (9) | 0.73203 (7) | 0.0182 (2) | |
O2 | −0.07381 (9) | 0.09934 (10) | 0.83862 (7) | 0.0196 (2) | |
O3 | 0.09385 (10) | −0.08909 (10) | 0.93619 (7) | 0.0200 (2) | |
N1 | 0.13328 (11) | 0.00514 (11) | 0.77991 (8) | 0.0146 (2) | |
N2 | 0.22794 (11) | 0.00168 (11) | 0.69603 (7) | 0.0156 (2) | |
C1 | 0.02961 (13) | 0.10834 (13) | 0.78683 (9) | 0.0153 (2) | |
C2 | 0.28807 (12) | 0.14314 (13) | 0.68462 (9) | 0.0165 (2) | |
H2 | 0.3517 | 0.1421 | 0.6244 | 0.020* | |
C3 | 0.16885 (13) | 0.24374 (14) | 0.66273 (9) | 0.0184 (3) | |
H3A | 0.2041 | 0.3402 | 0.6689 | 0.022* | |
H3B | 0.1359 | 0.2301 | 0.5925 | 0.022* | |
C4 | 0.37768 (13) | 0.17604 (13) | 0.77675 (9) | 0.0163 (2) | |
C5 | 0.49224 (13) | 0.08997 (14) | 0.79745 (10) | 0.0200 (3) | |
H5 | 0.5116 | 0.0132 | 0.7545 | 0.024* | |
C6 | 0.57847 (14) | 0.11524 (15) | 0.88025 (11) | 0.0228 (3) | |
H6 | 0.6556 | 0.0553 | 0.8942 | 0.027* | |
C7 | 0.55191 (14) | 0.22803 (15) | 0.94258 (10) | 0.0221 (3) | |
H7 | 0.6113 | 0.2458 | 0.9988 | 0.027* | |
C8 | 0.43859 (15) | 0.31474 (13) | 0.92274 (10) | 0.0212 (3) | |
H8 | 0.4203 | 0.3921 | 0.9654 | 0.025* | |
C9 | 0.35165 (14) | 0.28841 (13) | 0.84028 (10) | 0.0185 (3) | |
H9 | 0.2737 | 0.3477 | 0.8272 | 0.022* | |
C10 | 0.15311 (13) | −0.09421 (13) | 0.85593 (9) | 0.0157 (2) | |
C11 | 0.25837 (14) | −0.20626 (13) | 0.82638 (9) | 0.0194 (3) | |
H11A | 0.3550 | −0.1674 | 0.8271 | 0.023* | |
H11B | 0.2378 | −0.2394 | 0.7571 | 0.023* | |
C12 | 0.15380 (14) | −0.04923 (14) | 0.60530 (9) | 0.0195 (3) | |
H12A | 0.1286 | −0.1472 | 0.6146 | 0.029* | |
H12B | 0.2155 | −0.0399 | 0.5464 | 0.029* | |
H12C | 0.0680 | 0.0056 | 0.5947 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.0483 (2) | 0.01763 (15) | 0.02398 (16) | 0.00875 (16) | −0.00658 (16) | 0.00243 (12) |
O1 | 0.0178 (4) | 0.0164 (4) | 0.0205 (4) | 0.0022 (4) | 0.0018 (4) | 0.0041 (4) |
O2 | 0.0179 (4) | 0.0206 (5) | 0.0202 (4) | 0.0031 (4) | 0.0031 (4) | 0.0011 (4) |
O3 | 0.0249 (5) | 0.0204 (4) | 0.0148 (4) | 0.0010 (4) | −0.0004 (4) | −0.0004 (4) |
N1 | 0.0149 (5) | 0.0139 (5) | 0.0150 (5) | −0.0001 (4) | 0.0019 (4) | −0.0008 (4) |
N2 | 0.0170 (5) | 0.0159 (5) | 0.0138 (5) | −0.0026 (4) | 0.0035 (4) | −0.0031 (4) |
C1 | 0.0170 (6) | 0.0150 (6) | 0.0137 (5) | 0.0002 (5) | −0.0030 (5) | −0.0017 (5) |
C2 | 0.0177 (6) | 0.0157 (6) | 0.0162 (5) | −0.0024 (5) | 0.0035 (4) | 0.0002 (5) |
C3 | 0.0196 (6) | 0.0191 (6) | 0.0164 (6) | −0.0026 (5) | 0.0014 (5) | 0.0025 (5) |
C4 | 0.0157 (6) | 0.0163 (6) | 0.0170 (5) | −0.0050 (5) | 0.0035 (5) | 0.0016 (5) |
C5 | 0.0160 (6) | 0.0195 (6) | 0.0245 (7) | −0.0014 (5) | 0.0050 (5) | −0.0024 (5) |
C6 | 0.0142 (6) | 0.0263 (7) | 0.0280 (7) | −0.0014 (5) | 0.0016 (5) | 0.0039 (6) |
C7 | 0.0200 (6) | 0.0271 (7) | 0.0193 (6) | −0.0099 (5) | −0.0015 (5) | 0.0034 (5) |
C8 | 0.0270 (7) | 0.0181 (6) | 0.0186 (6) | −0.0052 (5) | 0.0019 (5) | −0.0011 (5) |
C9 | 0.0210 (6) | 0.0153 (6) | 0.0192 (6) | −0.0001 (5) | 0.0029 (5) | 0.0012 (5) |
C10 | 0.0169 (6) | 0.0141 (6) | 0.0160 (6) | −0.0031 (5) | −0.0046 (5) | −0.0024 (5) |
C11 | 0.0210 (6) | 0.0156 (6) | 0.0218 (6) | 0.0012 (5) | −0.0027 (5) | 0.0017 (5) |
C12 | 0.0233 (7) | 0.0199 (6) | 0.0154 (6) | −0.0024 (5) | −0.0006 (5) | −0.0034 (5) |
Cl—C11 | 1.7823 (13) | C4—C5 | 1.3937 (18) |
O1—C1 | 1.3428 (15) | C5—C6 | 1.3895 (19) |
O1—C3 | 1.4601 (15) | C5—H5 | 0.9500 |
O2—C1 | 1.2001 (15) | C6—C7 | 1.387 (2) |
O3—C10 | 1.2034 (16) | C6—H6 | 0.9500 |
N1—C1 | 1.4006 (16) | C7—C8 | 1.386 (2) |
N1—C10 | 1.4012 (16) | C7—H7 | 0.9500 |
N1—N2 | 1.4287 (14) | C8—C9 | 1.3917 (19) |
N2—C12 | 1.4760 (15) | C8—H8 | 0.9500 |
N2—C2 | 1.4838 (16) | C9—H9 | 0.9500 |
C2—C3 | 1.5167 (18) | C10—C11 | 1.5209 (17) |
C2—C4 | 1.5203 (17) | C11—H11A | 0.9900 |
C2—H2 | 1.0000 | C11—H11B | 0.9900 |
C3—H3A | 0.9900 | C12—H12A | 0.9800 |
C3—H3B | 0.9900 | C12—H12B | 0.9800 |
C4—C9 | 1.3923 (18) | C12—H12C | 0.9800 |
C1—O1—C3 | 124.28 (10) | C7—C6—C5 | 119.99 (12) |
C1—N1—C10 | 122.08 (11) | C7—C6—H6 | 120.0 |
C1—N1—N2 | 120.58 (10) | C5—C6—H6 | 120.0 |
C10—N1—N2 | 117.28 (10) | C8—C7—C6 | 119.96 (12) |
N1—N2—C12 | 109.95 (9) | C8—C7—H7 | 120.0 |
N1—N2—C2 | 107.42 (9) | C6—C7—H7 | 120.0 |
C12—N2—C2 | 113.88 (10) | C7—C8—C9 | 119.92 (13) |
O2—C1—O1 | 119.42 (11) | C7—C8—H8 | 120.0 |
O2—C1—N1 | 124.07 (12) | C9—C8—H8 | 120.0 |
O1—C1—N1 | 116.50 (10) | C8—C9—C4 | 120.70 (12) |
N2—C2—C3 | 108.57 (10) | C8—C9—H9 | 119.7 |
N2—C2—C4 | 108.92 (10) | C4—C9—H9 | 119.7 |
C3—C2—C4 | 115.94 (11) | O3—C10—N1 | 122.96 (12) |
N2—C2—H2 | 107.7 | O3—C10—C11 | 124.27 (12) |
C3—C2—H2 | 107.7 | N1—C10—C11 | 112.77 (11) |
C4—C2—H2 | 107.7 | C10—C11—Cl | 109.77 (9) |
O1—C3—C2 | 111.58 (10) | C10—C11—H11A | 109.7 |
O1—C3—H3A | 109.3 | Cl—C11—H11A | 109.7 |
C2—C3—H3A | 109.3 | C10—C11—H11B | 109.7 |
O1—C3—H3B | 109.3 | Cl—C11—H11B | 109.7 |
C2—C3—H3B | 109.3 | H11A—C11—H11B | 108.2 |
H3A—C3—H3B | 108.0 | N2—C12—H12A | 109.5 |
C9—C4—C5 | 118.75 (12) | N2—C12—H12B | 109.5 |
C9—C4—C2 | 123.20 (12) | H12A—C12—H12B | 109.5 |
C5—C4—C2 | 118.04 (12) | N2—C12—H12C | 109.5 |
C6—C5—C4 | 120.68 (12) | H12A—C12—H12C | 109.5 |
C6—C5—H5 | 119.7 | H12B—C12—H12C | 109.5 |
C4—C5—H5 | 119.7 | ||
C1—N1—N2—C12 | −74.26 (13) | C3—C2—C4—C9 | 1.96 (17) |
C10—N1—N2—C12 | 108.57 (12) | N2—C2—C4—C5 | 59.96 (14) |
C1—N1—N2—C2 | 50.16 (13) | C3—C2—C4—C5 | −177.28 (11) |
C10—N1—N2—C2 | −127.01 (11) | C9—C4—C5—C6 | 0.36 (19) |
C3—O1—C1—O2 | −176.89 (11) | C2—C4—C5—C6 | 179.64 (11) |
C3—O1—C1—N1 | 3.76 (17) | C4—C5—C6—C7 | −0.77 (19) |
C10—N1—C1—O2 | −22.68 (18) | C5—C6—C7—C8 | 0.57 (19) |
N2—N1—C1—O2 | 160.29 (11) | C6—C7—C8—C9 | 0.02 (19) |
C10—N1—C1—O1 | 156.64 (11) | C7—C8—C9—C4 | −0.42 (19) |
N2—N1—C1—O1 | −20.39 (16) | C5—C4—C9—C8 | 0.23 (19) |
N1—N2—C2—C3 | −61.59 (12) | C2—C4—C9—C8 | −179.00 (11) |
C12—N2—C2—C3 | 60.42 (12) | C1—N1—C10—O3 | −8.18 (18) |
N1—N2—C2—C4 | 65.49 (12) | N2—N1—C10—O3 | 168.94 (11) |
C12—N2—C2—C4 | −172.50 (10) | C1—N1—C10—C11 | 172.73 (11) |
C1—O1—C3—C2 | −18.86 (16) | N2—N1—C10—C11 | −10.15 (15) |
N2—C2—C3—O1 | 47.44 (13) | O3—C10—C11—Cl | 14.29 (16) |
C4—C2—C3—O1 | −75.51 (14) | N1—C10—C11—Cl | −166.64 (8) |
N2—C2—C4—C9 | −120.81 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O3i | 1.00 | 2.60 | 3.5142 (15) | 153 |
C8—H8···O2ii | 0.95 | 2.60 | 3.2689 (16) | 128 |
C11—H11b···O2iii | 0.99 | 2.54 | 3.3675 (16) | 141 |
C12—H12a···O2iii | 0.98 | 2.57 | 3.5448 (16) | 173 |
Symmetry codes: (i) −x+1/2, −y, z−1/2; (ii) x+1/2, −y+1/2, −z+2; (iii) −x, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C12H13ClN2O3 |
Mr | 268.69 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 9.4862 (2), 9.6237 (2), 13.2433 (3) |
V (Å3) | 1209.01 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.32 |
Crystal size (mm) | 0.35 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 29813, 2378, 2334 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.054, 1.07 |
No. of reflections | 2378 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.20 |
Absolute structure | Flack (1983), 993 Friedel pairs |
Absolute structure parameter | 0.01 (5) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O3i | 1.00 | 2.60 | 3.5142 (15) | 153 |
C8—H8···O2ii | 0.95 | 2.60 | 3.2689 (16) | 128 |
C11—H11b···O2iii | 0.99 | 2.54 | 3.3675 (16) | 141 |
C12—H12a···O2iii | 0.98 | 2.57 | 3.5448 (16) | 173 |
Symmetry codes: (i) −x+1/2, −y, z−1/2; (ii) x+1/2, −y+1/2, −z+2; (iii) −x, y−1/2, −z+3/2. |
Acknowledgements
We thank the Brazilian agencies FAPESP, CNPq (fellowships 308116/2010–0 to IC and 303544/2009–0 to PRO) and CAPES (808/2009 to IC) for financial support. We also thank Dr Charles H. Lake from Indiana University of Pennsylvania for the data collection during the American Crystallographic Association Summer Course in small molecule crystallography.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bonin, M., Chauveau, A. & Micouin, L. (2006). Synlett, pp. 2349–2363. CrossRef Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Casper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002a). J. Org. Chem. 67, 8871–8876. Web of Science CSD CrossRef PubMed CAS Google Scholar
Casper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002b). Org. Lett. 4, 3739–3742. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chemaxon (2010). Marvinsketch. http://www.chemaxon.com. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Rodrigues, A., Olivato, P. R. & Rittner, R. (2005). Synthesis, pp. 2578–2582. Web of Science CrossRef Google Scholar
Roussi, F., Bonin, M., Chiaroni, A., Micouin, L., Riche, C. & Husson, H.-P. (1998). Tetrahedron Lett. 39, 8081–8084. Web of Science CSD CrossRef CAS Google Scholar
Roussi, F., Bonin, M., Chiaroni, A., Micouin, L., Riche, C. & Husson, H.-P. (1999). Tetrahedron Lett. 40, 3727–3730. CrossRef CAS Google Scholar
Roussi, F., Chauveau, A., Bonin, M., Micouin, L. & Husson, H.-P. (2000). Synthesis, pp. 1170–1179. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trepanier, D. L., Elbe, J. N. & Harris, G. H. (1968). J. Med. Chem. 11, 357–360. CrossRef CAS PubMed Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zukerman-Schpector, J., Sousa Madureira, L., Rodrigues, A., Vinhato, E. & Olivato, P. R. (2009). Acta Cryst. E65, o1468. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
About forty years ago Trepanier and collaborators reported the first synthesis of some 3,4,5,6-tetrahydro-2H-1,3,4-oxadiazin-2-ones as candidates for central nervous system stimulant activity (Trepanier et al., 1968). After three decades from the discovery of 1,3,4-oxadiazin-2-ones, Husson, Micouin and co-workers (Roussi et al., 1998) successfully employed this class of compound as chiral auxiliaries in diastereoselective alkylations and in dipolar cycloadditions (Roussi et al., 1999, 2000, Bonin et al., 2006). In a different approach, Hitchcock and collaborators have been successfully applying 1,3,4-oxadiazinan-2-one derivatives as chiral auxiliaries in asymmetric aldol addition reactions (Casper et al., 2002b). Besides their applications in asymmetric synthesis, this class of compounds show a very interesting conformational behaviour (Casper et al., 2002a). To explore the adopted conformation of the title compound, (I), in the solid-state, an X-ray study was performed.
The crystal structure analysis of (I) confirms the R configuration at atom C2, Fig. 1, in accord with expectation from the synthesis. The 1,3,4-oxadiazinan-2-one ring is in a distorted half-chair conformation, as shown by the ring-puckering parameters: q2 = 0.364 (1) Å, q3 = -0.333 (1) Å, Q = 493 (1) Å and ϕ2 = 32.0 (2) ° (Cremer and Pople, 1975). The deviations of the O1, C1, N1, N2, C2 and C3 atoms from their least-squares plane are 0.0424 (10) -0.0497 (13), -0.1285 (11), 0.3139 (11), -0.3212 (13) and 0.1430 (13) Å, respectively. The observed conformation contrasts the twisted chair conformation found in the only other single-ring 1,3,4-oxadiazinan-2-one structure known (Zukerman-Schpector et al., 2009). The chloridoacetyl and phenyl groups lie to the same side of the molecule and opposite to that of the N-bound methyl group. The dihedral angles formed between the 1,3,4-oxadiazinan-2-one ring and the phenyl and chloridoacetyl (Cl,O3,C10,C11) groups are 87.69 (6) and 14.41 (3) °, respectively, consistent with axial and equatorial substitution. Molecules are consolidated in the crystal packing by C—H···O interactions operating in three-dimensions, Table 1 and Fig. 2.