metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m884-m885

catena-Poly[[[aqua­bis­­(4,4′-bi­pyridine-κN)zinc]-μ-L-tyrosinato-κ3N,O1:O1′] nitrate dihydrate]

aOrthopaedic Department, First Hospital, Jilin University, Changchun 130021, People's Republic of China, and bChangchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
*Correspondence e-mail: hunh@ciac.jl.cn

(Received 26 May 2011; accepted 1 June 2011; online 11 June 2011)

In the title compound, {[Zn(C9H10NO3)(C10H8N2)2(H2O)]NO3·2H2O}n, the ZnII atom is six-coordinated in a distorted octa­hedral geometry by two carboxyl­ate O atoms and one amino N atom from two L-tyrosinate ligands, two N atoms from two 4,4′-bipyridine ligands, and one water mol­ecule. Adjacent Zn atoms are bridged by the bidentate carboxyl­ate groups into a cationic chain extending along [010]. N—H⋯N, O—H⋯N and O—H⋯O hydrogen bonds link the cationic chains, nitrate anions and uncoordinated water mol­ecules into a supra­molecular network. ππ inter­actions between the pyridine rings and between the pyridine and benzene rings [centroid–centroid distances = 3.615 (4) and 3.636 (4) Å] are present.

Related literature

For general background to the structures and properties of chiral coordination polymers, see: Dai et al. (2005[Dai, Y.-M., Ma, E., Tang, E., Zhang, J., Li, Z.-J., Huang, X.-D. & Yao, Y.-G. (2005). Cryst. Growth Des. 5, 1313-1315.]); Kesanli & Lin (2003[Kesanli, B. & Lin, W. (2003). Coord. Chem. Rev. 246, 305-326.]); Vaidhyanathan et al. (2006[Vaidhyanathan, R., Bradshaw, D., Rebilly, J.-N., Barrio, J. P., Gould, J. A., Berry, N. G. & Rosseinsky, M. J. (2006). Angew. Chem. Int. Ed. 45, 6495-6499.]); Zaworotko (2001[Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.]). For related structures, see: Lou & Hong (2008[Lou, B.-Y. & Hong, M.-C. (2008). Acta Cryst. E64, m405.]); Lou et al. (2005[Lou, B.-Y., Wang, R.-H., Yuan, D.-Q., Wu, B.-L., Jiang, F.-L. & Hong, M.-C. (2005). Inorg. Chem. Commun. 8, 971-974.], 2007[Lou, B.-Y., Huang, X.-D. & Lin, X.-C. (2007). Z. Anorg. Allg. Chem. 633, 372-374.]); Zhang & Hu (2009[Zhang, S. & Hu, N.-H. (2009). Acta Cryst. C65, m7-m9.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H10NO3)(C10H8N2)2(H2O)]NO3·2H2O

  • Mr = 673.98

  • Monoclinic, P 21

  • a = 12.737 (3) Å

  • b = 10.351 (2) Å

  • c = 12.921 (3) Å

  • β = 117.897 (5)°

  • V = 1505.5 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 293 K

  • 0.22 × 0.09 × 0.02 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.830, Tmax = 0.983

  • 7908 measured reflections

  • 5199 independent reflections

  • 3621 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.091

  • S = 0.97

  • 5199 reflections

  • 406 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2352 Friedel pairs

  • Flack parameter: 0.045 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3i 0.90 2.49 3.336 (6) 156
O3—H3⋯O4 0.86 1.94 2.748 (7) 155
O1W—H1C⋯O2W 0.82 1.79 2.611 (6) 173
O1W—H1D⋯N3ii 0.82 2.33 3.133 (6) 167
O2W—H2A⋯O4iii 0.82 2.10 2.889 (7) 160
O2W—H2B⋯O3W 0.82 1.97 2.774 (7) 168
O3W—H3C⋯O6iv 0.83 2.20 2.962 (7) 153
O3W—H3D⋯N5v 0.82 2.09 2.851 (6) 154
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z]; (iii) x+1, y, z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z]; (v) [-x+3, y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been considerable interest in chiral coordination polymers, which exhibit potential applications in asymmetric catalysis and chiral separation (Kesanli & Lin, 2003). Self-assembly based on a mixed-ligand system containing both chiral and achiral ligands is an effective approach to the construction of chiral complexes (Dai et al., 2005; Vaidhyanathan et al., 2006; Zaworotko, 2001). Amino acids can be used as chiral building blocks, with their amino and carboxylate groups binding to metal ions in flexible modes (Lou et al., 2005, 2007; Lou & Hong, 2008). We previously reported a chiral two-dimensional coordination polymer, [Cu2(L-tyr)2(4,4-bipy)(NO3)2(H2O)2]n, (II), which contains CuII ions, L-tyrosinate (L-tyr) and 4,4'-bipyridine (4,4-bipy) ligands in a 2:2:1 ratio (Zhang & Hu, 2009). Herein, we present the title compound, (I), a one-dimensional Zn(II) complex with a 1:1:2 ratio of the metal ion and organic ligands.

In (I), the ZnII atom is six-coordinated by two O atoms and one N atom from two L-tyr ligands, two N atoms from two 4,4'-bipy ligands and one water molecule in a distorted octahedral geometry (Fig. 1). The L-tyr ligand bridges adjacent Zn atoms through the carboxylate group, forming a cationic chiral [Zn(L-tyr)(4,4-bipy)2(H2O)]n chain extending along [0 1 0]. The separation between the Zn atoms in the chain is 5.441 (1) Å. The hydroxyl O atom of the phenol group is uncoordinated. The L-tyr ligand binds to the Zn atoms in a µ-(κ3N,O:O') mode, the same as that observed in (II). However, the 4,4'-bipy ligand adopts a monodentate terminal mode, different from the bridging mode in (II), which leads to a one-dimensional comb-like structure (Fig. 2) rather than a layer structure as shown in (II). Therefore, in the mixed-ligand system, the L-tyr ligand provides a chiral source, while the binding mode of the 4,4'-bipy ligand is an important factor affecting structural architectures. N—H···N, O—H···N and O—H···O hydrogen bonds (Table 1) link the cationic chains, nitrate anions and uncoordinated water molecules into a supramolecular network. Intrachain ππ interactions between the pyridine rings, Cg1···Cg2i = 3.615 (4) Å, and interchain ππ interactions between the pyridine and benzene rings, Cg2···Cg3ii = 3.636 (4) Å, stabilize the structure [Cg1, Cg2 and Cg3 are the centroids of the N3/C15–C19, N5/C25–C29 and C4–C9 rings. Symmetry codes: (i) 2 - x, -1/2 + y, -z; (ii) 1 + x, y, 1 + z].

Related literature top

For general background to the structures and properties of chiral coordination polymers, see: Dai et al. (2005); Kesanli & Lin (2003); Vaidhyanathan et al. (2006); Zaworotko (2001). For related structures, see: Lou & Hong (2008); Lou et al. (2005, 2007); Zhang & Hu (2009).

Experimental top

Zn(NO3)2.6H2O (0.119 g, 0.4 mmol) and L-tyrosine (0.072 g, 0.4 mmol) were dissolved in hot water (25 ml) under stirring. To this solution 4,4'-bipyridine (0.062 g, 0.4 mmol) in methanol (10 ml) was added. The resulting solution was allowed to stand at room temperature and yellow crystals suitable for X-ray diffraction analysis were obtained after two weeks.

Refinement top

H atoms bonded to O atoms were located in a difference Fourier map and refined as riding atoms, with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (CH2) and 0.98 (CH) Å and N—H = 0.90 Å and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) 2 - x, -1/2 + y, -z.]
[Figure 2] Fig. 2. A view of the chain structure in the title compound. H atoms have been omitted for clarity. Dashed lines denote hydrogen bonds.
catena-Poly[[aquabis(4,4'-bipyridine-κN)zinc -µ-L-tyrosinato-κ3N,O1:O1'] nitrate dihydrate] top
Crystal data top
[Zn(C9H10NO3)(C10H8N2)2(H2O)]NO3·2H2OF(000) = 700
Mr = 673.98Dx = 1.487 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5180 reflections
a = 12.737 (3) Åθ = 2.0–25.1°
b = 10.351 (2) ŵ = 0.88 mm1
c = 12.921 (3) ÅT = 293 K
β = 117.897 (5)°Column, yellow
V = 1505.5 (6) Å30.22 × 0.09 × 0.02 mm
Z = 2
Data collection top
Bruker APEX CCD
diffractometer
5199 independent reflections
Radiation source: sealed tube3621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1115
Tmin = 0.830, Tmax = 0.983k = 1212
7908 measured reflectionsl = 158
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0098P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
5199 reflectionsΔρmax = 0.47 e Å3
406 parametersΔρmin = 0.42 e Å3
1 restraintAbsolute structure: Flack (1983), 2352 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.045 (14)
Crystal data top
[Zn(C9H10NO3)(C10H8N2)2(H2O)]NO3·2H2OV = 1505.5 (6) Å3
Mr = 673.98Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.737 (3) ŵ = 0.88 mm1
b = 10.351 (2) ÅT = 293 K
c = 12.921 (3) Å0.22 × 0.09 × 0.02 mm
β = 117.897 (5)°
Data collection top
Bruker APEX CCD
diffractometer
5199 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3621 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.983Rint = 0.048
7908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.47 e Å3
S = 0.97Δρmin = 0.42 e Å3
5199 reflectionsAbsolute structure: Flack (1983), 2352 Friedel pairs
406 parametersAbsolute structure parameter: 0.045 (14)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.98663 (5)0.52948 (6)0.05781 (6)0.03552 (18)
O10.9437 (3)0.7189 (3)0.0165 (4)0.0392 (10)
O20.9765 (3)0.8500 (3)0.1340 (4)0.0357 (11)
O30.4363 (3)0.5483 (5)0.4711 (4)0.0674 (14)
H30.37760.60010.48680.101*
O40.2786 (5)0.7124 (6)0.4484 (5)0.0832 (19)
O50.4065 (4)0.7555 (4)0.2707 (4)0.0655 (14)
O60.2188 (4)0.7763 (6)0.3267 (5)0.0892 (19)
O1W0.9788 (3)0.6216 (4)0.2010 (4)0.0521 (12)
H1C1.00470.60300.27080.078*
H1D0.94330.69050.18790.078*
O2W1.0732 (4)0.5515 (5)0.4204 (4)0.0979 (18)
H2A1.12310.60080.46780.147*
H2B1.04470.50750.45380.147*
O3W0.9978 (4)0.3726 (5)0.5315 (4)0.0868 (18)
H3C0.92870.34860.49050.130*
H3D1.04220.31100.54130.130*
N10.9777 (3)0.5024 (4)0.1113 (4)0.0343 (13)
H1A1.03340.44510.10550.041*
H1B0.90600.47040.16170.041*
N20.7974 (4)0.4738 (4)0.0048 (5)0.0357 (13)
N30.1952 (4)0.3563 (6)0.1416 (5)0.0517 (15)
N41.1758 (4)0.5685 (4)0.1397 (5)0.0419 (15)
N51.7923 (4)0.7197 (6)0.3878 (5)0.0560 (17)
N60.3008 (6)0.7476 (6)0.3472 (6)0.0569 (18)
C10.9696 (4)0.7405 (5)0.0963 (5)0.0303 (14)
C20.9972 (4)0.6270 (5)0.1564 (5)0.0323 (15)
H21.08230.63170.13280.039*
C30.9319 (4)0.6385 (6)0.2899 (5)0.0385 (15)
H3A0.94660.72340.31210.046*
H3B0.96360.57500.32300.046*
C40.7991 (5)0.6185 (6)0.3409 (5)0.0398 (16)
C50.7253 (5)0.7113 (6)0.3317 (5)0.0419 (16)
H50.75780.79010.29670.050*
C60.6048 (5)0.6907 (6)0.3729 (5)0.0453 (17)
H60.55830.75410.36330.054*
C70.5535 (6)0.5759 (6)0.4284 (6)0.0501 (19)
C80.6243 (6)0.4824 (6)0.4417 (6)0.0502 (19)
H80.59020.40620.48140.060*
C90.7457 (5)0.5019 (6)0.3962 (5)0.0447 (18)
H90.79260.43660.40240.054*
C100.7067 (4)0.5145 (7)0.1040 (5)0.0410 (15)
H100.72380.55970.15640.049*
C110.5883 (5)0.4938 (5)0.1342 (5)0.0410 (18)
H110.52850.52530.20460.049*
C120.5601 (5)0.4255 (5)0.0580 (5)0.0331 (15)
C130.6544 (5)0.3816 (5)0.0445 (5)0.0402 (16)
H130.63970.33330.09700.048*
C140.7698 (5)0.4086 (5)0.0695 (6)0.0426 (17)
H140.83110.38070.14060.051*
C150.4342 (5)0.4008 (5)0.0871 (5)0.0371 (16)
C160.3420 (5)0.4794 (6)0.1647 (6)0.051 (2)
H160.35830.55090.19850.062*
C170.2266 (6)0.4506 (7)0.1911 (6)0.061 (2)
H170.16650.50080.24750.073*
C180.2840 (5)0.2878 (6)0.0652 (6)0.055 (2)
H180.26590.22220.02690.066*
C190.4017 (5)0.3041 (5)0.0364 (6)0.0474 (18)
H190.45890.24920.01750.057*
C201.2537 (5)0.4846 (6)0.1388 (6)0.0489 (19)
H201.22520.40490.10350.059*
C211.3747 (5)0.5066 (6)0.1865 (5)0.0451 (18)
H211.42460.44410.18150.054*
C221.4206 (5)0.6245 (6)0.2425 (5)0.0365 (15)
C231.3409 (5)0.7119 (6)0.2452 (6)0.0525 (19)
H231.36690.79160.28160.063*
C241.2206 (5)0.6801 (6)0.1929 (6)0.0532 (19)
H241.16820.74100.19550.064*
C251.5496 (5)0.6566 (5)0.2940 (5)0.0361 (15)
C261.6280 (5)0.5827 (6)0.2715 (6)0.054 (2)
H261.60110.51000.22400.065*
C271.7453 (6)0.6179 (7)0.3199 (7)0.063 (2)
H271.79560.56630.30360.076*
C281.7173 (6)0.7898 (7)0.4097 (6)0.056 (2)
H281.74720.86160.45800.068*
C291.5978 (5)0.7626 (6)0.3650 (5)0.0449 (17)
H291.54980.81600.38290.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0329 (3)0.0303 (3)0.0443 (4)0.0015 (4)0.0188 (3)0.0008 (5)
O10.042 (2)0.037 (2)0.044 (3)0.0051 (18)0.025 (2)0.001 (2)
O20.032 (2)0.027 (2)0.049 (3)0.0040 (18)0.019 (2)0.000 (2)
O30.036 (2)0.078 (4)0.073 (3)0.007 (3)0.013 (2)0.006 (3)
O40.071 (4)0.107 (5)0.063 (4)0.003 (3)0.024 (3)0.014 (4)
O50.041 (3)0.070 (3)0.070 (4)0.004 (2)0.012 (3)0.005 (3)
O60.049 (3)0.129 (5)0.085 (5)0.014 (3)0.027 (3)0.001 (4)
O1W0.055 (3)0.056 (3)0.045 (3)0.019 (2)0.023 (2)0.004 (2)
O2W0.099 (3)0.102 (5)0.057 (4)0.033 (4)0.007 (3)0.006 (4)
O3W0.048 (3)0.079 (3)0.113 (5)0.006 (3)0.021 (3)0.002 (4)
N10.029 (2)0.026 (3)0.045 (3)0.001 (2)0.014 (2)0.004 (2)
N20.037 (3)0.033 (3)0.039 (4)0.004 (2)0.019 (3)0.004 (2)
N30.033 (3)0.073 (4)0.051 (4)0.001 (3)0.020 (3)0.004 (3)
N40.038 (3)0.028 (3)0.057 (4)0.000 (2)0.020 (3)0.004 (2)
N50.037 (3)0.064 (4)0.061 (5)0.006 (3)0.018 (3)0.004 (4)
N60.053 (4)0.050 (4)0.067 (6)0.005 (3)0.027 (4)0.000 (4)
C10.018 (3)0.034 (4)0.039 (4)0.002 (2)0.013 (3)0.002 (3)
C20.028 (3)0.025 (3)0.049 (4)0.003 (3)0.022 (3)0.002 (3)
C30.037 (4)0.049 (4)0.038 (4)0.002 (3)0.024 (3)0.003 (3)
C40.045 (4)0.041 (4)0.030 (4)0.002 (3)0.015 (3)0.003 (3)
C50.045 (4)0.039 (4)0.039 (4)0.008 (3)0.017 (3)0.004 (3)
C60.047 (4)0.049 (4)0.037 (4)0.007 (3)0.017 (3)0.008 (3)
C70.043 (4)0.065 (5)0.037 (4)0.006 (4)0.014 (3)0.008 (3)
C80.056 (5)0.044 (4)0.049 (5)0.013 (3)0.023 (4)0.009 (3)
C90.051 (4)0.042 (5)0.046 (4)0.006 (3)0.027 (3)0.001 (3)
C100.038 (3)0.039 (4)0.053 (4)0.001 (4)0.027 (3)0.016 (4)
C110.032 (3)0.048 (5)0.044 (4)0.002 (3)0.018 (3)0.006 (3)
C120.032 (3)0.027 (3)0.047 (5)0.000 (3)0.023 (3)0.008 (3)
C130.040 (4)0.042 (4)0.040 (4)0.006 (3)0.020 (3)0.008 (3)
C140.037 (4)0.044 (4)0.040 (5)0.011 (3)0.012 (3)0.007 (3)
C150.033 (4)0.038 (4)0.051 (5)0.005 (3)0.028 (3)0.008 (3)
C160.033 (4)0.067 (5)0.061 (5)0.003 (3)0.028 (3)0.014 (4)
C170.054 (5)0.079 (5)0.060 (6)0.011 (4)0.036 (4)0.022 (4)
C180.044 (4)0.049 (4)0.079 (6)0.009 (4)0.035 (4)0.002 (4)
C190.038 (4)0.040 (4)0.062 (5)0.010 (3)0.022 (4)0.001 (3)
C200.043 (4)0.045 (4)0.058 (5)0.008 (3)0.022 (4)0.014 (3)
C210.038 (3)0.042 (5)0.057 (4)0.001 (3)0.023 (3)0.003 (4)
C220.033 (4)0.036 (3)0.036 (4)0.001 (3)0.013 (3)0.004 (3)
C230.034 (4)0.036 (4)0.079 (6)0.004 (3)0.018 (4)0.014 (4)
C240.042 (4)0.034 (4)0.078 (6)0.005 (3)0.023 (4)0.005 (4)
C250.033 (3)0.040 (4)0.036 (4)0.001 (3)0.016 (3)0.009 (3)
C260.037 (4)0.053 (5)0.071 (6)0.010 (3)0.025 (4)0.007 (4)
C270.043 (4)0.073 (5)0.078 (6)0.002 (4)0.033 (4)0.008 (5)
C280.049 (5)0.062 (5)0.053 (6)0.005 (4)0.020 (5)0.004 (4)
C290.039 (4)0.052 (4)0.045 (5)0.005 (3)0.021 (3)0.003 (4)
Geometric parameters (Å, º) top
Zn1—O12.139 (4)C6—C71.383 (7)
Zn1—O2i2.052 (4)C6—H60.9300
Zn1—O1W2.125 (4)C7—C81.389 (8)
Zn1—N12.153 (4)C8—C91.388 (7)
Zn1—N22.229 (4)C8—H80.9300
Zn1—N42.169 (5)C9—H90.9300
O1—C11.240 (6)C10—C111.386 (6)
O2—C11.252 (6)C10—H100.9300
O3—C71.357 (6)C11—C121.388 (7)
O3—H30.8600C11—H110.9300
O4—N61.256 (7)C12—C131.383 (7)
O5—N61.245 (6)C12—C151.488 (7)
O6—N61.229 (6)C13—C141.377 (7)
O1W—H1C0.8248C13—H130.9300
O1W—H1D0.8190C14—H140.9300
O2W—H2A0.8222C15—C191.363 (8)
O2W—H2B0.8196C15—C161.395 (8)
O3W—H3C0.8253C16—C171.377 (8)
O3W—H3D0.8211C16—H160.9300
N1—C21.483 (6)C17—H170.9300
N1—H1A0.9000C18—C191.376 (7)
N1—H1B0.9000C18—H180.9300
N2—C101.330 (6)C19—H190.9300
N2—C141.349 (7)C20—C211.384 (7)
N3—C181.309 (7)C20—H200.9300
N3—C171.327 (7)C21—C221.399 (8)
N4—C201.323 (6)C21—H210.9300
N4—C241.328 (6)C22—C231.373 (7)
N5—C271.321 (8)C22—C251.494 (7)
N5—C281.331 (8)C23—C241.395 (7)
C1—C21.537 (7)C23—H230.9300
C2—C31.529 (7)C24—H240.9300
C2—H20.9800C25—C291.377 (7)
C3—C41.514 (7)C25—C261.392 (7)
C3—H3A0.9700C26—C271.372 (8)
C3—H3B0.9700C26—H260.9300
C4—C51.388 (7)C27—H270.9300
C4—C91.405 (8)C28—C291.381 (7)
C5—C61.386 (7)C28—H280.9300
C5—H50.9300C29—H290.9300
O2i—Zn1—O1W94.70 (16)C9—C8—C7120.4 (6)
O2i—Zn1—O1177.13 (17)C9—C8—H8119.8
O1W—Zn1—O182.75 (16)C7—C8—H8119.8
O2i—Zn1—N1105.10 (16)C8—C9—C4121.2 (6)
O1W—Zn1—N1160.17 (15)C8—C9—H9119.4
O1—Zn1—N177.43 (16)C4—C9—H9119.4
O2i—Zn1—N488.95 (15)N2—C10—C11124.3 (5)
O1W—Zn1—N489.17 (18)N2—C10—H10117.9
O1—Zn1—N492.32 (15)C11—C10—H10117.9
N1—Zn1—N492.21 (18)C10—C11—C12119.1 (6)
O2i—Zn1—N284.61 (15)C10—C11—H11120.5
O1W—Zn1—N287.08 (16)C12—C11—H11120.5
O1—Zn1—N293.93 (15)C13—C12—C11116.7 (5)
N1—Zn1—N293.61 (17)C13—C12—C15122.4 (6)
N4—Zn1—N2172.26 (19)C11—C12—C15120.9 (5)
C1—O1—Zn1115.3 (4)C14—C13—C12120.7 (6)
C1—O2—Zn1ii132.4 (4)C14—C13—H13119.6
C7—O3—H3129.2C12—C13—H13119.6
Zn1—O1W—H1C133.6N2—C14—C13122.6 (6)
Zn1—O1W—H1D117.2N2—C14—H14118.7
H1C—O1W—H1D109.1C13—C14—H14118.7
H2A—O2W—H2B109.4C19—C15—C16115.5 (5)
H3C—O3W—H3D108.4C19—C15—C12122.6 (6)
C2—N1—Zn1110.2 (3)C16—C15—C12121.8 (5)
C2—N1—H1A109.6C17—C16—C15119.6 (6)
Zn1—N1—H1A109.6C17—C16—H16120.2
C2—N1—H1B109.6C15—C16—H16120.2
Zn1—N1—H1B109.6N3—C17—C16124.6 (6)
H1A—N1—H1B108.1N3—C17—H17117.7
C10—N2—C14116.5 (5)C16—C17—H17117.7
C10—N2—Zn1124.9 (4)N3—C18—C19125.7 (6)
C14—N2—Zn1118.0 (4)N3—C18—H18117.1
C18—N3—C17114.5 (6)C19—C18—H18117.1
C20—N4—C24115.7 (5)C15—C19—C18119.9 (6)
C20—N4—Zn1122.7 (4)C15—C19—H19120.0
C24—N4—Zn1121.6 (4)C18—C19—H19120.0
C27—N5—C28115.4 (6)N4—C20—C21124.8 (6)
O6—N6—O5121.6 (7)N4—C20—H20117.6
O6—N6—O4119.7 (7)C21—C20—H20117.6
O5—N6—O4118.7 (7)C20—C21—C22118.9 (6)
O1—C1—O2125.5 (5)C20—C21—H21120.6
O1—C1—C2119.6 (5)C22—C21—H21120.6
O2—C1—C2114.9 (5)C23—C22—C21116.9 (5)
N1—C2—C3114.0 (5)C23—C22—C25121.0 (5)
N1—C2—C1110.3 (4)C21—C22—C25122.1 (5)
C3—C2—C1112.2 (5)C22—C23—C24119.4 (6)
N1—C2—H2106.6C22—C23—H23120.3
C3—C2—H2106.6C24—C23—H23120.3
C1—C2—H2106.6N4—C24—C23124.3 (6)
C4—C3—C2112.9 (4)N4—C24—H24117.8
C4—C3—H3A109.0C23—C24—H24117.8
C2—C3—H3A109.0C29—C25—C26115.9 (5)
C4—C3—H3B109.0C29—C25—C22121.9 (5)
C2—C3—H3B109.0C26—C25—C22122.1 (6)
H3A—C3—H3B107.8C27—C26—C25119.6 (6)
C5—C4—C9116.9 (5)C27—C26—H26120.2
C5—C4—C3122.1 (5)C25—C26—H26120.2
C9—C4—C3121.0 (5)N5—C27—C26124.9 (6)
C6—C5—C4122.2 (6)N5—C27—H27117.5
C6—C5—H5118.9C26—C27—H27117.5
C4—C5—H5118.9N5—C28—C29124.1 (7)
C7—C6—C5120.1 (6)N5—C28—H28118.0
C7—C6—H6120.0C29—C28—H28118.0
C5—C6—H6120.0C25—C29—C28120.1 (6)
O3—C7—C6123.7 (6)C25—C29—H29120.0
O3—C7—C8117.2 (6)C28—C29—H29120.0
C6—C7—C8119.1 (6)
O1W—Zn1—O1—C1158.7 (4)C5—C4—C9—C81.5 (9)
N1—Zn1—O1—C121.9 (4)C3—C4—C9—C8179.1 (6)
N4—Zn1—O1—C169.8 (4)C14—N2—C10—C110.1 (9)
N2—Zn1—O1—C1114.8 (4)Zn1—N2—C10—C11170.7 (5)
O2i—Zn1—N1—C2158.5 (3)N2—C10—C11—C120.6 (10)
O1W—Zn1—N1—C224.7 (6)C10—C11—C12—C130.3 (8)
O1—Zn1—N1—C222.9 (3)C10—C11—C12—C15179.9 (5)
N4—Zn1—N1—C269.0 (3)C11—C12—C13—C141.8 (8)
N2—Zn1—N1—C2116.1 (3)C15—C12—C13—C14178.7 (5)
O2i—Zn1—N2—C10149.5 (5)C10—N2—C14—C131.7 (8)
O1W—Zn1—N2—C10115.5 (5)Zn1—N2—C14—C13172.9 (4)
O1—Zn1—N2—C1032.9 (5)C12—C13—C14—N22.6 (9)
N1—Zn1—N2—C1044.7 (5)C13—C12—C15—C1920.4 (8)
O2i—Zn1—N2—C1440.0 (4)C11—C12—C15—C19159.2 (6)
O1W—Zn1—N2—C1455.0 (4)C13—C12—C15—C16156.8 (6)
O1—Zn1—N2—C14137.5 (4)C11—C12—C15—C1623.7 (8)
N1—Zn1—N2—C14144.9 (4)C19—C15—C16—C174.3 (9)
O2i—Zn1—N4—C2046.0 (5)C12—C15—C16—C17178.3 (6)
O1W—Zn1—N4—C20140.7 (5)C18—N3—C17—C161.6 (10)
O1—Zn1—N4—C20136.6 (5)C15—C16—C17—N34.7 (11)
N1—Zn1—N4—C2059.1 (5)C17—N3—C18—C191.8 (10)
O2i—Zn1—N4—C24135.0 (5)C16—C15—C19—C181.4 (9)
O1W—Zn1—N4—C2440.3 (5)C12—C15—C19—C18178.7 (5)
O1—Zn1—N4—C2442.4 (5)N3—C18—C19—C151.8 (10)
N1—Zn1—N4—C24119.9 (5)C24—N4—C20—C211.2 (10)
Zn1—O1—C1—O2163.6 (4)Zn1—N4—C20—C21177.9 (5)
Zn1—O1—C1—C215.9 (6)N4—C20—C21—C221.4 (10)
Zn1ii—O2—C1—O126.8 (8)C20—C21—C22—C230.6 (9)
Zn1ii—O2—C1—C2152.8 (4)C20—C21—C22—C25178.7 (6)
Zn1—N1—C2—C3149.2 (3)C21—C22—C23—C240.2 (10)
Zn1—N1—C2—C121.9 (5)C25—C22—C23—C24178.0 (6)
O1—C1—C2—N14.6 (7)C20—N4—C24—C230.3 (10)
O2—C1—C2—N1175.8 (4)Zn1—N4—C24—C23178.8 (5)
O1—C1—C2—C3133.0 (5)C22—C23—C24—N40.4 (11)
O2—C1—C2—C347.4 (6)C23—C22—C25—C2912.6 (9)
N1—C2—C3—C456.5 (6)C21—C22—C25—C29169.3 (6)
C1—C2—C3—C469.8 (6)C23—C22—C25—C26166.2 (6)
C2—C3—C4—C573.9 (7)C21—C22—C25—C2611.9 (9)
C2—C3—C4—C9103.5 (6)C29—C25—C26—C270.2 (9)
C9—C4—C5—C61.0 (9)C22—C25—C26—C27179.0 (6)
C3—C4—C5—C6176.5 (5)C28—N5—C27—C260.7 (11)
C4—C5—C6—C71.8 (9)C25—C26—C27—N50.4 (11)
C5—C6—C7—O3180.0 (5)C27—N5—C28—C290.9 (11)
C5—C6—C7—C80.1 (9)C26—C25—C29—C280.3 (9)
O3—C7—C8—C9177.5 (5)C22—C25—C29—C28179.2 (6)
C6—C7—C8—C92.4 (10)N5—C28—C29—C250.7 (11)
C7—C8—C9—C43.2 (9)
Symmetry codes: (i) x+2, y1/2, z; (ii) x+2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3iii0.902.493.336 (6)156
O3—H3···O40.861.942.748 (7)155
O1W—H1C···O2W0.821.792.611 (6)173
O1W—H1D···N3iv0.822.333.133 (6)167
O2W—H2A···O4v0.822.102.889 (7)160
O2W—H2B···O3W0.821.972.774 (7)168
O3W—H3C···O6vi0.832.202.962 (7)153
O3W—H3D···N5vii0.822.092.851 (6)154
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y+1/2, z; (v) x+1, y, z+1; (vi) x+1, y1/2, z; (vii) x+3, y1/2, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C9H10NO3)(C10H8N2)2(H2O)]NO3·2H2O
Mr673.98
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)12.737 (3), 10.351 (2), 12.921 (3)
β (°) 117.897 (5)
V3)1505.5 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.22 × 0.09 × 0.02
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.830, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7908, 5199, 3621
Rint0.048
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.091, 0.97
No. of reflections5199
No. of parameters406
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.42
Absolute structureFlack (1983), 2352 Friedel pairs
Absolute structure parameter0.045 (14)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.902.493.336 (6)156
O3—H3···O40.861.942.748 (7)155
O1W—H1C···O2W0.821.792.611 (6)173
O1W—H1D···N3ii0.822.333.133 (6)167
O2W—H2A···O4iii0.822.102.889 (7)160
O2W—H2B···O3W0.821.972.774 (7)168
O3W—H3C···O6iv0.832.202.962 (7)153
O3W—H3D···N5v0.822.092.851 (6)154
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z; (iii) x+1, y, z+1; (iv) x+1, y1/2, z; (v) x+3, y1/2, z+1.
 

Acknowledgements

This work was supported by Changchun Institute of Applied Chemistry, Chinese Academy of Sciences.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, Y.-M., Ma, E., Tang, E., Zhang, J., Li, Z.-J., Huang, X.-D. & Yao, Y.-G. (2005). Cryst. Growth Des. 5, 1313–1315.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKesanli, B. & Lin, W. (2003). Coord. Chem. Rev. 246, 305–326.  Web of Science CrossRef CAS Google Scholar
First citationLou, B.-Y. & Hong, M.-C. (2008). Acta Cryst. E64, m405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLou, B.-Y., Huang, X.-D. & Lin, X.-C. (2007). Z. Anorg. Allg. Chem. 633, 372–374.  Web of Science CSD CrossRef CAS Google Scholar
First citationLou, B.-Y., Wang, R.-H., Yuan, D.-Q., Wu, B.-L., Jiang, F.-L. & Hong, M.-C. (2005). Inorg. Chem. Commun. 8, 971–974.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaidhyanathan, R., Bradshaw, D., Rebilly, J.-N., Barrio, J. P., Gould, J. A., Berry, N. G. & Rosseinsky, M. J. (2006). Angew. Chem. Int. Ed. 45, 6495–6499.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaworotko, M. J. (2001). Chem. Commun. pp. 1–9.  Web of Science CrossRef Google Scholar
First citationZhang, S. & Hu, N.-H. (2009). Acta Cryst. C65, m7–m9.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m884-m885
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds