metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m975-m976

Bis(μ-5-diiso­propyl­amino-1,2,3,4-tetra­zolido-κ2N2:N3)bis­­[(triiso­propyl­phosphane)copper(I)]

aDepartment of Chemistry, The Petroleum Institute, PO Box 2533, Abu Dhabi, United Arab Emirates, and bChemical Engineering Program, The Petroleum Institute, PO Box 2533, Abu Dhabi, United Arab Emirates
*Correspondence e-mail: ikobrsi@pi.ac.ae

(Received 20 February 2011; accepted 12 June 2011; online 25 June 2011)

In the binuclear centrosymmetric crystal structure of the title compound, [Cu2(C7H14N5)2(C9H21P)2], all atoms except those of the isopropyl groups are approximately co-planar. The Cu(II) atom is in a distorted trigonal–planar CuN2P coordination. Bond angles around the amino N atom suggest sp2 hybridization. Several intra­molecular C—H⋯N inter­actions are present involving tetra­zolate N atoms.

Related literature

For background to the coordination chemistry of anionic five-membered nitro­gen-containing heterocyclic ligands, see: Nief (2001[Nief, F. (2001). Eur. J. Inorg. Chem. pp. 891-904.]); Rottger et al. (1994[Rottger, D., Erker, G., Grehl, M. & Frolich, R. (1994). Organometallics, 13, 3897-3902.]); Hitzbleck et al. (2004[Hitzbleck, J., Deacon, G. B. & Ruhlandt-Senge, K. (2004). Angew. Chem. Int. Ed. 43, 5218-5220.]); Gust et al. (2001[Gust, K. R., Heeg, M. J. & Winter, C. H. (2001). Polyhedron, 20, 805-813.], 2002[Gust, K. R., Knox, J. E., Heeg, M. J., Schlegel, H. B. & Winter, C. H. (2002). Angew. Chem. Int. Ed. 41, 1591-1594.]); Dezelah et al. (2004[Dezelah, C. L. IV, El- Kadri, O. M., Heeg, M. J. & Winter, C. H. (2004). J. Mater. Chem. 14, 3167-3176.]); Sebe et al. (2005[Sebe, E., Guzei, I. A., Heeg, M. J., Liable-Sands, L. M., Rheingold, A. L. & Winter, C. H. (2005). Eur. J. Inorg. Chem. pp. 3955-3961.]); Vela et al. (2006[Vela, J., Vaddadi, S., Kingsley, S., Flaschenriem, C. J., Lachicotte, R. J., Cundari, T. R. & Holland, P. L. (2006). Angew. Chem. Int. Ed. 45, 1607-1611.]). Complexes containing these ligands have a strong tendency to form oligomeric and polymeric structures, see: Haasnoot (2000[Haasnoot, G. (2000). Coord. Chem. Rev. 200-202, 131-185.]); Zhang et al. (2006[Zhang, X.-M., Zhao, Y.-F., Wu, H.-S., Batten, S. R. & Ng, S. W. (2006). Dalton Trans. pp. 3170-3178.]); Dinca et al. (2006[Dinca, M., Yu, A. F. & Long, J. R. (2006). J. Am. Chem. Soc. 128, 8904-8913.]). η1 Coordination is the most commonly observed binding mode in monomeric complexes containing 1,2,4-triazolato and tetra­zolato ligands, see: Hunyh et al. (2003[Hunyh, M. H. V., Meyer, T. J., Labouriau, A., White, P. S. & Morris, D. E. (2003). J. Am. Chem. Soc. 125, 2828-2829.]); Jiang et al. (2004[Jiang, C., Yu, Z., Wang, S., Jiao, C., Li, J., Wang, Z. & Cui, Y. (2004). Eur. J. Inorg. Chem. pp. 3662-3667.]). Theoretical predictions regarding the high stability of the penta­zolate (N5) ion suggest that metal complexes containing this ligand might be stable enough to allow isolation, see: Frunzke et al. (2002[Frunzke, J., Lein, M. & Frenking, G. (2002). Organometallics, 21, 3351-3359.]); Lein et al. (2001[Lein, M., Frunzke, J., Timoshkin, A. & Frenking, G. (2001). Chem. Eur. J. 7, 4155-4163.]); Burke et al. (2001[Burke, L. A., Butler, R. N. & Stephens, J. C. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1679-1684.]). For our work on the synthesis, structures and mol­ecular orbital calculations of a series of Ba(alkyl­tetra­zol­ate)2(18-crown-6), K(alkyl­tetra­zolate)(18-crown-6), Ba(pen­ta­zolate)2(18-crown-6) and K(penta­zolate)(18-crown-6) complexes, which exhibited highly distorted tetra­zolato and penta­zolato ligand bonding, see: Kobrsi et al. (2005[Kobrsi, I., Knox, J. E., Heeg, M. J., Schlegel, H. B. & Winter, C. H. (2005). Inorg. Chem. 44, 4894-4896.], 2006[Kobrsi, I., Zheng, W., Knox, J. E., Heeg, M. J., Schlegel, H. B. & Winter, C. H. (2006). Inorg. Chem. 45, 8700-8710.]). For van der Waals radii, see: Allinger et al. (1968[Allinger, N. L., Hirsch, J. A., Miller, M. A., Tyminski, I. J. & Van-Catledge, F. A. (1968). J. Am. Chem. Soc. 90, 1199-1210.]); Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H14N5)2(C9H21P)2]

  • Mr = 784.02

  • Triclinic, [P \overline 1]

  • a = 7.3573 (6) Å

  • b = 10.8987 (8) Å

  • c = 12.7134 (9) Å

  • α = 94.273 (2)°

  • β = 96.993 (2)°

  • γ = 93.548 (2)°

  • V = 1006.43 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 100 K

  • 0.37 × 0.28 × 0.21 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.675, Tmax = 0.791

  • 17280 measured reflections

  • 4689 independent reflections

  • 4336 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.079

  • S = 1.05

  • 4689 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—P1 2.1957 (5)
Cu1—N2 1.9919 (14)
Cu1—N3 1.9938 (13)
P1—Cu1—N2 126.53 (4)
P1—Cu1—N3 126.52 (4)
N2—Cu1—N3 106.96 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N4i 0.98 2.58 3.182 (2) 119
C4—H4B⋯N4i 0.98 2.48 3.082 (2) 120
C5—H5⋯N1 1.00 2.32 2.784 (2) 107
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The coordination chemistry of anionic five-membered nitrogen heterocyclic ligands has generated considerable recent interest from several different perspectives (Nief 2001, Rottger et al. 1994, Hitzbleck et al. 2004, Gust et al. 2001, Dezelah et al. 2004, Sebe et al. 2005, Gust et al. 2002, Vela et al. 2006). Due to the presence of many nitrogen atoms in 1,2,4-triazolato and tetrazolato ligands, complexes containing these ligands have a strong tendency to form oligomeric and polymeric compounds through bridging ligand coordination modes (Haasnoot 2000, Zhang et al. 2006, Dinca et al. 2006). Furthermore, η1-coordination is the most commonly observed binding mode in monomeric complexes containing 1,2,4-triazolato and tetrazolato ligands (Jiang et al. 2004, Hunyh et al. 2003). Theoretical predictions regarding the high stability of the pentazolate (N5-) ion suggest that metal complexes containing this ligand might be stable enough to allow isolation (Frunzke et al. 2002, Lein et al. 2001, Burke et al. 2001).

Since complexes containing N5- ligands may be at the edge of isolability due to facile loss of dinitrogen, it is important to develop a knowledge base that allows the synthesis of soluble, tractable 1,2,4-triazolato and tetrazolato complexes. Presumably, the basic coordination chemistry of pentazolato ligands will share similarities with that of tetrazolato ligands.

Several years ago, we reported the synthesis, structure, and molecular orbital calculations of a series of barium complexes of the formula Ba(alkyltetrazolate)2(18-crown-6), potassium complexes of formula K(alkyltetrazolate)(18-crown-6), as well as calculations of Ba(pentazolate)2(18-crown-6) and K(pentazolate)(18-crown-6). These complexes contained highly distorted tetrazolato and pentazolato ligand bonding (Kobrsi et al. 2005, Kobrsi et al. 2006).

The present work demonstrates the stabilization of copper tetrazolate complexes using a 2-electron donor phosphane ligand. The copper complex crystallizes as a dimer having all nuclei except the isopropyl groups' in the same plane. The phosphane ligands are terminal, while each tetrazolate ligand bridges two Cu(I) centers.

While the work aimed for a monomeric complex, it can be concluded that the combination of isopropyl groups in the phosphane ligand and the tetrazolate ligand does not provide the necessary steric repulsion. However, enough steric hindrance is provided for the tetrazolate to coordinate in an N2—N3 bridging mode as opposed to the normally observed N1—N2 bridging mode.

The C1—N5—C5 angle of 120.30 (13)° and the C2—N5—C5 angle of 118.89 (13)° suggest that the N-atom of the amino group is sp2-hybridized, having its electrons donated to the aromatic ring, thus providing stability to the electron-deficient heterocycle.

Several intramolecular CH—N interactions exist between the tetrazolate's N1 and N4, and the hydrogen atoms on C9, C10, C13, C16. The CH—N distances range from 2.64 to 2.77 Å, whereas the sum of the van der Waals radii for N and H is about 2.7–3.0 Å (Bondi 1964, Allinger et al. 1968), which supports weak, attractive CH—N interactions. These types of interactions have been previously observed, where calculations have shown that these interactions provide stability to the heterocycle (Kobrsi et al. 2005, Kobrsi et al. 2006).

Related literature top

For background to the coordination chemistry of anionic five-membered nitrogen-containing heterocyclic ligands, see: Nief (2001); Rottger et al. (1994); Hitzbleck et al. (2004); Gust et al. (2001, 2002); Dezelah et al. (2004); Sebe et al. (2005); Vela et al. (2006). Complexes containing these ligands have a strong tendency to form oligomeric and polymeric compounds, see: Haasnoot (2000); Zhang et al. (2006); Dinca et al. (2006). η1 Coordination is the most commonly observed binding mode in monomeric complexes containing 1,2,4-triazolato and tetrazolato ligands, see: Hunyh et al. (2003); Jiang et al. (2004). Theoretical predictions regarding the high stability of the pentazolate (N5-) ion suggest that metal complexes containing this ligand might be stable enough to allow isolation, see: Frunzke et al. (2002); Lein et al. (2001); Burke et al. (2001). For our work on the synthesis, structures and molecular orbital calculations of a series of Ba(alkyltetrazolate)2(18-crown-6), K(alkyltetrazolate)(18-crown-6), Ba(pentazolate)2(18-crown-6) and K(pentazolate)(18-crown-6) complexes, which exhibited highly distorted tetrazolato and pentazolato ligand bonding, see: Kobrsi et al. (2005, 2006). For van der Waals radii, see: Allinger et al. (1968); Bondi (1964). AUTHOR: please note that this section must be subdivided. It is not acceptable to have "For related literature, see: " followed by all the references.

Experimental top

A 100 ml Schlenk flask was charged with copper(I) chloride (0.300 g, 3.06 mmol), 40 ml of THF, and a stir bar under an inert atmosphere of argon. Triisopropylphosphane (0.491 g, 3.06 mmol) was added to the mixture while stirring. After 2 h, lithium 5-diisopropylamino-1,2,3,4-tetrazolate (0.536 g, 3.06 mmol) was added, and the reaction mixture was allowed to stir for 18 h at room temperature. The solvent was then removed under vacuum, the products extracted in 30 ml of hexane, and the resulting mixture filtered through a pad of celite. Single crystals were grown from a supersaturated solution at 0°C in the form of white needles. Crystalline samples were mounted in sealed thin wall capillaries under nitrogen atmosphere for X-ray data collection.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction scheme for the preparation of the title compound.
[Figure 2] Fig. 2. A perspective view of title compound showing the labelling of the non-H atoms. Thermal ellipsoids are shown at 50% probability levels, except for H atoms.
Bis(µ-5-diisopropylamino-1,2,3,4-tetrazolido- κ2N2:N3)bis[(triisopropylphosphane)copper(I)] top
Crystal data top
[Cu2(C7H14N5)2(C9H21P)2]Z = 1
Mr = 784.02F(000) = 420
Triclinic, P1Dx = 1.294 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3573 (6) ÅCell parameters from 8161 reflections
b = 10.8987 (8) Åθ = 2.8–28.2°
c = 12.7134 (9) ŵ = 1.17 mm1
α = 94.273 (2)°T = 100 K
β = 96.993 (2)°Fragment, colorless
γ = 93.548 (2)°0.37 × 0.28 × 0.21 mm
V = 1006.43 (13) Å3
Data collection top
Bruker APEXII
diffractometer
4689 independent reflections
Radiation source: fine-focus sealed tube4336 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Bruker APEX2 scansθmax = 28.2°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.675, Tmax = 0.791k = 1414
17280 measured reflectionsl = 016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.4118P]
where P = (Fo2 + 2Fc2)/3
4689 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu2(C7H14N5)2(C9H21P)2]γ = 93.548 (2)°
Mr = 784.02V = 1006.43 (13) Å3
Triclinic, P1Z = 1
a = 7.3573 (6) ÅMo Kα radiation
b = 10.8987 (8) ŵ = 1.17 mm1
c = 12.7134 (9) ÅT = 100 K
α = 94.273 (2)°0.37 × 0.28 × 0.21 mm
β = 96.993 (2)°
Data collection top
Bruker APEXII
diffractometer
4689 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4336 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.791Rint = 0.042
17280 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.05Δρmax = 0.70 e Å3
4689 reflectionsΔρmin = 0.42 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.17941 (2)0.40943 (2)0.06357 (1)0.0175 (1)
P10.40113 (5)0.30668 (4)0.13812 (3)0.0178 (1)
N10.11874 (19)0.59579 (13)0.23257 (10)0.0229 (4)
N20.06116 (17)0.54829 (13)0.13256 (10)0.0204 (3)
N30.05711 (17)0.38081 (13)0.08583 (10)0.0200 (4)
N40.08031 (19)0.28290 (13)0.15304 (10)0.0245 (4)
N50.0599 (2)0.78110 (15)0.33143 (11)0.0314 (4)
C10.0307 (2)0.69968 (15)0.24179 (12)0.0231 (4)
C20.0740 (2)0.87242 (15)0.35075 (12)0.0238 (4)
C30.0506 (2)0.98014 (17)0.28292 (14)0.0302 (5)
C40.2723 (2)0.81977 (18)0.33976 (14)0.0316 (5)
C50.1839 (3)0.74562 (18)0.42230 (14)0.0354 (5)
C60.2998 (2)0.8553 (2)0.47853 (14)0.0341 (5)
C70.0810 (4)0.6751 (2)0.4980 (2)0.0591 (8)
C80.4926 (2)0.36010 (15)0.27701 (12)0.0246 (4)
C90.5791 (3)0.49258 (17)0.28358 (15)0.0335 (5)
C100.3424 (3)0.35205 (18)0.34983 (13)0.0324 (5)
C110.3136 (2)0.14523 (15)0.14860 (13)0.0227 (4)
C120.4392 (2)0.06264 (16)0.21261 (14)0.0265 (5)
C130.2369 (3)0.07915 (17)0.04102 (14)0.0315 (5)
C140.6088 (2)0.31413 (17)0.06842 (13)0.0261 (5)
C150.7777 (2)0.25545 (18)0.11955 (15)0.0300 (5)
C160.5643 (2)0.2698 (2)0.04897 (14)0.0360 (6)
H20.042100.906600.426400.0290*
H3A0.075900.950600.207500.0450*
H3B0.075501.017200.298200.0450*
H3C0.136401.042000.299300.0450*
H4A0.282400.752900.386700.0470*
H4B0.311600.787600.265900.0470*
H4C0.350800.884900.359600.0470*
H50.269600.688300.392800.0420*
H6A0.223700.906800.519100.0510*
H6B0.351900.903700.426000.0510*
H6C0.399400.826900.527100.0510*
H7A0.003400.606800.458000.0890*
H7B0.004100.730600.534000.0890*
H7C0.169300.642300.551000.0890*
H80.590300.305300.302000.0290*
H9A0.624200.520100.357800.0500*
H9B0.486700.547000.256000.0500*
H9C0.681600.495300.241100.0500*
H10A0.243400.403200.325200.0490*
H10B0.394000.381600.422700.0490*
H10C0.293500.266200.348400.0490*
H110.205000.152400.188300.0270*
H12A0.543000.044100.174000.0400*
H12B0.369800.014400.222500.0400*
H12C0.485100.105500.282200.0400*
H13A0.162300.004500.051800.0470*
H13B0.338400.056400.002000.0470*
H13C0.160500.134000.000100.0470*
H140.646900.404000.069800.0310*
H15A0.880800.271500.079300.0450*
H15B0.750400.166200.119100.0450*
H15C0.809900.291000.193100.0450*
H16A0.546900.179500.056600.0540*
H16B0.665800.296600.087100.0540*
H16C0.451500.304700.078700.0540*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0202 (1)0.0177 (1)0.0138 (1)0.0075 (1)0.0031 (1)0.0010 (1)
P10.0195 (2)0.0181 (2)0.0149 (2)0.0060 (1)0.0031 (1)0.0007 (1)
N10.0288 (7)0.0237 (7)0.0147 (6)0.0109 (5)0.0040 (5)0.0037 (5)
N20.0243 (6)0.0209 (7)0.0150 (5)0.0076 (5)0.0023 (4)0.0015 (5)
N30.0225 (6)0.0214 (7)0.0153 (6)0.0070 (5)0.0014 (4)0.0024 (5)
N40.0302 (7)0.0263 (7)0.0158 (6)0.0133 (5)0.0039 (5)0.0042 (5)
N50.0422 (8)0.0316 (8)0.0179 (6)0.0223 (6)0.0099 (6)0.0082 (6)
C10.0266 (7)0.0243 (8)0.0175 (7)0.0105 (6)0.0033 (5)0.0021 (6)
C20.0309 (8)0.0226 (8)0.0176 (7)0.0116 (6)0.0002 (6)0.0031 (6)
C30.0348 (9)0.0294 (9)0.0275 (8)0.0085 (7)0.0046 (7)0.0028 (7)
C40.0366 (9)0.0285 (9)0.0295 (8)0.0031 (7)0.0058 (7)0.0022 (7)
C50.0477 (10)0.0324 (10)0.0223 (8)0.0216 (8)0.0142 (7)0.0080 (7)
C60.0295 (8)0.0473 (12)0.0243 (8)0.0077 (8)0.0017 (6)0.0003 (8)
C70.0697 (15)0.0431 (13)0.0551 (14)0.0126 (11)0.0350 (12)0.0262 (11)
C80.0310 (8)0.0216 (8)0.0186 (7)0.0077 (6)0.0087 (6)0.0002 (6)
C90.0390 (9)0.0245 (9)0.0319 (9)0.0043 (7)0.0131 (7)0.0039 (7)
C100.0497 (10)0.0301 (10)0.0178 (7)0.0138 (8)0.0008 (7)0.0009 (7)
C110.0234 (7)0.0193 (7)0.0248 (7)0.0056 (6)0.0015 (6)0.0016 (6)
C120.0301 (8)0.0206 (8)0.0280 (8)0.0069 (6)0.0038 (6)0.0041 (6)
C130.0355 (9)0.0228 (9)0.0320 (9)0.0012 (7)0.0108 (7)0.0006 (7)
C140.0231 (7)0.0303 (9)0.0252 (8)0.0057 (6)0.0005 (6)0.0047 (7)
C150.0213 (7)0.0355 (10)0.0344 (9)0.0079 (7)0.0012 (6)0.0089 (7)
C160.0294 (8)0.0539 (13)0.0250 (8)0.0029 (8)0.0058 (7)0.0023 (8)
Geometric parameters (Å, º) top
Cu1—P12.1957 (5)C4—H4C0.9800
Cu1—N21.9919 (14)C5—H51.0000
Cu1—N31.9938 (13)C6—H6A0.9800
P1—C81.8490 (16)C6—H6B0.9800
P1—C111.8559 (17)C6—H6C0.9800
P1—C141.8578 (16)C7—H7A0.9800
N1—N21.3445 (18)C7—H7B0.9800
N1—C11.343 (2)C7—H7C0.9800
N2—N3i1.3164 (19)C8—H81.0000
N3—N41.3491 (19)C9—H9A0.9800
N4—C1i1.343 (2)C9—H9B0.9800
N5—C11.378 (2)C9—H9C0.9800
N5—C21.472 (2)C10—H10A0.9800
N5—C51.473 (2)C10—H10B0.9800
C2—C31.521 (2)C10—H10C0.9800
C2—C41.521 (2)C11—H111.0000
C5—C61.505 (3)C12—H12A0.9800
C5—C71.519 (3)C12—H12B0.9800
C8—C91.534 (3)C12—H12C0.9800
C8—C101.528 (3)C13—H13A0.9800
C11—C121.535 (2)C13—H13B0.9800
C11—C131.524 (2)C13—H13C0.9800
C14—C151.530 (2)C14—H141.0000
C14—C161.524 (2)C15—H15A0.9800
C2—H21.0000C15—H15B0.9800
C3—H3A0.9800C15—H15C0.9800
C3—H3B0.9800C16—H16A0.9800
C3—H3C0.9800C16—H16B0.9800
C4—H4A0.9800C16—H16C0.9800
C4—H4B0.9800
Cu1···H15Aii2.6200H5···N12.3200
N1···N4i2.235 (2)H6A···C22.8600
N2···N33.2030 (19)H6A···H22.1600
N2···N4i2.184 (2)H6A···H7B2.4700
N3···N23.2030 (19)H6A···H2viii2.6000
N3···N1i2.1779 (18)H6A···H3Cviii2.5000
N4···C4i3.082 (2)H6B···H4Cv2.4500
N4···C3i3.182 (2)H6C···H12Cix2.5100
N4···N1i2.235 (2)H7A···C13.0200
N1···H10A2.6400H7B···C22.9100
N1···H9B2.7800H7B···H22.4500
N1···H52.3200H7B···H6A2.4700
N1···H16Biii2.8500H7C···H8ix2.4200
N2···H16Biii2.6900H8···C122.9000
N3···H15Aii2.8900H8···C152.8700
N4···H13C2.6600H8···H12C2.2500
N4···H16C2.7700H8···H15C2.2600
N4···H3Ai2.5800H8···H7Cix2.4200
N4···H4Bi2.4800H9A···H4Av2.5700
C3···N4i3.182 (2)H9A···H10B2.4600
C4···N4i3.082 (2)H9B···N12.7800
C12···C153.530 (2)H9B···H10A2.5800
C13···C163.440 (3)H9C···C142.8200
C15···C123.530 (2)H9C···H142.3000
C16···C133.440 (3)H9C···H15C2.5300
C1···H7A3.0200H10A···N12.6400
C1···H4B2.7900H10A···H9B2.5800
C1···H3A2.9400H10B···H9A2.4600
C2···H7B2.9100H10C···C112.8000
C2···H6A2.8600H10C···C123.0400
C3···H11iv2.9900H10C···H112.3000
C6···H22.6300H10C···H12C2.4800
C7···H22.9000H11···C3vi2.9900
C7···H4A3.0700H11···C102.9200
C8···H15C2.8000H11···H3Bvi2.3400
C8···H12C2.7800H11···H10C2.3000
C9···H142.9300H12A···C152.9700
C9···H15C3.1000H12A···H13B2.5200
C9···H4Av3.0900H12A···H15B2.1800
C10···H112.9200H12B···H3Bvi2.5100
C10···H12C3.0500H12B···H13A2.5300
C11···H3Bvi3.0900H12C···C82.7800
C11···H10C2.8000H12C···C103.0500
C12···H3Bvi3.0400H12C···H82.2500
C12···H15B2.9100H12C···H10C2.4800
C12···H10C3.0400H12C···H6Cix2.5100
C12···H82.9000H13A···H12B2.5300
C13···H13Avii3.0800H13A···C13vii3.0800
C13···H16A2.9200H13A···H13Avii2.5800
C14···H9C2.8200H13B···C162.9300
C15···H82.8700H13B···H12A2.5200
C15···H12A2.9700H13B···H16A2.2100
C16···H13B2.9300H13C···N42.6600
H2···C62.6300H14···C92.9300
H2···C72.9000H14···H9C2.3000
H2···H6A2.1600H15A···Cu1v2.6200
H2···H7B2.4500H15A···N3v2.8900
H2···H6Aviii2.6000H15A···H16B2.5300
H3A···C12.9400H15B···C122.9100
H3A···N4i2.5800H15B···H12A2.1800
H3B···C11iv3.0900H15B···H16A2.5500
H3B···C12iv3.0400H15C···C82.8000
H3B···H11iv2.3400H15C···C93.1000
H3B···H12Biv2.5100H15C···H82.2600
H3C···H4C2.4800H15C···H9C2.5300
H3C···H6Aviii2.5000H16A···C132.9200
H4A···C73.0700H16A···H13B2.2100
H4A···C9ii3.0900H16A···H15B2.5500
H4A···H9Aii2.5700H16B···H15A2.5300
H4B···C12.7900H16B···N1iii2.8500
H4B···N4i2.4800H16B···N2iii2.6900
H4B···H16Ci2.5800H16C···N42.7700
H4C···H3C2.4800H16C···H4Bi2.5800
H4C···H6Bii2.4500
P1—Cu1—N2126.53 (4)C5—C6—H6B109.00
P1—Cu1—N3126.52 (4)C5—C6—H6C109.00
N2—Cu1—N3106.96 (5)H6A—C6—H6B109.00
Cu1—P1—C8116.09 (5)H6A—C6—H6C109.00
Cu1—P1—C11109.53 (5)H6B—C6—H6C109.00
Cu1—P1—C14112.78 (6)C5—C7—H7A110.00
C8—P1—C11103.02 (7)C5—C7—H7B110.00
C8—P1—C14103.05 (7)C5—C7—H7C109.00
C11—P1—C14111.91 (8)H7A—C7—H7B109.00
N2—N1—C1103.91 (12)H7A—C7—H7C109.00
Cu1—N2—N1122.29 (10)H7B—C7—H7C109.00
Cu1—N2—N3i126.91 (10)P1—C8—H8108.00
N1—N2—N3i109.86 (13)C9—C8—H8108.00
Cu1—N3—N4124.44 (10)C10—C8—H8108.00
Cu1—N3—N2i125.54 (10)C8—C9—H9A110.00
N2i—N3—N4110.00 (12)C8—C9—H9B109.00
N3—N4—C1i103.64 (13)C8—C9—H9C109.00
C1—N5—C2120.27 (13)H9A—C9—H9B109.00
C1—N5—C5117.08 (15)H9A—C9—H9C109.00
C2—N5—C5118.88 (14)H9B—C9—H9C109.00
N1—C1—N5122.80 (14)C8—C10—H10A109.00
N1—C1—N4i112.59 (14)C8—C10—H10B109.00
N4i—C1—N5124.55 (15)C8—C10—H10C109.00
N5—C2—C3110.45 (13)H10A—C10—H10B109.00
N5—C2—C4114.69 (14)H10A—C10—H10C109.00
C3—C2—C4112.02 (13)H10B—C10—H10C109.00
N5—C5—C6111.51 (16)P1—C11—H11105.00
N5—C5—C7111.98 (19)C12—C11—H11105.00
C6—C5—C7112.07 (16)C13—C11—H11105.00
P1—C8—C9110.57 (11)C11—C12—H12A109.00
P1—C8—C10111.09 (11)C11—C12—H12B109.00
C9—C8—C10110.22 (14)C11—C12—H12C109.00
P1—C11—C12117.76 (11)H12A—C12—H12B109.00
P1—C11—C13112.62 (12)H12A—C12—H12C109.00
C12—C11—C13110.39 (14)H12B—C12—H12C109.00
P1—C14—C15117.04 (12)C11—C13—H13A109.00
P1—C14—C16111.77 (11)C11—C13—H13B110.00
C15—C14—C16111.12 (14)C11—C13—H13C109.00
N5—C2—H2106.00H13A—C13—H13B109.00
C3—C2—H2106.00H13A—C13—H13C109.00
C4—C2—H2106.00H13B—C13—H13C109.00
C2—C3—H3A109.00P1—C14—H14105.00
C2—C3—H3B109.00C15—C14—H14105.00
C2—C3—H3C109.00C16—C14—H14105.00
H3A—C3—H3B109.00C14—C15—H15A109.00
H3A—C3—H3C109.00C14—C15—H15B109.00
H3B—C3—H3C110.00C14—C15—H15C109.00
C2—C4—H4A109.00H15A—C15—H15B110.00
C2—C4—H4B109.00H15A—C15—H15C110.00
C2—C4—H4C109.00H15B—C15—H15C109.00
H4A—C4—H4B110.00C14—C16—H16A109.00
H4A—C4—H4C109.00C14—C16—H16B109.00
H4B—C4—H4C109.00C14—C16—H16C109.00
N5—C5—H5107.00H16A—C16—H16B109.00
C6—C5—H5107.00H16A—C16—H16C109.00
C7—C5—H5107.00H16B—C16—H16C110.00
C5—C6—H6A110.00
N2—Cu1—P1—C82.92 (8)C8—P1—C14—C1548.70 (15)
N2—Cu1—P1—C11113.17 (7)C8—P1—C14—C16178.45 (13)
N2—Cu1—P1—C14121.49 (8)C11—P1—C14—C1561.33 (15)
N3—Cu1—P1—C8177.48 (7)C11—P1—C14—C1668.43 (15)
N3—Cu1—P1—C1166.43 (7)C1—N1—N2—Cu1168.56 (10)
N3—Cu1—P1—C1458.91 (8)C1—N1—N2—N3i1.07 (16)
P1—Cu1—N2—N14.13 (14)N2—N1—C1—N5176.03 (14)
P1—Cu1—N2—N3i171.90 (10)N2—N1—C1—N4i1.06 (18)
N3—Cu1—N2—N1176.21 (11)Cu1—N2—N3i—Cu1i9.93 (19)
N3—Cu1—N2—N3i8.43 (14)Cu1—N2—N3i—N4i168.30 (10)
P1—Cu1—N3—N49.97 (14)N1—N2—N3i—Cu1i178.95 (10)
P1—Cu1—N3—N2i172.05 (10)N1—N2—N3i—N4i0.73 (17)
N2—Cu1—N3—N4169.69 (12)Cu1—N3—N4—C1i178.31 (10)
N2—Cu1—N3—N2i8.29 (14)N2i—N3—N4—C1i0.06 (16)
Cu1—P1—C8—C962.53 (13)N3—N4—C1i—N1i0.65 (17)
Cu1—P1—C8—C1060.18 (13)N3—N4—C1i—N5i176.39 (15)
C11—P1—C8—C9177.79 (12)C2—N5—C1—N1162.27 (15)
C11—P1—C8—C1059.51 (13)C2—N5—C1—N4i21.0 (2)
C14—P1—C8—C961.25 (14)C5—N5—C1—N14.4 (2)
C14—P1—C8—C10176.04 (12)C5—N5—C1—N4i178.88 (16)
Cu1—P1—C11—C12171.57 (10)C1—N5—C2—C378.37 (18)
Cu1—P1—C11—C1358.21 (13)C1—N5—C2—C449.4 (2)
C8—P1—C11—C1247.46 (13)C5—N5—C2—C3124.14 (16)
C8—P1—C11—C13177.68 (12)C5—N5—C2—C4108.15 (18)
C14—P1—C11—C1262.59 (14)C1—N5—C5—C6142.57 (15)
C14—P1—C11—C1367.63 (14)C1—N5—C5—C790.96 (19)
Cu1—P1—C14—C15174.64 (11)C2—N5—C5—C659.2 (2)
Cu1—P1—C14—C1655.61 (14)C2—N5—C5—C767.3 (2)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x+1, y, z; (vi) x, y1, z; (vii) x, y, z; (viii) x, y+2, z+1; (ix) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N4i0.982.583.182 (2)119
C4—H4B···N4i0.982.483.082 (2)120
C5—H5···N11.002.322.784 (2)107
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C7H14N5)2(C9H21P)2]
Mr784.02
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3573 (6), 10.8987 (8), 12.7134 (9)
α, β, γ (°)94.273 (2), 96.993 (2), 93.548 (2)
V3)1006.43 (13)
Z1
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.37 × 0.28 × 0.21
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.675, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
17280, 4689, 4336
Rint0.042
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.05
No. of reflections4689
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.42

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—P12.1957 (5)Cu1—N31.9938 (13)
Cu1—N21.9919 (14)
P1—Cu1—N2126.53 (4)N2—Cu1—N3106.96 (5)
P1—Cu1—N3126.52 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N4i0.982.583.182 (2)119
C4—H4B···N4i0.982.483.082 (2)120
C5—H5···N11.002.322.784 (2)107
Symmetry code: (i) x, y+1, z.
 

Footnotes

On leave from the Faculty of Engineering, Ain Shams University, Cairo, Egypt.

Acknowledgements

The authors would like to acknowledge Professor Charles H. Winter for his support.

References

First citationAllinger, N. L., Hirsch, J. A., Miller, M. A., Tyminski, I. J. & Van-Catledge, F. A. (1968). J. Am. Chem. Soc. 90, 1199–1210.  CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurke, L. A., Butler, R. N. & Stephens, J. C. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1679–1684.  CrossRef Google Scholar
First citationDezelah, C. L. IV, El- Kadri, O. M., Heeg, M. J. & Winter, C. H. (2004). J. Mater. Chem. 14, 3167–3176.  CAS Google Scholar
First citationDinca, M., Yu, A. F. & Long, J. R. (2006). J. Am. Chem. Soc. 128, 8904–8913.  Web of Science PubMed CAS Google Scholar
First citationFrunzke, J., Lein, M. & Frenking, G. (2002). Organometallics, 21, 3351–3359.  CrossRef CAS Google Scholar
First citationGust, K. R., Heeg, M. J. & Winter, C. H. (2001). Polyhedron, 20, 805–813.  CrossRef CAS Google Scholar
First citationGust, K. R., Knox, J. E., Heeg, M. J., Schlegel, H. B. & Winter, C. H. (2002). Angew. Chem. Int. Ed. 41, 1591–1594.  CrossRef CAS Google Scholar
First citationHaasnoot, G. (2000). Coord. Chem. Rev. 200–202, 131–185.  CrossRef CAS Google Scholar
First citationHitzbleck, J., Deacon, G. B. & Ruhlandt-Senge, K. (2004). Angew. Chem. Int. Ed. 43, 5218–5220.  CrossRef CAS Google Scholar
First citationHunyh, M. H. V., Meyer, T. J., Labouriau, A., White, P. S. & Morris, D. E. (2003). J. Am. Chem. Soc. 125, 2828–2829.  Web of Science PubMed Google Scholar
First citationJiang, C., Yu, Z., Wang, S., Jiao, C., Li, J., Wang, Z. & Cui, Y. (2004). Eur. J. Inorg. Chem. pp. 3662–3667.  Google Scholar
First citationKobrsi, I., Knox, J. E., Heeg, M. J., Schlegel, H. B. & Winter, C. H. (2005). Inorg. Chem. 44, 4894–4896.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKobrsi, I., Zheng, W., Knox, J. E., Heeg, M. J., Schlegel, H. B. & Winter, C. H. (2006). Inorg. Chem. 45, 8700–8710.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLein, M., Frunzke, J., Timoshkin, A. & Frenking, G. (2001). Chem. Eur. J. 7, 4155–4163.  CrossRef PubMed CAS Google Scholar
First citationNief, F. (2001). Eur. J. Inorg. Chem. pp. 891–904.  CrossRef Google Scholar
First citationRottger, D., Erker, G., Grehl, M. & Frolich, R. (1994). Organometallics, 13, 3897–3902.  Google Scholar
First citationSebe, E., Guzei, I. A., Heeg, M. J., Liable-Sands, L. M., Rheingold, A. L. & Winter, C. H. (2005). Eur. J. Inorg. Chem. pp. 3955–3961.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVela, J., Vaddadi, S., Kingsley, S., Flaschenriem, C. J., Lachicotte, R. J., Cundari, T. R. & Holland, P. L. (2006). Angew. Chem. Int. Ed. 45, 1607–1611.  CrossRef CAS Google Scholar
First citationZhang, X.-M., Zhao, Y.-F., Wu, H.-S., Batten, S. R. & Ng, S. W. (2006). Dalton Trans. pp. 3170–3178.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m975-m976
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds