organic compounds
1-[(Z)-1-Bromo-2-(butyldichloro-λ4-tellanyl)ethenyl]cyclohex-1-ene
aDepartmento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil, bBioMat-Departmento de Física, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil, cDepartamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo-Campus Diadema, Rua Prof. Artur Ridel 275, 09972-270 Diadema, SP, Brazil, dDepartamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: julio@power.ufscar.br
The TeIV atom in the title compound, [Te(C4H9)(C8H10Br)Cl2] or C12H19BrCl2Te, is in a distorted ψ-trigonal–bipyramidal geometry, with the lone pair of electrons projected to occupy a position in the equatorial plane, and with the Cl atoms being mutually trans [172.48 (4)°]. Close intramolecular [Te⋯Br = 3.3444 (18) Å] and intermolecular [Te⋯Cl = 3.675 (3) Å] interactions are observed. The latter lead to centrosymmetric dimers which assemble into layers in the bc plane. The primary connections between layers are of the type C—H⋯Cl.
Related literature
For background to the synthesis, see: Guadagnin et al. (2008). For related X-ray structures, see: Zukerman-Schpector et al. (1998, 2008). For coordination polyhedra around TeIV atoms, see: Zukerman-Schpector & Haiduc (2002); Tiekink & Zukerman-Schpector (2010). For ring see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811023142/hg5055sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811023142/hg5055Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811023142/hg5055Isup3.cml
The starting (Z)-(2-bromo-2-cyclohexenylvinyl)(butyl)tellane was prepared as described in previous work (Guadagnin et al., 2008) and a solution of it (1 mmol, 0.370 g) in hexane (5 ml) at 273 K was poured into a two-necked round-bottomed flask under a nitrogen atmosphere and then SO2Cl2 (1 mmol, 1.37 g) added drop wise. A white solid formed immediately. The mixture was warmed to room temperature. The resulting solid was filtered and dried. Crystals of (I) were obatined by slow evaporation from its CHCl3 solution held at room temperature.
C-bound H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the
in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C).Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell
CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).C12H19BrCl2Te | Z = 2 |
Mr = 441.67 | F(000) = 424 |
Triclinic, P1 | Dx = 1.893 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.311 (3) Å | Cell parameters from 2823 reflections |
b = 10.243 (6) Å | θ = 2.3–30.3° |
c = 12.334 (9) Å | µ = 4.82 mm−1 |
α = 103.34 (2)° | T = 98 K |
β = 91.53 (2)° | Block, colourless |
γ = 91.411 (14)° | 0.22 × 0.20 × 0.15 mm |
V = 775.1 (8) Å3 |
Rigaku Saturn724 diffractometer | 3012 independent reflections |
Radiation source: fine-focus sealed tube | 2898 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 26.0°, θmin = 3.0° |
dtprofit.ref scans | h = −7→7 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −12→12 |
Tmin = 0.360, Tmax = 0.486 | l = −15→14 |
7151 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0328P)2 + 2.7479P] where P = (Fo2 + 2Fc2)/3 |
3012 reflections | (Δ/σ)max < 0.001 |
146 parameters | Δρmax = 0.89 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
C12H19BrCl2Te | γ = 91.411 (14)° |
Mr = 441.67 | V = 775.1 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.311 (3) Å | Mo Kα radiation |
b = 10.243 (6) Å | µ = 4.82 mm−1 |
c = 12.334 (9) Å | T = 98 K |
α = 103.34 (2)° | 0.22 × 0.20 × 0.15 mm |
β = 91.53 (2)° |
Rigaku Saturn724 diffractometer | 3012 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2898 reflections with I > 2σ(I) |
Tmin = 0.360, Tmax = 0.486 | Rint = 0.033 |
7151 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.89 e Å−3 |
3012 reflections | Δρmin = −0.59 e Å−3 |
146 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Te | 0.54785 (4) | 0.72646 (3) | 0.54317 (2) | 0.02297 (11) | |
Cl1 | 0.28881 (18) | 0.59324 (11) | 0.63286 (10) | 0.0303 (2) | |
Cl2 | 0.76717 (17) | 0.88070 (11) | 0.46001 (9) | 0.0270 (2) | |
Br | 0.88870 (7) | 0.84752 (4) | 0.75713 (4) | 0.02781 (13) | |
C1 | 0.4888 (7) | 0.8911 (4) | 0.6734 (4) | 0.0243 (9) | |
H1 | 0.3606 | 0.9336 | 0.6721 | 0.029* | |
C2 | 0.6258 (6) | 0.9377 (4) | 0.7578 (4) | 0.0210 (8) | |
C3 | 0.2891 (7) | 0.7512 (5) | 0.4343 (4) | 0.0272 (10) | |
H3A | 0.1601 | 0.7647 | 0.4760 | 0.033* | |
H3B | 0.3167 | 0.8303 | 0.4056 | 0.033* | |
C4 | 0.2579 (7) | 0.6278 (4) | 0.3363 (4) | 0.0254 (9) | |
H4A | 0.3884 | 0.6127 | 0.2960 | 0.031* | |
H4B | 0.2263 | 0.5491 | 0.3649 | 0.031* | |
C5 | 0.0798 (7) | 0.6463 (5) | 0.2574 (4) | 0.0275 (9) | |
H5A | 0.1144 | 0.7224 | 0.2260 | 0.033* | |
H5B | −0.0492 | 0.6655 | 0.2983 | 0.033* | |
C6 | 0.0426 (8) | 0.5215 (5) | 0.1634 (4) | 0.0327 (11) | |
H6A | 0.1697 | 0.5029 | 0.1223 | 0.049* | |
H6B | −0.0705 | 0.5363 | 0.1145 | 0.049* | |
H6C | 0.0051 | 0.4465 | 0.1942 | 0.049* | |
C7 | 0.5937 (7) | 1.0547 (4) | 0.8505 (4) | 0.0218 (9) | |
C8 | 0.7386 (8) | 1.0984 (5) | 0.9333 (4) | 0.0278 (10) | |
H8 | 0.8617 | 1.0502 | 0.9330 | 0.033* | |
C9 | 0.7148 (8) | 1.2201 (5) | 1.0265 (4) | 0.0339 (11) | |
H9A | 0.8450 | 1.2744 | 1.0361 | 0.041* | |
H9B | 0.6925 | 1.1917 | 1.0952 | 0.041* | |
C10 | 0.5313 (8) | 1.3048 (5) | 1.0050 (5) | 0.0390 (12) | |
H10A | 0.4959 | 1.3655 | 1.0744 | 0.047* | |
H10B | 0.5742 | 1.3585 | 0.9536 | 0.047* | |
C11 | 0.3404 (8) | 1.2207 (5) | 0.9576 (4) | 0.0358 (11) | |
H11A | 0.2274 | 1.2786 | 0.9452 | 0.043* | |
H11B | 0.2927 | 1.1710 | 1.0110 | 0.043* | |
C12 | 0.3841 (7) | 1.1224 (5) | 0.8482 (4) | 0.0280 (10) | |
H12A | 0.2710 | 1.0542 | 0.8316 | 0.034* | |
H12B | 0.3833 | 1.1700 | 0.7888 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Te | 0.02153 (17) | 0.01990 (16) | 0.02365 (17) | 0.00270 (11) | −0.00238 (11) | −0.00268 (11) |
Cl1 | 0.0311 (6) | 0.0213 (5) | 0.0360 (6) | −0.0017 (4) | 0.0052 (5) | 0.0010 (4) |
Cl2 | 0.0254 (5) | 0.0286 (5) | 0.0260 (5) | 0.0036 (4) | 0.0036 (4) | 0.0034 (4) |
Br | 0.0224 (2) | 0.0283 (2) | 0.0286 (2) | 0.00692 (18) | −0.00469 (18) | −0.00199 (18) |
C1 | 0.023 (2) | 0.023 (2) | 0.025 (2) | 0.0068 (17) | 0.0015 (17) | −0.0014 (17) |
C2 | 0.0174 (19) | 0.0191 (19) | 0.026 (2) | 0.0021 (16) | 0.0012 (16) | 0.0042 (17) |
C3 | 0.023 (2) | 0.024 (2) | 0.030 (2) | 0.0023 (17) | −0.0078 (18) | −0.0023 (19) |
C4 | 0.032 (2) | 0.021 (2) | 0.021 (2) | 0.0082 (18) | −0.0013 (18) | 0.0000 (17) |
C5 | 0.031 (2) | 0.024 (2) | 0.025 (2) | 0.0000 (18) | −0.0044 (18) | 0.0004 (18) |
C6 | 0.042 (3) | 0.028 (2) | 0.025 (2) | 0.000 (2) | −0.004 (2) | 0.0016 (19) |
C7 | 0.026 (2) | 0.0157 (19) | 0.024 (2) | −0.0026 (16) | 0.0001 (17) | 0.0042 (16) |
C8 | 0.028 (2) | 0.025 (2) | 0.028 (2) | 0.0017 (18) | −0.0027 (19) | 0.0029 (19) |
C9 | 0.031 (3) | 0.033 (3) | 0.030 (2) | 0.000 (2) | −0.003 (2) | −0.009 (2) |
C10 | 0.040 (3) | 0.032 (3) | 0.037 (3) | 0.005 (2) | 0.000 (2) | −0.008 (2) |
C11 | 0.034 (3) | 0.034 (3) | 0.034 (3) | 0.010 (2) | 0.000 (2) | −0.001 (2) |
C12 | 0.026 (2) | 0.027 (2) | 0.027 (2) | 0.0040 (18) | −0.0047 (18) | 0.0000 (19) |
Te—Cl1 | 2.5381 (15) | C6—H6B | 0.9600 |
Te—Cl2 | 2.4859 (15) | C6—H6C | 0.9600 |
Te—C1 | 2.092 (4) | C7—C8 | 1.341 (6) |
Te—C3 | 2.143 (4) | C7—C12 | 1.511 (6) |
Br—C2 | 1.918 (4) | C8—C9 | 1.502 (6) |
C1—C2 | 1.327 (6) | C8—H8 | 0.9300 |
C1—H1 | 0.9300 | C9—C10 | 1.518 (7) |
C2—C7 | 1.475 (6) | C9—H9A | 0.9700 |
C3—C4 | 1.539 (6) | C9—H9B | 0.9700 |
C3—H3A | 0.9700 | C10—C11 | 1.488 (7) |
C3—H3B | 0.9700 | C10—H10A | 0.9700 |
C4—C5 | 1.511 (6) | C10—H10B | 0.9700 |
C4—H4A | 0.9700 | C11—C12 | 1.522 (7) |
C4—H4B | 0.9700 | C11—H11A | 0.9700 |
C5—C6 | 1.524 (6) | C11—H11B | 0.9700 |
C5—H5A | 0.9700 | C12—H12A | 0.9700 |
C5—H5B | 0.9700 | C12—H12B | 0.9700 |
C6—H6A | 0.9600 | ||
C1—Te—C3 | 97.25 (17) | H6A—C6—H6C | 109.5 |
C1—Te—Cl2 | 87.77 (14) | H6B—C6—H6C | 109.5 |
C3—Te—Cl2 | 88.63 (14) | C8—C7—C2 | 122.8 (4) |
C1—Te—Cl1 | 86.80 (14) | C8—C7—C12 | 121.3 (4) |
Cl1—Te—Cl2 | 172.48 (4) | C2—C7—C12 | 115.9 (4) |
C2—C1—Te | 123.1 (3) | C7—C8—C9 | 124.2 (4) |
C2—C1—H1 | 118.5 | C7—C8—H8 | 117.9 |
Te—C1—H1 | 118.5 | C9—C8—H8 | 117.9 |
C1—C2—C7 | 125.3 (4) | C8—C9—C10 | 112.4 (4) |
C1—C2—Br | 117.1 (3) | C8—C9—H9A | 109.1 |
C7—C2—Br | 117.6 (3) | C10—C9—H9A | 109.1 |
C4—C3—Te | 111.2 (3) | C8—C9—H9B | 109.1 |
C4—C3—H3A | 109.4 | C10—C9—H9B | 109.1 |
Te—C3—H3A | 109.4 | H9A—C9—H9B | 107.9 |
C4—C3—H3B | 109.4 | C11—C10—C9 | 111.9 (4) |
Te—C3—H3B | 109.4 | C11—C10—H10A | 109.2 |
H3A—C3—H3B | 108.0 | C9—C10—H10A | 109.2 |
C5—C4—C3 | 111.5 (4) | C11—C10—H10B | 109.2 |
C5—C4—H4A | 109.3 | C9—C10—H10B | 109.2 |
C3—C4—H4A | 109.3 | H10A—C10—H10B | 107.9 |
C5—C4—H4B | 109.3 | C10—C11—C12 | 112.2 (4) |
C3—C4—H4B | 109.3 | C10—C11—H11A | 109.2 |
H4A—C4—H4B | 108.0 | C12—C11—H11A | 109.2 |
C4—C5—C6 | 111.3 (4) | C10—C11—H11B | 109.2 |
C4—C5—H5A | 109.4 | C12—C11—H11B | 109.2 |
C6—C5—H5A | 109.4 | H11A—C11—H11B | 107.9 |
C4—C5—H5B | 109.4 | C7—C12—C11 | 113.1 (4) |
C6—C5—H5B | 109.4 | C7—C12—H12A | 109.0 |
H5A—C5—H5B | 108.0 | C11—C12—H12A | 109.0 |
C5—C6—H6A | 109.5 | C7—C12—H12B | 109.0 |
C5—C6—H6B | 109.5 | C11—C12—H12B | 109.0 |
H6A—C6—H6B | 109.5 | H12A—C12—H12B | 107.8 |
C5—C6—H6C | 109.5 | ||
C3—Te—C1—C2 | −168.3 (4) | Br—C2—C7—C8 | −0.7 (6) |
Cl2—Te—C1—C2 | −80.0 (4) | C1—C2—C7—C12 | 1.7 (6) |
Cl1—Te—C1—C2 | 105.2 (4) | Br—C2—C7—C12 | −179.7 (3) |
Te—C1—C2—C7 | 178.8 (3) | C2—C7—C8—C9 | 177.6 (4) |
Te—C1—C2—Br | 0.2 (5) | C12—C7—C8—C9 | −3.5 (7) |
C1—Te—C3—C4 | −168.9 (3) | C7—C8—C9—C10 | −11.7 (7) |
Cl2—Te—C3—C4 | 103.5 (3) | C8—C9—C10—C11 | 42.3 (6) |
Cl1—Te—C3—C4 | −82.6 (3) | C9—C10—C11—C12 | −58.9 (6) |
Te—C3—C4—C5 | −178.3 (3) | C8—C7—C12—C11 | −12.0 (6) |
C3—C4—C5—C6 | −177.4 (4) | C2—C7—C12—C11 | 167.0 (4) |
C1—C2—C7—C8 | −179.3 (5) | C10—C11—C12—C7 | 42.8 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3a···Cl2i | 0.97 | 2.80 | 3.576 (5) | 138 |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C12H19BrCl2Te |
Mr | 441.67 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 98 |
a, b, c (Å) | 6.311 (3), 10.243 (6), 12.334 (9) |
α, β, γ (°) | 103.34 (2), 91.53 (2), 91.411 (14) |
V (Å3) | 775.1 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 4.82 |
Crystal size (mm) | 0.22 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Rigaku Saturn724 diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.360, 0.486 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7151, 3012, 2898 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.086, 1.12 |
No. of reflections | 3012 |
No. of parameters | 146 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.89, −0.59 |
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).
Te—Cl1 | 2.5381 (15) | Te—C1 | 2.092 (4) |
Te—Cl2 | 2.4859 (15) | Te—C3 | 2.143 (4) |
Cl1—Te—Cl2 | 172.48 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3a···Cl2i | 0.97 | 2.80 | 3.576 (5) | 138 |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
We thank the Brazilian agencies FAPESP (07/59404–2 to HAS), CNPq (306532/2009–3 to JZ-S, 308116/2010–0 to IC) and CAPES (808/2009 to JZ-S and IC) for financial support.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chemaxon (2010). Marvinsketch. http://www.chemaxon.com. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Guadagnin, R. C., Suganuma, C. A., Singh, F. V., Vieira, A. S., Cella, R. & Stefani, H. A. (2008). Tetrahedron Lett. 49, 4713–4716. Web of Science CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiekink, E. R. T. & Zukerman-Schpector, J. (2010). Coord. Chem. Rev. 254, 46–76. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zukerman-Schpector, J. & Haiduc, I. (2002). CrystEngComm, 4, 178–193. CAS Google Scholar
Zukerman-Schpector, J., Stefani, H. A., Guadagnin, R. C., Suganuma, A. & Tiekink, E. R. T. (2008). Z. Kristallogr. 223, 536–541. CAS Google Scholar
Zukerman-Schpector, J., Stefani, H. A., Silva, D. deO., Braga, A. L., Dornelles, L., Silveira, C. daC. & Caracelli, I. (1998). Acta Cryst. C54, 2007–2009. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, (I), was synthesized using a palladium-catalyzed cross-coupling reaction of a potassium aryltrifluoroborate salt with various (Z)-2-chloro vinylic tellurides (Guadagnin et al., 2008). Complementing these studies are crystallographic studies (Zukerman-Schpector et al. 1998; Zukerman-Schpector et al., 2008) focused upon determining coordination polyhedra and supramolecular aggregation patterns (Zukerman-Schpector & Haiduc, 2002; Tiekink & Zukerman-Schpector, 2010) which lead to the crystallographic characterization of (I).
The immediate coordination geometry about the TeIV atom in (I) is defined by two Cl atoms and two C atoms which, along with a stereochemically active lone pair of electrons, define a ψ-trigonal bi-pyramidal geometry, Table 1. In this description the lone pair is assumed to occupy a position in the equatorial plane, and the Cl atoms to be mutually trans. Additional Te···X interactions are evident and contribute to the distortion of the coordination geometry. Thus, an intramolecular Te···Br interaction [3.3444 (18) Å] is noted. In addition, there is an intermolecular Te···Cl contact [Te···Cl1i = 3.675 (3) Å, symmetry operation i: 1 - x, 1 - y, 1 - z]. The latter interaction explains the elongation of the Te—Cl1 bond compared to the Te—Cl2 bond, Table 1. Within the substituted ligand, the configuration about the C1═C2 bond [1.327 (6) Å] is Z. The cyclohexene ring adopts a half-chair conformation with puckering parameters: q2 = 0.364 (5) Å and q3 = -0.278 (5) Å, and amplitudes: Q = 0.458 (6) Å, θ = 127.4 (6) ° and ϕ2 = 30.2 (8) ° (Cremer & Pople, 1975).
The most prominent feature of the crystal packing are the aforementioned Te···Cl1 interactions. These lead to centrosymmetric dimers that assemble into chains along the b axis. These partially inter-digitate along the c axis. The layers thus formed in the bc plane, Fig. 2, are connected via C—H···Cl interactions, Table 2, along the a axis, Fig. 3.