organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1807-o1808

[(2S,5R)-1-Methyl-5-phenyl­pyrrolidin-2-yl]di­phenyl­methanol

aDepartmento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos-SP, Brazil, bInstituto de Química, Universidade Estadual de Campinas, UNICAMP, CP 6154, CEP 13084-917 Campinas, Brazil, cInstituto de Química, Universidade Federal, de Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, 91501-570 Porto Alegre, RS, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

(Received 12 June 2011; accepted 15 June 2011; online 25 June 2011)

In the title compound, C24H25NO, the phenyl and diphenyl­methanol substituents are syn to each other. The pyrrolidine ring has an envelope conformation with the flap atom being the C atom bearing the phenyl substituent. The hy­droxy group forms an intra­molecular hydrogen bond with the pyrrolidine N atom, and the phenyl rings lie to same side of the mol­ecule. The crystal packing features C—H⋯π inter­actions. Two slightly displaced co-planar orientations were found for one of the phenyl rings; the major component had a site-occupancy factor of 0.782 (15).

Related literature

For background to the highly enanti­oselective addition of aryl­zinc reagents to aldehydes, see: Yoon & Jacobsen (2003[Yoon, T. P. & Jacobsen, E. N. (2003). Science, 299, 1691-1693.]), Taylor, et al. (2011[Taylor, J. G., Moro, A. V. & Correia, C. R. D. (2011). Eur. J. Org. Chem. pp. 1403-1428.]). For related structures, see: Moro et al. (2010[Moro, A. V., Tiekink, E. R. T., Zukerman-Schpector, J., Lüdtke, D. S. & Correia, C. R. D. (2010). Eur. J. Org. Chem. pp. 3696-3703.]); Shabbir et al. (2009[Shabbir, S. H., Joyce, L. A., da Cruz, G. M., Lynch, V. M., Sorey, S. & Anslyn, E. V. (2009). J. Am. Chem. Soc. 131, 13125-13131.]). For details of the synthetic protocols, see: Walsh & Kozlowski (2008[Walsh, P. J. & Kozlowski, M. C. (2008). Fundamentals of Asymmetric Catalysis. Sausalito, CA: University Science Books Sausalito.]); Paixão, et al. (2008[Paixão, M. W., Braga, A. L. & Lüdtke, D. S. (2008). J. Braz. Chem. Soc. 19, 813-830.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H25NO

  • Mr = 343.45

  • Orthorhombic, P 21 21 21

  • a = 9.9672 (2) Å

  • b = 13.3376 (2) Å

  • c = 14.4369 (2) Å

  • V = 1919.22 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.22 × 0.15 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 24972 measured reflections

  • 2262 independent reflections

  • 1979 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.092

  • S = 1.05

  • 2262 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O—H1O⋯N 0.84 2.02 2.648 (2) 132
C28—H28⋯Oi 0.95 2.78 3.359 (7) 120
C17—H17⋯Cgii 0.95 2.92 3.776 (3) 150
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010[Chemaxon (2010). Marvinsketch. http://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Chiral β-amino alcohols have found numerous applications in asymmetric catalysis in the past and continue to play a pivotal role in the development of new reactions and chiral ligands (Walsh & Kozlowski, 2008). One asymmetric reaction where chiral β-amino alcohol ligands have found enormous success is the enantioselective addition of organozinc reagents to carbonyl compounds, with particular emphasis in the alkylation of aldehydes by the addition of diethylzinc. A more challenging reaction is the asymmetric arylation reaction, since arylzinc reagents are more reactive than the dialkylzinc and the ligand turnover has to highly efficient in order to circumvent the uncatalyzed background reaction (Paixão et al., 2008). Considering the proline motif as a privileged framework for the development of asymmetric catalysts (Yoon & Jacobsen, 2003) we have recently described a new chiral ligand for the highly enantioselective addition of arylzinc reagents to aldehydes. The ligands were prepared by an straightforward synthetic sequence, with a Heck reaction of arenediazonium salts (Heck–Matsuda reaction) as the key step (Taylor et al., 2011). Herein, we describe the crystal structure analysis of a representative molecule, the title compound, (I).

The crystal structure analysis of (I) confirms the structure as having the expected syn relationship between the phenyl and the diphenylmethanol substituents, Fig. 1 (Moro et al., 2010; Shabbir et al., 2009). The pyrrolidine ring is in an envelope conformation with C1 out of the plane formed by the other four atoms, the ring puckering parameters being: q2 = 0.379 (2) ° and ϕ2 = 32.0 (3) ° (Cremer & Pople, 1975). The hydroxy group is orientated over the five-membered ring to facilitate the formation of an intramolecular O—H···N hydrogen bond, Table 1. The crystal packing is dominated by C—H···π interactions, Table 1. Globally. the pyrrolidine pack in the ab plane and are sandwiched by benzene rings along the c direction, Fig. 2.

Related literature top

For background to the highly enantioselective addition of arylzinc reagents to aldehydes, see: Yoon & Jacobsen (2003), Taylor, et al. (2011). For related structures, see: Moro et al. (2010); Shabbir et al. (2009). For details of the synthetic protocols, see: Walsh & Kozlowski (2008); Paixão, et al. (2008). For ring conformational analysis, see: Cremer & Pople (1975).

Experimental top

The starting (2S)-1-tert-butyl 2-methyl 5-argio-1H-pyrrole-1,2(2H,5H)-dicarboxylate was prepared as described in previous work (Moro et al., 2010). To a round-bottomed flask, under a hydrogen atmosphere, were added the Heck adduct ((2S))-1-tert-butyl 2-methyl 5-argio-1H-pyrrole-1,2(2H,5H)-dicarboxylate) (3 mmol) and dry methanol (60 ml), followed by the addition of Pd/C 10% (20% w/w, 0.18 g). The reaction was stirred at room temperature for 24 h. After this time, the crude reaction mixture was filtered in a plug of celite and concentrated under reduced pressure. The resulting product was used without further purification. To a round-bottomed flask, under an argon atmosphere, PhMgBr (5 equiv., 15 mmol) in THF (15 ml, 1 M solution) was added to a THF (10 ml) solution of the (2S)-1-tert-butyl 2-methyl 5-argiopyrrolidine-1,2-dicarboxylate (3 mmol) at room temperature, and the mixture was stirred for 4 h, before being quenched by careful addition of NaOH 2M. The heterogeneous mixture was filtered through a pad of Celite and washed with dichloromethane (3 x 50 ml). The combined organic phases were dried with MgSO4, filtered and the solvent removed under vacuum. The resulting product was used without further purification. To a suspension of lithium aluminium hydride (1.14 g, 30 mmol) in THF (15 ml) in a round-bottomed flask, under an argon atmosphere and cooled to 273 K, a solution of the (2S,5R)-tert-butyl 2-(hydroxydiphenylmethyl)-5-phenylpyrrolidine-1-carboxylate in THF (5 ml) was added. The resulting mixture was refluxed for 12 h. After this time, the mixture was cooled to 273 K and NaOH (4M) was added. The mixture was filtered through a pad of Celite and washed with ethyl acetate. The organic layer was separated, and the filtrate was extracted with ethyl acetate (3 x 50 ml). The combined organic phases were dried with MgSO4, filtered and the solvent removed under vacuum. The crude product was purified by flash chromatography in hexanes/ethyl acetate (95:05), to afford the 0.340 g (33%) of pure ((2S,5R)-1-methyl-5-phenylpyrrolidin-2-yl)diphenylmethanol (cis isomer) and 0.278 g (27%) of pure ((2S,5S)-1-methyl-5-phenylpyrrolidin-2-yl)diphenylmethanol (trans isomer) (60% combined yield). Suitable crystals for X-ray analysis were obtained by vapour diffusion from n-hexane/ethyl ether at 298 K. [α] D 20 = +115 (c = 1.02, CHCl3). 1H NMR [CDCl3, 500 MHz, δ (p.p.m.)]: 1.66 (s, 3H, N—CH3), 1.68–1.83 (m, 2H, CH2), 1.92–2.03 (m, 2H, CH2), 3.54 (dd, J1 = 10.8 Hz, J2 = 6.0 Hz, 1H, CH), 3.89 (dd, J1 = 9.8 Hz, J2 = 4.0 Hz, 1H, CH), 4.97 (bs, 1H, OH), 7.09 (t, J = 7.0 Hz, 1H, Ar), 7.13 (t, J = 7.0 Hz, 1H, Ar), 7.19–7.33 (m, 9H, Ar), 7.58 (dd, J1 = 8.5 Hz, J2 = 1.0 Hz, 2H, Ar), 7.68 (dd, J1 = 8.5 Hz, J2 = 1.0 Hz, 2H, Ar). 13C NMR [CDCl3, 125 MHz, δ (p.p.m.)]: 28.2, 34.5, 41.0, 72.5, 73.4, 77.8, 125.3, 125.4, 126.1, 126.2, 126.9, 127.2, 128.0, 128.1, 128.4, 142.6, 146.6, 148.0. IR (film, cm-1): 3428, 3263, 1449. MS (ESI): 209, 167. HRMS (ESI) calc for C24H25NO + H: 344.2014, found: 344.2083.

Refinement top

All H-atoms were placed in calculated positions (O—H = 0.84 Å, and C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O; methyl-C). In the absence of significant anomalous scattering effects, 1707 Friedel pairs were averaged in the final refinement. The 2S,5R designation was chosen based on the synthesis (Moro et al., 2010). The C7–C12 benzene ring was found to be disordered with one orientation slightly displaced with respect to the second, co-planar, orientation. In the final refinement, matching C atoms were constrained to have the same anisotropic displacement parameter. The major component of the disordered residue had a site occupancy factor = 0.782 (15).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level. Only the major component of the disordered benzene ring is illustrated.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents for (I). The C—H···π interactions are shown as purple dashed lines.
[(2S,5R)-1-Methyl-5-phenylpyrrolidin-2-yl]diphenylmethanol top
Crystal data top
C24H25NOF(000) = 736
Mr = 343.45Dx = 1.189 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7679 reflections
a = 9.9672 (2) Åθ = 2.5–25.5°
b = 13.3376 (2) ŵ = 0.07 mm1
c = 14.4369 (2) ÅT = 100 K
V = 1919.22 (5) Å3Irregular, colourless
Z = 40.22 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
1979 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 26.5°, θmin = 2.1°
ϕ and ω scansh = 1212
24972 measured reflectionsk = 1616
2262 independent reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.2712P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2262 reflectionsΔρmax = 0.17 e Å3
255 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C24H25NOV = 1919.22 (5) Å3
Mr = 343.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.9672 (2) ŵ = 0.07 mm1
b = 13.3376 (2) ÅT = 100 K
c = 14.4369 (2) Å0.22 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
1979 reflections with I > 2σ(I)
24972 measured reflectionsRint = 0.039
2262 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.05Δρmax = 0.17 e Å3
2262 reflectionsΔρmin = 0.19 e Å3
255 parametersAbsolute structure: nd
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O0.11866 (14)0.86869 (11)0.21128 (12)0.0486 (4)
H1o0.13870.81660.18160.073*
N0.30995 (17)0.77434 (11)0.11848 (11)0.0360 (4)
C10.3091 (2)0.74937 (15)0.01898 (13)0.0364 (4)
H10.40230.75580.00580.044*
C20.2230 (2)0.83278 (15)0.02138 (14)0.0422 (5)
H2A0.24370.84320.08770.051*
H2B0.12640.81690.01490.051*
C30.2595 (2)0.92449 (15)0.03493 (14)0.0409 (5)
H3A0.17860.96520.04810.049*
H3B0.32500.96650.00100.049*
C40.3212 (2)0.88486 (13)0.12565 (12)0.0327 (4)
H40.41770.90500.13000.039*
C50.4120 (2)0.71912 (17)0.16989 (15)0.0510 (6)
H5A0.39760.64700.16190.076*
H5B0.40590.73620.23580.076*
H5C0.50110.73710.14650.076*
C120.24357 (19)0.92007 (13)0.21337 (13)0.0333 (4)
C250.2101 (7)1.0299 (5)0.2126 (5)0.0299 (10)0.782 (15)
C260.0798 (6)1.0643 (6)0.2313 (5)0.0443 (11)0.782 (15)
H260.01121.01680.24390.053*0.782 (15)
C270.0485 (7)1.1642 (4)0.2320 (3)0.0504 (12)0.782 (15)
H270.04051.18470.24580.060*0.782 (15)
C280.1454 (8)1.2356 (3)0.2127 (3)0.0462 (14)0.782 (15)
H280.12321.30490.21280.055*0.782 (15)
C290.2743 (7)1.2049 (4)0.1933 (3)0.0441 (15)0.782 (15)
H290.34211.25320.18100.053*0.782 (15)
C300.3055 (7)1.1029 (6)0.1918 (5)0.0383 (11)0.782 (15)
H300.39401.08270.17620.046*0.782 (15)
C130.3186 (2)0.89712 (14)0.30368 (13)0.0396 (5)
C140.2559 (3)0.84209 (16)0.37346 (15)0.0563 (7)
H140.16680.81850.36480.068*
C150.3229 (5)0.8218 (2)0.45513 (17)0.0781 (10)
H150.27990.78310.50170.094*
C160.4509 (4)0.8566 (2)0.46997 (18)0.0800 (11)
H160.49590.84260.52650.096*
C170.5129 (3)0.91177 (18)0.40224 (18)0.0656 (8)
H170.60110.93660.41210.079*
C180.4475 (2)0.93152 (15)0.31956 (16)0.0479 (5)
H180.49200.96930.27300.057*
C60.2582 (2)0.64512 (15)0.00095 (14)0.0399 (5)
C70.3065 (3)0.59257 (18)0.07668 (16)0.0548 (6)
H70.37590.62070.11360.066*
C80.2548 (4)0.4995 (2)0.0990 (2)0.0711 (8)
H80.28770.46500.15190.085*
C90.1568 (3)0.45654 (19)0.0460 (2)0.0705 (8)
H90.12230.39230.06160.085*
C100.1091 (3)0.50665 (18)0.0295 (2)0.0645 (7)
H100.04170.47680.06700.077*
C110.1583 (3)0.60091 (17)0.05168 (18)0.0544 (6)
H110.12300.63560.10370.065*
C190.235 (3)1.043 (2)0.204 (2)0.0299 (10)0.218 (15)
C200.116 (2)1.072 (3)0.238 (2)0.0443 (11)0.218 (15)
H200.04951.02800.26230.053*0.218 (15)
C210.101 (3)1.1852 (17)0.2343 (15)0.0504 (12)0.218 (15)
H210.01871.21670.25090.060*0.218 (15)
C220.207 (3)1.2397 (15)0.2064 (13)0.0462 (14)0.218 (15)
H220.19911.31070.20570.055*0.218 (15)
C230.323 (2)1.1984 (16)0.1794 (14)0.0441 (15)0.218 (15)
H230.39491.24040.16020.053*0.218 (15)
C240.340 (2)1.098 (2)0.179 (2)0.0383 (11)0.218 (15)
H240.42251.06790.16200.046*0.218 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0386 (8)0.0402 (8)0.0671 (10)0.0100 (7)0.0144 (7)0.0061 (7)
N0.0446 (9)0.0298 (8)0.0337 (8)0.0063 (8)0.0033 (8)0.0016 (6)
C10.0357 (10)0.0407 (10)0.0327 (10)0.0019 (9)0.0008 (8)0.0048 (8)
C20.0501 (12)0.0411 (11)0.0355 (10)0.0006 (10)0.0064 (9)0.0013 (9)
C30.0459 (12)0.0377 (10)0.0392 (11)0.0011 (10)0.0040 (9)0.0025 (8)
C40.0331 (10)0.0304 (9)0.0344 (9)0.0005 (8)0.0009 (8)0.0012 (7)
C50.0668 (15)0.0439 (12)0.0423 (12)0.0218 (11)0.0111 (11)0.0075 (9)
C120.0318 (9)0.0277 (9)0.0405 (10)0.0023 (8)0.0049 (8)0.0005 (8)
C250.034 (3)0.026 (2)0.0295 (18)0.0063 (17)0.0048 (17)0.0031 (14)
C260.042 (3)0.0436 (18)0.047 (2)0.008 (3)0.005 (3)0.0021 (14)
C270.055 (3)0.042 (2)0.0541 (15)0.013 (2)0.011 (2)0.0058 (15)
C280.068 (4)0.0304 (12)0.0402 (14)0.012 (2)0.002 (2)0.0049 (11)
C290.059 (4)0.0318 (14)0.042 (2)0.005 (3)0.006 (2)0.0003 (14)
C300.035 (3)0.0340 (13)0.046 (2)0.003 (2)0.002 (2)0.0041 (16)
C130.0591 (13)0.0253 (9)0.0344 (10)0.0074 (9)0.0060 (9)0.0043 (7)
C140.0913 (18)0.0380 (11)0.0395 (12)0.0125 (13)0.0202 (12)0.0008 (9)
C150.151 (3)0.0489 (15)0.0343 (13)0.030 (2)0.0228 (17)0.0036 (11)
C160.149 (3)0.0556 (16)0.0352 (13)0.042 (2)0.0182 (17)0.0086 (12)
C170.091 (2)0.0513 (13)0.0544 (15)0.0220 (15)0.0274 (14)0.0158 (12)
C180.0645 (14)0.0357 (11)0.0434 (12)0.0060 (11)0.0100 (11)0.0020 (9)
C60.0434 (11)0.0362 (10)0.0401 (11)0.0066 (9)0.0071 (9)0.0035 (8)
C70.0678 (15)0.0495 (13)0.0473 (12)0.0054 (13)0.0030 (12)0.0123 (10)
C80.090 (2)0.0554 (14)0.0674 (17)0.0117 (15)0.0144 (17)0.0271 (13)
C90.0798 (19)0.0372 (12)0.094 (2)0.0030 (13)0.0359 (18)0.0136 (14)
C100.0615 (15)0.0442 (13)0.088 (2)0.0066 (12)0.0111 (15)0.0042 (14)
C110.0562 (14)0.0433 (12)0.0637 (15)0.0025 (11)0.0020 (12)0.0047 (11)
C190.034 (3)0.026 (2)0.0295 (18)0.0063 (17)0.0048 (17)0.0031 (14)
C200.042 (3)0.0436 (18)0.047 (2)0.008 (3)0.005 (3)0.0021 (14)
C210.055 (3)0.042 (2)0.0541 (15)0.013 (2)0.011 (2)0.0058 (15)
C220.068 (4)0.0304 (12)0.0402 (14)0.012 (2)0.002 (2)0.0049 (11)
C230.059 (4)0.0318 (14)0.042 (2)0.005 (3)0.006 (2)0.0003 (14)
C240.035 (3)0.0340 (13)0.046 (2)0.003 (2)0.002 (2)0.0041 (16)
Geometric parameters (Å, º) top
O—C121.421 (2)C13—C181.383 (3)
O—H1o0.8401C13—C141.394 (3)
N—C51.459 (3)C14—C151.382 (4)
N—C11.475 (2)C14—H140.9500
N—C41.482 (2)C15—C161.374 (5)
C1—C61.508 (3)C15—H150.9500
C1—C21.521 (3)C16—C171.371 (4)
C1—H11.0000C16—H160.9500
C2—C31.513 (3)C17—C181.385 (3)
C2—H2A0.9900C17—H170.9500
C2—H2B0.9900C18—H180.9500
C3—C41.541 (3)C6—C111.384 (3)
C3—H3A0.9900C6—C71.385 (3)
C3—H3B0.9900C7—C81.383 (4)
C4—C121.557 (3)C7—H70.9500
C4—H41.0000C8—C91.366 (5)
C5—H5A0.9800C8—H80.9500
C5—H5B0.9800C9—C101.364 (4)
C5—H5C0.9800C9—H90.9500
C12—C251.503 (7)C10—C111.387 (3)
C12—C131.534 (3)C10—H100.9500
C12—C191.65 (3)C11—H110.9500
C25—C301.394 (7)C19—C241.32 (3)
C25—C261.403 (9)C19—C201.34 (4)
C26—C271.368 (9)C20—C211.51 (4)
C26—H260.9500C20—H200.9500
C27—C281.385 (6)C21—C221.34 (2)
C27—H270.9500C21—H210.9500
C28—C291.378 (5)C22—C231.34 (2)
C28—H280.9500C22—H220.9500
C29—C301.395 (9)C23—C241.35 (4)
C29—H290.9500C23—H230.9500
C30—H300.9500C24—H240.9500
C12—O—H1o101.6C25—C30—C29121.7 (5)
C5—N—C1112.69 (16)C25—C30—H30119.1
C5—N—C4114.43 (16)C29—C30—H30119.1
C1—N—C4107.05 (14)C18—C13—C14118.1 (2)
N—C1—C6113.34 (16)C18—C13—C12121.84 (18)
N—C1—C2102.20 (16)C14—C13—C12120.0 (2)
C6—C1—C2114.29 (17)C15—C14—C13120.2 (3)
N—C1—H1108.9C15—C14—H14119.9
C6—C1—H1108.9C13—C14—H14119.9
C2—C1—H1108.9C16—C15—C14121.0 (3)
C3—C2—C1104.46 (16)C16—C15—H15119.5
C3—C2—H2A110.9C14—C15—H15119.5
C1—C2—H2A110.9C17—C16—C15119.3 (3)
C3—C2—H2B110.9C17—C16—H16120.4
C1—C2—H2B110.9C15—C16—H16120.4
H2A—C2—H2B108.9C16—C17—C18120.3 (3)
C2—C3—C4105.99 (16)C16—C17—H17119.8
C2—C3—H3A110.5C18—C17—H17119.8
C4—C3—H3A110.5C13—C18—C17121.1 (2)
C2—C3—H3B110.5C13—C18—H18119.5
C4—C3—H3B110.5C17—C18—H18119.5
H3A—C3—H3B108.7C11—C6—C7117.9 (2)
N—C4—C3104.56 (15)C11—C6—C1122.02 (19)
N—C4—C12108.61 (15)C7—C6—C1120.0 (2)
C3—C4—C12112.90 (15)C8—C7—C6120.6 (3)
N—C4—H4110.2C8—C7—H7119.7
C3—C4—H4110.2C6—C7—H7119.7
C12—C4—H4110.2C9—C8—C7120.8 (3)
N—C5—H5A109.5C9—C8—H8119.6
N—C5—H5B109.5C7—C8—H8119.6
H5A—C5—H5B109.5C10—C9—C8119.4 (3)
N—C5—H5C109.5C10—C9—H9120.3
H5A—C5—H5C109.5C8—C9—H9120.3
H5B—C5—H5C109.5C9—C10—C11120.3 (3)
O—C12—C25106.0 (3)C9—C10—H10119.8
O—C12—C13110.43 (16)C11—C10—H10119.8
C25—C12—C13108.0 (3)C6—C11—C10120.9 (2)
O—C12—C4105.84 (15)C6—C11—H11119.5
C25—C12—C4113.5 (3)C10—C11—H11119.5
C13—C12—C4112.86 (15)C24—C19—C20130 (3)
O—C12—C19115.5 (11)C24—C19—C12122 (2)
C13—C12—C19107.2 (12)C20—C19—C12108 (2)
C4—C12—C19105.0 (10)C19—C20—C21111 (2)
C30—C25—C26116.4 (6)C19—C20—H20124.5
C30—C25—C12122.1 (5)C21—C20—H20124.5
C26—C25—C12121.5 (5)C22—C21—C20118.2 (18)
C27—C26—C25122.1 (5)C22—C21—H21120.9
C27—C26—H26119.0C20—C21—H21120.9
C25—C26—H26119.0C23—C22—C21123.0 (18)
C26—C27—C28120.6 (4)C23—C22—H22118.5
C26—C27—H27119.7C21—C22—H22118.5
C28—C27—H27119.7C22—C23—C24121 (2)
C29—C28—C27119.1 (4)C22—C23—H23119.5
C29—C28—H28120.4C24—C23—H23119.5
C27—C28—H28120.4C19—C24—C23117 (2)
C28—C29—C30120.0 (4)C19—C24—H24121.7
C28—C29—H29120.0C23—C24—H24121.7
C30—C29—H29120.0
C5—N—C1—C670.2 (2)O—C12—C13—C146.8 (2)
C4—N—C1—C6163.11 (17)C25—C12—C13—C14108.7 (3)
C5—N—C1—C2166.29 (18)C4—C12—C13—C14124.99 (18)
C4—N—C1—C239.6 (2)C19—C12—C13—C14119.8 (10)
N—C1—C2—C336.6 (2)C18—C13—C14—C151.0 (3)
C6—C1—C2—C3159.41 (17)C12—C13—C14—C15179.62 (19)
C1—C2—C3—C420.7 (2)C13—C14—C15—C161.2 (4)
C5—N—C4—C3152.32 (17)C14—C15—C16—C170.4 (4)
C1—N—C4—C326.7 (2)C15—C16—C17—C180.4 (4)
C5—N—C4—C1286.9 (2)C14—C13—C18—C170.2 (3)
C1—N—C4—C12147.48 (16)C12—C13—C18—C17178.72 (19)
C2—C3—C4—N3.0 (2)C16—C17—C18—C130.6 (3)
C2—C3—C4—C12120.85 (18)N—C1—C6—C1134.1 (3)
N—C4—C12—O45.89 (19)C2—C1—C6—C1182.4 (2)
C3—C4—C12—O69.60 (19)N—C1—C6—C7149.2 (2)
N—C4—C12—C25161.7 (3)C2—C1—C6—C794.2 (2)
C3—C4—C12—C2546.2 (4)C11—C6—C7—C80.8 (3)
N—C4—C12—C1375.00 (19)C1—C6—C7—C8176.0 (2)
C3—C4—C12—C13169.51 (16)C6—C7—C8—C91.3 (4)
N—C4—C12—C19168.5 (12)C7—C8—C9—C100.5 (4)
C3—C4—C12—C1953.1 (12)C8—C9—C10—C110.7 (4)
O—C12—C25—C30164.1 (6)C7—C6—C11—C100.4 (3)
C13—C12—C25—C3077.5 (7)C1—C6—C11—C10177.2 (2)
C4—C12—C25—C3048.4 (8)C9—C10—C11—C61.2 (4)
C19—C12—C25—C3010 (7)O—C12—C19—C24161 (3)
O—C12—C25—C2614.7 (7)C25—C12—C19—C24172 (10)
C13—C12—C25—C26103.7 (7)C13—C12—C19—C2476 (3)
C4—C12—C25—C26130.4 (6)C4—C12—C19—C2445 (3)
C19—C12—C25—C26169 (8)O—C12—C19—C2028 (3)
C30—C25—C26—C272.0 (11)C25—C12—C19—C201 (6)
C12—C25—C26—C27179.2 (6)C13—C12—C19—C2095 (2)
C25—C26—C27—C280.9 (10)C4—C12—C19—C20144 (2)
C26—C27—C28—C290.4 (7)C24—C19—C20—C219 (5)
C27—C28—C29—C301.0 (7)C12—C19—C20—C21179 (2)
C26—C25—C30—C292.6 (11)C19—C20—C21—C226 (4)
C12—C25—C30—C29178.5 (5)C20—C21—C22—C232 (4)
C28—C29—C30—C252.2 (9)C21—C22—C23—C240 (4)
O—C12—C13—C18174.73 (17)C20—C19—C24—C237 (5)
C25—C12—C13—C1869.8 (3)C12—C19—C24—C23176 (2)
C4—C12—C13—C1856.5 (2)C22—C23—C24—C192 (4)
C19—C12—C13—C1858.7 (10)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
O—H1O···N0.842.022.648 (2)132
C28—H28···Oi0.952.783.359 (7)120
C17—H17···Cgii0.952.923.776 (3)150
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H25NO
Mr343.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.9672 (2), 13.3376 (2), 14.4369 (2)
V3)1919.22 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.22 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
24972, 2262, 1979
Rint0.039
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.05
No. of reflections2262
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19
Absolute structureNd

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
O—H1O···N0.842.022.648 (2)132
C28—H28···Oi0.952.783.359 (7)120
C17—H17···Cgii0.952.923.776 (3)150
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

We thank the Brazilian agencies FAPESP, CNPq (research fellowships to JZS, DSL and CRDC) and CAPES (808/2009 to JZS) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChemaxon (2010). Marvinsketch. http://www.chemaxon.com.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMoro, A. V., Tiekink, E. R. T., Zukerman-Schpector, J., Lüdtke, D. S. & Correia, C. R. D. (2010). Eur. J. Org. Chem. pp. 3696–3703.  CrossRef Google Scholar
First citationPaixão, M. W., Braga, A. L. & Lüdtke, D. S. (2008). J. Braz. Chem. Soc. 19, 813–830.  Google Scholar
First citationShabbir, S. H., Joyce, L. A., da Cruz, G. M., Lynch, V. M., Sorey, S. & Anslyn, E. V. (2009). J. Am. Chem. Soc. 131, 13125–13131.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, J. G., Moro, A. V. & Correia, C. R. D. (2011). Eur. J. Org. Chem. pp. 1403–1428.  CrossRef Google Scholar
First citationWalsh, P. J. & Kozlowski, M. C. (2008). Fundamentals of Asymmetric Catalysis. Sausalito, CA: University Science Books Sausalito.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoon, T. P. & Jacobsen, E. N. (2003). Science, 299, 1691–1693.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1807-o1808
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds