metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­­(5-butyl­pyridine-2-carboxyl­ato)zinc monohydrate

aSchool of Basic Science, Guangzhou Medical College, Guangzhou 510182, People's Republic of China, and bGuangdong Institute for Drug Control, Guangzhou 510180, People's Republic of China
*Correspondence e-mail: yywentao@yahoo.com.cn

(Received 26 May 2011; accepted 5 June 2011; online 11 June 2011)

In the title complex, [Zn(C10H12NO2)2(H2O)]·H2O, the ZnII ion is coordinated by two N and two O atoms from two 5-n-butyl­pyridine-2-carboxyl­ato ligands and one O atom from a water mol­ecule in a distorted square-pyramidal geometry. In the crystal, inter­molecular O—H⋯O hydrogen bonds link mol­ecules into a two-dimensional supramolecular structure parallel to (001).

Related literature

For related structures, see: Pons et al. (2004[Pons, J., March, R., Rius, J. & Ros, J. (2004). Inorg. Chim. Acta, 357, 3789-3792.]); Yoshikawa et al. (2002[Yoshikawa, Y., Ueda, E., Kawabe, K., Miyake, H., Takino, T., Sakurai, H. & Kojima, Y. (2002). J. Biol. Inorg. Chem. 7, 68-73.]); Qin et al. (2007[Qin, L., Guo, H.-F., Li, X., Ma, D.-Y. & Song, W.-D. (2007). Acta Cryst. E63, m2853.]); He et al. (2007[He, L., Yan, J.-B., Guo, X.-X. & Song, W.-D. (2007). Acta Cryst. E63, m1649.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C20H12NO2)2(H2O)]·H2O

  • Mr = 457.81

  • Triclinic, [P \overline 1]

  • a = 9.6949 (13) Å

  • b = 10.0054 (14) Å

  • c = 11.9249 (17) Å

  • α = 97.799 (2)°

  • β = 91.533 (2)°

  • γ = 113.464 (2)°

  • V = 1047.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 293 K

  • 0.48 × 0.42 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.594, Tmax = 0.839

  • 7770 measured reflections

  • 3847 independent reflections

  • 3410 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.075

  • S = 1.06

  • 3847 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2B⋯O4 0.85 1.94 2.780 (2) 172
O2W—H2A⋯O4i 0.85 2.02 2.849 (2) 165
O1W—H1B⋯O2Wii 0.84 1.80 2.638 (2) 175
O1W—H1A⋯O2iii 0.85 1.79 2.636 (2) 174
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As known for a long time, pyridine-2-carboxylato ion and its derivatives are good chelating ligands for many transition metals(Pons, et al., 2004; Yoshikawa, et al., 2002; Qin et al., 2007; He et al., 2007). Here, we report a new zinc complex based on 5-n-butylpyridine-2-carboxylate.

The crystal structure of the title compound,(I), is shown in Fig. 1. The coordination sphere of the ZnII ion should be described as a distorted square-pyramidal, in which the four basal positions are occupied by two N atoms and two O atoms from two 5-n-butylpyridine-2-carboxylato ligands, and the fifth apical site is occupied by the O atom of the coordinated solvent water molecule. The Zn(II) ion is out of the plane formed by N2O2 unit 0.504 (8)Å towards the Zn—Owater bond. The average Zn—N, Zn—Oligand, and the Zn—Owater are 2.094, 2.043, and 2.044Å, respectively, in agreement with the corresponding distances found in other Zn complexes containing similar ligands (Qin et al., 2007; He et al., 2007). It was noting that the title complex was linked into a two-dimensional supermolecular structure under the help of the intermolecular O—H···O hydrogen bonds interactions.

Related literature top

For related structures, see: Pons et al. (2004); Yoshikawa et al. (2002); Qin et al. (2007); He et al. (2007).

Experimental top

The title complex was prepared by the addition of a stiochiometric amount to zinc acetate dehydrate (0.054 mmol) to a hot aqueous solution (5 ml) of fusaric acid (30 mmol) which was extracted from the endophytic fungus phomopsis sp. from the mangrove tree on the South China Sea coast. The resulting solution was filtered, and colorless crystals were obtained by slow evaporation of a methanol-water solution (90:10 v/v) at room temperature over several days.

Refinement top

All the H atoms bonded to the C atoms were placed using the HFIX commands in SHELXL-97, with C—H distances of 0.95, 0.98 and 0.99 Å, and were allowed for as riding atoms with Uiso(H) = 1.2 or 1.5Ueq(C). For the H atom of the water molecule, they were found from difference Fourier maps with the O—H bond length restrained to 0.85 Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Aquabis(5-butylpyridine-2-carboxylato)zinc monohydrate top
Crystal data top
[Zn(C20H12NO2)2(H2O)]·H2OZ = 2
Mr = 457.81F(000) = 480
Triclinic, P1Dx = 1.452 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6949 (13) ÅCell parameters from 5809 reflections
b = 10.0054 (14) Åθ = 2.3–27.0°
c = 11.9249 (17) ŵ = 1.21 mm1
α = 97.799 (2)°T = 293 K
β = 91.533 (2)°Prism, colorless
γ = 113.464 (2)°0.48 × 0.42 × 0.15 mm
V = 1047.1 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3847 independent reflections
Radiation source: fine-focus sealed tube3410 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
phi and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1111
Tmin = 0.594, Tmax = 0.839k = 1212
7770 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.5567P]
where P = (Fo2 + 2Fc2)/3
3847 reflections(Δ/σ)max = 0.008
264 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Zn(C20H12NO2)2(H2O)]·H2Oγ = 113.464 (2)°
Mr = 457.81V = 1047.1 (3) Å3
Triclinic, P1Z = 2
a = 9.6949 (13) ÅMo Kα radiation
b = 10.0054 (14) ŵ = 1.21 mm1
c = 11.9249 (17) ÅT = 293 K
α = 97.799 (2)°0.48 × 0.42 × 0.15 mm
β = 91.533 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3847 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3410 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.839Rint = 0.017
7770 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.06Δρmax = 0.47 e Å3
3847 reflectionsΔρmin = 0.29 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9784 (2)0.0833 (2)0.17910 (17)0.0249 (4)
C21.0361 (2)0.2469 (2)0.22551 (17)0.0239 (4)
C31.1290 (3)0.3107 (2)0.32451 (18)0.0311 (5)
H31.16030.25280.36740.037*
C41.1761 (3)0.4611 (2)0.36059 (19)0.0341 (5)
H41.24130.50710.42820.041*
C51.1283 (2)0.5447 (2)0.29835 (17)0.0275 (4)
C61.0337 (2)0.4707 (2)0.19940 (17)0.0250 (4)
H60.99910.52540.15550.030*
C71.1750 (3)0.7081 (2)0.33348 (18)0.0336 (5)
H7A1.11000.73960.28780.040*
H7B1.28010.76010.31470.040*
C81.1666 (4)0.7566 (3)0.4578 (2)0.0496 (7)
H8A1.25150.75160.50250.059*
H8B1.07160.68660.48230.059*
C91.1725 (4)0.9123 (3)0.4849 (2)0.0544 (7)
H9A1.08390.91530.44390.065*
H9B1.16390.93410.56730.065*
C101.3102 (4)1.0292 (3)0.4550 (3)0.0681 (9)
H10A1.39871.03030.49760.102*
H10B1.30441.12510.47430.102*
H10C1.31931.01000.37340.102*
C110.6412 (2)0.2796 (2)0.07353 (16)0.0238 (4)
C120.5820 (2)0.1149 (2)0.11734 (16)0.0225 (4)
C130.4469 (2)0.0367 (2)0.18239 (18)0.0285 (5)
H130.38660.08520.20490.034*
C140.4004 (2)0.1145 (2)0.21448 (18)0.0303 (5)
H140.30740.17040.25930.036*
C150.4900 (3)0.1841 (2)0.18108 (17)0.0281 (5)
C160.6254 (2)0.0962 (2)0.11735 (17)0.0264 (4)
H160.68900.14140.09490.032*
C170.4419 (3)0.3486 (2)0.21017 (18)0.0348 (5)
H17A0.51160.37700.16670.042*
H17B0.33970.39860.18530.042*
C180.4389 (4)0.4036 (3)0.3335 (2)0.0471 (7)
H18A0.53870.34830.36020.057*
H18B0.36290.38290.37670.057*
C190.4019 (3)0.5685 (3)0.3597 (2)0.0483 (7)
H19A0.41100.59460.44140.058*
H19B0.47770.58900.31610.058*
C200.2495 (4)0.6646 (3)0.3326 (3)0.0684 (10)
H20A0.24030.64220.25120.103*
H20B0.23400.76820.35200.103*
H20C0.17330.64690.37650.103*
N10.98977 (19)0.32660 (18)0.16371 (14)0.0230 (4)
N20.67075 (19)0.04994 (18)0.08590 (13)0.0228 (3)
O10.88860 (16)0.03799 (15)0.09036 (12)0.0277 (3)
O21.02181 (19)0.00693 (17)0.23255 (13)0.0351 (4)
O30.76689 (16)0.33710 (15)0.01438 (12)0.0262 (3)
O40.56258 (16)0.34586 (16)0.09763 (13)0.0319 (3)
O1W1.02425 (16)0.24272 (15)0.09978 (12)0.0253 (3)
H1A1.01530.16550.14470.038*
H1B1.11180.28410.06570.038*
O2W0.69815 (17)0.64141 (17)0.00070 (14)0.0364 (4)
H2A0.63060.65160.04090.055*
H2B0.66530.55190.03150.055*
Zn10.86873 (3)0.19830 (2)0.010473 (19)0.02289 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0274 (11)0.0232 (10)0.0270 (10)0.0130 (9)0.0052 (9)0.0040 (8)
C20.0226 (10)0.0245 (10)0.0262 (10)0.0113 (9)0.0042 (8)0.0036 (8)
C30.0358 (12)0.0285 (11)0.0303 (11)0.0154 (10)0.0039 (9)0.0032 (9)
C40.0394 (13)0.0308 (12)0.0278 (11)0.0121 (10)0.0068 (10)0.0004 (9)
C50.0316 (11)0.0231 (10)0.0253 (10)0.0090 (9)0.0039 (9)0.0015 (8)
C60.0281 (11)0.0225 (10)0.0252 (10)0.0110 (9)0.0035 (8)0.0035 (8)
C70.0424 (13)0.0221 (11)0.0295 (11)0.0072 (10)0.0006 (10)0.0013 (9)
C80.085 (2)0.0331 (13)0.0338 (13)0.0273 (14)0.0130 (13)0.0042 (10)
C90.085 (2)0.0381 (15)0.0421 (15)0.0281 (15)0.0152 (14)0.0021 (11)
C100.073 (2)0.0339 (15)0.089 (2)0.0174 (15)0.0115 (18)0.0066 (15)
C110.0247 (10)0.0241 (10)0.0238 (10)0.0115 (9)0.0061 (8)0.0019 (8)
C120.0224 (10)0.0227 (10)0.0220 (10)0.0088 (8)0.0053 (8)0.0025 (8)
C130.0252 (11)0.0319 (12)0.0285 (11)0.0128 (9)0.0025 (9)0.0013 (9)
C140.0246 (11)0.0301 (11)0.0272 (11)0.0037 (9)0.0008 (9)0.0017 (9)
C150.0349 (12)0.0232 (10)0.0208 (10)0.0065 (9)0.0046 (9)0.0014 (8)
C160.0320 (11)0.0230 (10)0.0236 (10)0.0105 (9)0.0039 (9)0.0039 (8)
C170.0450 (14)0.0218 (11)0.0283 (11)0.0055 (10)0.0014 (10)0.0005 (9)
C180.077 (2)0.0301 (13)0.0324 (13)0.0203 (13)0.0135 (12)0.0027 (10)
C190.0670 (18)0.0298 (13)0.0418 (14)0.0143 (13)0.0186 (13)0.0012 (10)
C200.068 (2)0.0414 (16)0.069 (2)0.0008 (15)0.0174 (17)0.0152 (14)
N10.0237 (9)0.0204 (8)0.0241 (8)0.0085 (7)0.0012 (7)0.0018 (7)
N20.0255 (9)0.0207 (8)0.0210 (8)0.0085 (7)0.0021 (7)0.0018 (6)
O10.0304 (8)0.0211 (7)0.0310 (8)0.0107 (6)0.0030 (6)0.0020 (6)
O20.0506 (10)0.0279 (8)0.0316 (8)0.0223 (8)0.0051 (7)0.0020 (6)
O30.0234 (7)0.0208 (7)0.0327 (8)0.0098 (6)0.0020 (6)0.0023 (6)
O40.0277 (8)0.0270 (8)0.0431 (9)0.0161 (7)0.0029 (7)0.0016 (7)
O1W0.0243 (7)0.0229 (7)0.0296 (7)0.0116 (6)0.0011 (6)0.0012 (6)
O2W0.0281 (8)0.0241 (8)0.0546 (10)0.0112 (7)0.0004 (7)0.0025 (7)
Zn10.02298 (14)0.01954 (13)0.02499 (14)0.00872 (10)0.00164 (9)0.00013 (9)
Geometric parameters (Å, º) top
C1—O21.241 (2)C13—C141.389 (3)
C1—O11.261 (3)C13—H130.9500
C1—C21.519 (3)C14—C151.391 (3)
C2—N11.345 (3)C14—H140.9500
C2—C31.376 (3)C15—C161.386 (3)
C3—C41.388 (3)C15—C171.508 (3)
C3—H30.9500C16—N21.342 (3)
C4—C51.387 (3)C16—H160.9500
C4—H40.9500C17—C181.494 (3)
C5—C61.395 (3)C17—H17A0.9900
C5—C71.506 (3)C17—H17B0.9900
C6—N11.332 (3)C18—C191.528 (3)
C6—H60.9500C18—H18A0.9900
C7—C81.511 (3)C18—H18B0.9900
C7—H7A0.9900C19—C201.480 (4)
C7—H7B0.9900C19—H19A0.9900
C8—C91.525 (3)C19—H19B0.9900
C8—H8A0.9900C20—H20A0.9800
C8—H8B0.9900C20—H20B0.9800
C9—C101.474 (4)C20—H20C0.9800
C9—H9A0.9900N1—Zn12.1007 (16)
C9—H9B0.9900N2—Zn12.0877 (17)
C10—H10A0.9800O1—Zn12.0416 (14)
C10—H10B0.9800O3—Zn12.0443 (14)
C10—H10C0.9800O1W—Zn11.9825 (14)
C11—O41.243 (2)O1W—H1A0.8498
C11—O31.264 (2)O1W—H1B0.8440
C11—C121.521 (3)O2W—H2A0.8514
C12—N21.341 (3)O2W—H2B0.8510
C12—C131.377 (3)
O2—C1—O1126.36 (19)C15—C14—H14120.0
O2—C1—C2117.37 (18)C16—C15—C14117.25 (19)
O1—C1—C2116.27 (17)C16—C15—C17120.7 (2)
N1—C2—C3121.57 (19)C14—C15—C17122.0 (2)
N1—C2—C1115.64 (17)N2—C16—C15122.97 (19)
C3—C2—C1122.79 (18)N2—C16—H16118.5
C2—C3—C4118.9 (2)C15—C16—H16118.5
C2—C3—H3120.6C18—C17—C15114.50 (19)
C4—C3—H3120.6C18—C17—H17A108.6
C5—C4—C3120.3 (2)C15—C17—H17A108.6
C5—C4—H4119.9C18—C17—H17B108.6
C3—C4—H4119.9C15—C17—H17B108.6
C4—C5—C6116.93 (19)H17A—C17—H17B107.6
C4—C5—C7122.71 (19)C17—C18—C19113.5 (2)
C6—C5—C7120.36 (19)C17—C18—H18A108.9
N1—C6—C5122.96 (19)C19—C18—H18A108.9
N1—C6—H6118.5C17—C18—H18B108.9
C5—C6—H6118.5C19—C18—H18B108.9
C5—C7—C8115.23 (19)H18A—C18—H18B107.7
C5—C7—H7A108.5C20—C19—C18114.3 (2)
C8—C7—H7A108.5C20—C19—H19A108.7
C5—C7—H7B108.5C18—C19—H19A108.7
C8—C7—H7B108.5C20—C19—H19B108.7
H7A—C7—H7B107.5C18—C19—H19B108.7
C7—C8—C9113.9 (2)H19A—C19—H19B107.6
C7—C8—H8A108.8C19—C20—H20A109.5
C9—C8—H8A108.8C19—C20—H20B109.5
C7—C8—H8B108.8H20A—C20—H20B109.5
C9—C8—H8B108.8C19—C20—H20C109.5
H8A—C8—H8B107.7H20A—C20—H20C109.5
C10—C9—C8114.8 (3)H20B—C20—H20C109.5
C10—C9—H9A108.6C6—N1—C2119.38 (17)
C8—C9—H9A108.6C6—N1—Zn1129.26 (14)
C10—C9—H9B108.6C2—N1—Zn1111.10 (13)
C8—C9—H9B108.6C12—N2—C16119.00 (17)
H9A—C9—H9B107.6C12—N2—Zn1112.83 (13)
C9—C10—H10A109.5C16—N2—Zn1128.17 (14)
C9—C10—H10B109.5C1—O1—Zn1115.66 (13)
H10A—C10—H10B109.5C11—O3—Zn1116.22 (12)
C9—C10—H10C109.5Zn1—O1W—H1A111.6
H10A—C10—H10C109.5Zn1—O1W—H1B110.8
H10B—C10—H10C109.5H1A—O1W—H1B110.4
O4—C11—O3125.56 (18)H2A—O2W—H2B108.2
O4—C11—C12117.92 (17)O1W—Zn1—O1106.09 (6)
O3—C11—C12116.52 (17)O1W—Zn1—O3102.80 (6)
N2—C12—C13122.02 (18)O1—Zn1—O3151.11 (6)
N2—C12—C11114.71 (17)O1W—Zn1—N2104.39 (6)
C13—C12—C11123.26 (18)O1—Zn1—N292.68 (6)
C12—C13—C14118.69 (19)O3—Zn1—N279.70 (6)
C12—C13—H13120.7O1W—Zn1—N1103.25 (6)
C14—C13—H13120.7O1—Zn1—N179.91 (6)
C13—C14—C15120.04 (19)O3—Zn1—N193.96 (6)
C13—C14—H14120.0N2—Zn1—N1152.36 (6)
O2—C1—C2—N1178.32 (18)C1—C2—N1—Zn16.2 (2)
O1—C1—C2—N12.8 (3)C13—C12—N2—C161.0 (3)
O2—C1—C2—C32.0 (3)C11—C12—N2—C16177.81 (17)
O1—C1—C2—C3176.9 (2)C13—C12—N2—Zn1179.31 (15)
N1—C2—C3—C40.3 (3)C11—C12—N2—Zn11.9 (2)
C1—C2—C3—C4179.9 (2)C15—C16—N2—C120.2 (3)
C2—C3—C4—C50.8 (3)C15—C16—N2—Zn1179.46 (15)
C3—C4—C5—C60.5 (3)O2—C1—O1—Zn1170.40 (17)
C3—C4—C5—C7179.7 (2)C2—C1—O1—Zn110.8 (2)
C4—C5—C6—N10.3 (3)O4—C11—O3—Zn1179.89 (16)
C7—C5—C6—N1179.44 (19)C12—C11—O3—Zn10.5 (2)
C4—C5—C7—C845.1 (3)C1—O1—Zn1—O1W89.95 (15)
C6—C5—C7—C8135.1 (2)C1—O1—Zn1—O390.86 (18)
C5—C7—C8—C9164.3 (2)C1—O1—Zn1—N2164.24 (14)
C7—C8—C9—C1059.7 (4)C1—O1—Zn1—N111.06 (14)
O4—C11—C12—N2178.46 (18)C11—O3—Zn1—O1W101.39 (14)
O3—C11—C12—N20.9 (3)C11—O3—Zn1—O177.81 (18)
O4—C11—C12—C130.4 (3)C11—O3—Zn1—N21.18 (14)
O3—C11—C12—C13179.76 (19)C11—O3—Zn1—N1154.05 (14)
N2—C12—C13—C141.1 (3)C12—N2—Zn1—O1W99.05 (13)
C11—C12—C13—C14177.59 (18)C16—N2—Zn1—O1W81.32 (17)
C12—C13—C14—C150.1 (3)C12—N2—Zn1—O1153.59 (13)
C13—C14—C15—C161.0 (3)C16—N2—Zn1—O126.04 (17)
C13—C14—C15—C17177.75 (19)C12—N2—Zn1—O31.66 (13)
C14—C15—C16—N21.1 (3)C16—N2—Zn1—O3177.97 (17)
C17—C15—C16—N2177.61 (19)C12—N2—Zn1—N180.37 (19)
C16—C15—C17—C18112.4 (3)C16—N2—Zn1—N199.3 (2)
C14—C15—C17—C1868.9 (3)C6—N1—Zn1—O1W78.55 (18)
C15—C17—C18—C19175.5 (2)C2—N1—Zn1—O1W95.41 (14)
C17—C18—C19—C2063.4 (4)C6—N1—Zn1—O1177.13 (18)
C5—C6—N1—C20.9 (3)C2—N1—Zn1—O18.90 (13)
C5—C6—N1—Zn1172.66 (15)C6—N1—Zn1—O325.60 (18)
C3—C2—N1—C60.6 (3)C2—N1—Zn1—O3160.44 (13)
C1—C2—N1—C6179.13 (17)C6—N1—Zn1—N2100.9 (2)
C3—C2—N1—Zn1174.08 (16)C2—N1—Zn1—N285.17 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2B···O40.851.942.780 (2)172
O2W—H2A···O4i0.852.022.849 (2)165
O1W—H1B···O2Wii0.841.802.638 (2)175
O1W—H1A···O2iii0.851.792.636 (2)174
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C20H12NO2)2(H2O)]·H2O
Mr457.81
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.6949 (13), 10.0054 (14), 11.9249 (17)
α, β, γ (°)97.799 (2), 91.533 (2), 113.464 (2)
V3)1047.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.48 × 0.42 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.594, 0.839
No. of measured, independent and
observed [I > 2σ(I)] reflections
7770, 3847, 3410
Rint0.017
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.06
No. of reflections3847
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2B···O40.851.942.780 (2)172
O2W—H2A···O4i0.852.022.849 (2)165
O1W—H1B···O2Wii0.841.802.638 (2)175
O1W—H1A···O2iii0.851.792.636 (2)174
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+2, y, z.
 

Acknowledgements

This work was supported by the Guangzhou Science and Technology Projects Fund (2010Y1-C371), the Guangzhou Municipal Bureau of Education Projects Fund (10 A168) and the doctoral startup fund of Guangzhou Medical College (2008 C25).

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, L., Yan, J.-B., Guo, X.-X. & Song, W.-D. (2007). Acta Cryst. E63, m1649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPons, J., March, R., Rius, J. & Ros, J. (2004). Inorg. Chim. Acta, 357, 3789–3792.  Web of Science CSD CrossRef CAS Google Scholar
First citationQin, L., Guo, H.-F., Li, X., Ma, D.-Y. & Song, W.-D. (2007). Acta Cryst. E63, m2853.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshikawa, Y., Ueda, E., Kawabe, K., Miyake, H., Takino, T., Sakurai, H. & Kojima, Y. (2002). J. Biol. Inorg. Chem. 7, 68–73.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds