metal-organic compounds
Bis(μ-5-diisopropylamino-1,2,3,4-tetrazolido-κ2N2:N3)bis[(triisopropylphosphane)copper(I)]
aDepartment of Chemistry, The Petroleum Institute, PO Box 2533, Abu Dhabi, United Arab Emirates, and bChemical Engineering Program, The Petroleum Institute, PO Box 2533, Abu Dhabi, United Arab Emirates
*Correspondence e-mail: ikobrsi@pi.ac.ae
In the binuclear centrosymmetric 2(C7H14N5)2(C9H21P)2], all atoms except those of the isopropyl groups are approximately co-planar. The Cu(II) atom is in a distorted trigonal–planar CuN2P coordination. Bond angles around the amino N atom suggest sp2 Several intramolecular C—H⋯N interactions are present involving tetrazolate N atoms.
of the title compound, [CuRelated literature
For background to the coordination chemistry of anionic five-membered nitrogen-containing heterocyclic ligands, see: Nief (2001); Rottger et al. (1994); Hitzbleck et al. (2004); Gust et al. (2001, 2002); Dezelah et al. (2004); Sebe et al. (2005); Vela et al. (2006). Complexes containing these ligands have a strong tendency to form oligomeric and polymeric structures, see: Haasnoot (2000); Zhang et al. (2006); Dinca et al. (2006). η1 Coordination is the most commonly observed binding mode in monomeric complexes containing 1,2,4-triazolato and tetrazolato ligands, see: Hunyh et al. (2003); Jiang et al. (2004). Theoretical predictions regarding the high stability of the pentazolate (N5−) ion suggest that metal complexes containing this ligand might be stable enough to allow isolation, see: Frunzke et al. (2002); Lein et al. (2001); Burke et al. (2001). For our work on the synthesis, structures and molecular orbital calculations of a series of Ba(alkyltetrazolate)2(18-crown-6), K(alkyltetrazolate)(18-crown-6), Ba(pentazolate)2(18-crown-6) and K(pentazolate)(18-crown-6) complexes, which exhibited highly distorted tetrazolato and pentazolato ligand bonding, see: Kobrsi et al. (2005, 2006). For van der Waals radii, see: Allinger et al. (1968); Bondi (1964).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).
Supporting information
10.1107/S1600536811022719/hp2003sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811022719/hp2003Isup2.hkl
A 100 ml Schlenk flask was charged with copper(I) chloride (0.300 g, 3.06 mmol), 40 ml of THF, and a stir bar under an inert atmosphere of argon. Triisopropylphosphane (0.491 g, 3.06 mmol) was added to the mixture while stirring. After 2 h, lithium 5-diisopropylamino-1,2,3,4-tetrazolate (0.536 g, 3.06 mmol) was added, and the reaction mixture was allowed to stir for 18 h at room temperature. The solvent was then removed under vacuum, the products extracted in 30 ml of hexane, and the resulting mixture filtered through a pad of celite. Single crystals were grown from a supersaturated solution at 0°C in the form of white needles. Crystalline samples were mounted in sealed thin wall capillaries under nitrogen atmosphere for X-ray data collection.
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).[Cu2(C7H14N5)2(C9H21P)2] | Z = 1 |
Mr = 784.02 | F(000) = 420 |
Triclinic, P1 | Dx = 1.294 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3573 (6) Å | Cell parameters from 8161 reflections |
b = 10.8987 (8) Å | θ = 2.8–28.2° |
c = 12.7134 (9) Å | µ = 1.17 mm−1 |
α = 94.273 (2)° | T = 100 K |
β = 96.993 (2)° | Fragment, colorless |
γ = 93.548 (2)° | 0.37 × 0.28 × 0.21 mm |
V = 1006.43 (13) Å3 |
Bruker APEXII diffractometer | 4689 independent reflections |
Radiation source: fine-focus sealed tube | 4336 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Bruker APEX2 scans | θmax = 28.2°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −9→9 |
Tmin = 0.675, Tmax = 0.791 | k = −14→14 |
17280 measured reflections | l = 0→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0402P)2 + 0.4118P] where P = (Fo2 + 2Fc2)/3 |
4689 reflections | (Δ/σ)max = 0.001 |
218 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
[Cu2(C7H14N5)2(C9H21P)2] | γ = 93.548 (2)° |
Mr = 784.02 | V = 1006.43 (13) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.3573 (6) Å | Mo Kα radiation |
b = 10.8987 (8) Å | µ = 1.17 mm−1 |
c = 12.7134 (9) Å | T = 100 K |
α = 94.273 (2)° | 0.37 × 0.28 × 0.21 mm |
β = 96.993 (2)° |
Bruker APEXII diffractometer | 4689 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 4336 reflections with I > 2σ(I) |
Tmin = 0.675, Tmax = 0.791 | Rint = 0.042 |
17280 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.70 e Å−3 |
4689 reflections | Δρmin = −0.42 e Å−3 |
218 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.17941 (2) | 0.40943 (2) | 0.06357 (1) | 0.0175 (1) | |
P1 | 0.40113 (5) | 0.30668 (4) | 0.13812 (3) | 0.0178 (1) | |
N1 | 0.11874 (19) | 0.59579 (13) | 0.23257 (10) | 0.0229 (4) | |
N2 | 0.06116 (17) | 0.54829 (13) | 0.13256 (10) | 0.0204 (3) | |
N3 | 0.05711 (17) | 0.38081 (13) | −0.08583 (10) | 0.0200 (4) | |
N4 | 0.08031 (19) | 0.28290 (13) | −0.15304 (10) | 0.0245 (4) | |
N5 | 0.0599 (2) | 0.78110 (15) | 0.33143 (11) | 0.0314 (4) | |
C1 | 0.0307 (2) | 0.69968 (15) | 0.24179 (12) | 0.0231 (4) | |
C2 | −0.0740 (2) | 0.87242 (15) | 0.35075 (12) | 0.0238 (4) | |
C3 | −0.0506 (2) | 0.98014 (17) | 0.28292 (14) | 0.0302 (5) | |
C4 | −0.2723 (2) | 0.81977 (18) | 0.33976 (14) | 0.0316 (5) | |
C5 | 0.1839 (3) | 0.74562 (18) | 0.42230 (14) | 0.0354 (5) | |
C6 | 0.2998 (2) | 0.8553 (2) | 0.47853 (14) | 0.0341 (5) | |
C7 | 0.0810 (4) | 0.6751 (2) | 0.4980 (2) | 0.0591 (8) | |
C8 | 0.4926 (2) | 0.36010 (15) | 0.27701 (12) | 0.0246 (4) | |
C9 | 0.5791 (3) | 0.49258 (17) | 0.28358 (15) | 0.0335 (5) | |
C10 | 0.3424 (3) | 0.35205 (18) | 0.34983 (13) | 0.0324 (5) | |
C11 | 0.3136 (2) | 0.14523 (15) | 0.14860 (13) | 0.0227 (4) | |
C12 | 0.4392 (2) | 0.06264 (16) | 0.21261 (14) | 0.0265 (5) | |
C13 | 0.2369 (3) | 0.07915 (17) | 0.04102 (14) | 0.0315 (5) | |
C14 | 0.6088 (2) | 0.31413 (17) | 0.06842 (13) | 0.0261 (5) | |
C15 | 0.7777 (2) | 0.25545 (18) | 0.11955 (15) | 0.0300 (5) | |
C16 | 0.5643 (2) | 0.2698 (2) | −0.04897 (14) | 0.0360 (6) | |
H2 | −0.04210 | 0.90660 | 0.42640 | 0.0290* | |
H3A | −0.07590 | 0.95060 | 0.20750 | 0.0450* | |
H3B | 0.07550 | 1.01720 | 0.29820 | 0.0450* | |
H3C | −0.13640 | 1.04200 | 0.29930 | 0.0450* | |
H4A | −0.28240 | 0.75290 | 0.38670 | 0.0470* | |
H4B | −0.31160 | 0.78760 | 0.26590 | 0.0470* | |
H4C | −0.35080 | 0.88490 | 0.35960 | 0.0470* | |
H5 | 0.26960 | 0.68830 | 0.39280 | 0.0420* | |
H6A | 0.22370 | 0.90680 | 0.51910 | 0.0510* | |
H6B | 0.35190 | 0.90370 | 0.42600 | 0.0510* | |
H6C | 0.39940 | 0.82690 | 0.52710 | 0.0510* | |
H7A | 0.00340 | 0.60680 | 0.45800 | 0.0890* | |
H7B | 0.00410 | 0.73060 | 0.53400 | 0.0890* | |
H7C | 0.16930 | 0.64230 | 0.55100 | 0.0890* | |
H8 | 0.59030 | 0.30530 | 0.30200 | 0.0290* | |
H9A | 0.62420 | 0.52010 | 0.35780 | 0.0500* | |
H9B | 0.48670 | 0.54700 | 0.25600 | 0.0500* | |
H9C | 0.68160 | 0.49530 | 0.24110 | 0.0500* | |
H10A | 0.24340 | 0.40320 | 0.32520 | 0.0490* | |
H10B | 0.39400 | 0.38160 | 0.42270 | 0.0490* | |
H10C | 0.29350 | 0.26620 | 0.34840 | 0.0490* | |
H11 | 0.20500 | 0.15240 | 0.18830 | 0.0270* | |
H12A | 0.54300 | 0.04410 | 0.17400 | 0.0400* | |
H12B | 0.36980 | −0.01440 | 0.22250 | 0.0400* | |
H12C | 0.48510 | 0.10550 | 0.28220 | 0.0400* | |
H13A | 0.16230 | 0.00450 | 0.05180 | 0.0470* | |
H13B | 0.33840 | 0.05640 | 0.00200 | 0.0470* | |
H13C | 0.16050 | 0.13400 | 0.00010 | 0.0470* | |
H14 | 0.64690 | 0.40400 | 0.06980 | 0.0310* | |
H15A | 0.88080 | 0.27150 | 0.07930 | 0.0450* | |
H15B | 0.75040 | 0.16620 | 0.11910 | 0.0450* | |
H15C | 0.80990 | 0.29100 | 0.19310 | 0.0450* | |
H16A | 0.54690 | 0.17950 | −0.05660 | 0.0540* | |
H16B | 0.66580 | 0.29660 | −0.08710 | 0.0540* | |
H16C | 0.45150 | 0.30470 | −0.07870 | 0.0540* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0202 (1) | 0.0177 (1) | 0.0138 (1) | 0.0075 (1) | −0.0031 (1) | −0.0010 (1) |
P1 | 0.0195 (2) | 0.0181 (2) | 0.0149 (2) | 0.0060 (1) | −0.0031 (1) | 0.0007 (1) |
N1 | 0.0288 (7) | 0.0237 (7) | 0.0147 (6) | 0.0109 (5) | −0.0040 (5) | −0.0037 (5) |
N2 | 0.0243 (6) | 0.0209 (7) | 0.0150 (5) | 0.0076 (5) | −0.0023 (4) | −0.0015 (5) |
N3 | 0.0225 (6) | 0.0214 (7) | 0.0153 (6) | 0.0070 (5) | −0.0014 (4) | −0.0024 (5) |
N4 | 0.0302 (7) | 0.0263 (7) | 0.0158 (6) | 0.0133 (5) | −0.0039 (5) | −0.0042 (5) |
N5 | 0.0422 (8) | 0.0316 (8) | 0.0179 (6) | 0.0223 (6) | −0.0099 (6) | −0.0082 (6) |
C1 | 0.0266 (7) | 0.0243 (8) | 0.0175 (7) | 0.0105 (6) | −0.0033 (5) | −0.0021 (6) |
C2 | 0.0309 (8) | 0.0226 (8) | 0.0176 (7) | 0.0116 (6) | 0.0002 (6) | −0.0031 (6) |
C3 | 0.0348 (9) | 0.0294 (9) | 0.0275 (8) | 0.0085 (7) | 0.0046 (7) | 0.0028 (7) |
C4 | 0.0366 (9) | 0.0285 (9) | 0.0295 (8) | 0.0031 (7) | 0.0058 (7) | −0.0022 (7) |
C5 | 0.0477 (10) | 0.0324 (10) | 0.0223 (8) | 0.0216 (8) | −0.0142 (7) | −0.0080 (7) |
C6 | 0.0295 (8) | 0.0473 (12) | 0.0243 (8) | 0.0077 (8) | −0.0017 (6) | 0.0003 (8) |
C7 | 0.0697 (15) | 0.0431 (13) | 0.0551 (14) | −0.0126 (11) | −0.0350 (12) | 0.0262 (11) |
C8 | 0.0310 (8) | 0.0216 (8) | 0.0186 (7) | 0.0077 (6) | −0.0087 (6) | −0.0002 (6) |
C9 | 0.0390 (9) | 0.0245 (9) | 0.0319 (9) | 0.0043 (7) | −0.0131 (7) | −0.0039 (7) |
C10 | 0.0497 (10) | 0.0301 (10) | 0.0178 (7) | 0.0138 (8) | 0.0008 (7) | 0.0009 (7) |
C11 | 0.0234 (7) | 0.0193 (7) | 0.0248 (7) | 0.0056 (6) | −0.0015 (6) | 0.0016 (6) |
C12 | 0.0301 (8) | 0.0206 (8) | 0.0280 (8) | 0.0069 (6) | −0.0038 (6) | 0.0041 (6) |
C13 | 0.0355 (9) | 0.0228 (9) | 0.0320 (9) | 0.0012 (7) | −0.0108 (7) | −0.0006 (7) |
C14 | 0.0231 (7) | 0.0303 (9) | 0.0252 (8) | 0.0057 (6) | 0.0005 (6) | 0.0047 (7) |
C15 | 0.0213 (7) | 0.0355 (10) | 0.0344 (9) | 0.0079 (7) | 0.0012 (6) | 0.0089 (7) |
C16 | 0.0294 (8) | 0.0539 (13) | 0.0250 (8) | 0.0029 (8) | 0.0058 (7) | 0.0023 (8) |
Cu1—P1 | 2.1957 (5) | C4—H4C | 0.9800 |
Cu1—N2 | 1.9919 (14) | C5—H5 | 1.0000 |
Cu1—N3 | 1.9938 (13) | C6—H6A | 0.9800 |
P1—C8 | 1.8490 (16) | C6—H6B | 0.9800 |
P1—C11 | 1.8559 (17) | C6—H6C | 0.9800 |
P1—C14 | 1.8578 (16) | C7—H7A | 0.9800 |
N1—N2 | 1.3445 (18) | C7—H7B | 0.9800 |
N1—C1 | 1.343 (2) | C7—H7C | 0.9800 |
N2—N3i | 1.3164 (19) | C8—H8 | 1.0000 |
N3—N4 | 1.3491 (19) | C9—H9A | 0.9800 |
N4—C1i | 1.343 (2) | C9—H9B | 0.9800 |
N5—C1 | 1.378 (2) | C9—H9C | 0.9800 |
N5—C2 | 1.472 (2) | C10—H10A | 0.9800 |
N5—C5 | 1.473 (2) | C10—H10B | 0.9800 |
C2—C3 | 1.521 (2) | C10—H10C | 0.9800 |
C2—C4 | 1.521 (2) | C11—H11 | 1.0000 |
C5—C6 | 1.505 (3) | C12—H12A | 0.9800 |
C5—C7 | 1.519 (3) | C12—H12B | 0.9800 |
C8—C9 | 1.534 (3) | C12—H12C | 0.9800 |
C8—C10 | 1.528 (3) | C13—H13A | 0.9800 |
C11—C12 | 1.535 (2) | C13—H13B | 0.9800 |
C11—C13 | 1.524 (2) | C13—H13C | 0.9800 |
C14—C15 | 1.530 (2) | C14—H14 | 1.0000 |
C14—C16 | 1.524 (2) | C15—H15A | 0.9800 |
C2—H2 | 1.0000 | C15—H15B | 0.9800 |
C3—H3A | 0.9800 | C15—H15C | 0.9800 |
C3—H3B | 0.9800 | C16—H16A | 0.9800 |
C3—H3C | 0.9800 | C16—H16B | 0.9800 |
C4—H4A | 0.9800 | C16—H16C | 0.9800 |
C4—H4B | 0.9800 | ||
Cu1···H15Aii | 2.6200 | H5···N1 | 2.3200 |
N1···N4i | 2.235 (2) | H6A···C2 | 2.8600 |
N2···N3 | 3.2030 (19) | H6A···H2 | 2.1600 |
N2···N4i | 2.184 (2) | H6A···H7B | 2.4700 |
N3···N2 | 3.2030 (19) | H6A···H2viii | 2.6000 |
N3···N1i | 2.1779 (18) | H6A···H3Cviii | 2.5000 |
N4···C4i | 3.082 (2) | H6B···H4Cv | 2.4500 |
N4···C3i | 3.182 (2) | H6C···H12Cix | 2.5100 |
N4···N1i | 2.235 (2) | H7A···C1 | 3.0200 |
N1···H10A | 2.6400 | H7B···C2 | 2.9100 |
N1···H9B | 2.7800 | H7B···H2 | 2.4500 |
N1···H5 | 2.3200 | H7B···H6A | 2.4700 |
N1···H16Biii | 2.8500 | H7C···H8ix | 2.4200 |
N2···H16Biii | 2.6900 | H8···C12 | 2.9000 |
N3···H15Aii | 2.8900 | H8···C15 | 2.8700 |
N4···H13C | 2.6600 | H8···H12C | 2.2500 |
N4···H16C | 2.7700 | H8···H15C | 2.2600 |
N4···H3Ai | 2.5800 | H8···H7Cix | 2.4200 |
N4···H4Bi | 2.4800 | H9A···H4Av | 2.5700 |
C3···N4i | 3.182 (2) | H9A···H10B | 2.4600 |
C4···N4i | 3.082 (2) | H9B···N1 | 2.7800 |
C12···C15 | 3.530 (2) | H9B···H10A | 2.5800 |
C13···C16 | 3.440 (3) | H9C···C14 | 2.8200 |
C15···C12 | 3.530 (2) | H9C···H14 | 2.3000 |
C16···C13 | 3.440 (3) | H9C···H15C | 2.5300 |
C1···H7A | 3.0200 | H10A···N1 | 2.6400 |
C1···H4B | 2.7900 | H10A···H9B | 2.5800 |
C1···H3A | 2.9400 | H10B···H9A | 2.4600 |
C2···H7B | 2.9100 | H10C···C11 | 2.8000 |
C2···H6A | 2.8600 | H10C···C12 | 3.0400 |
C3···H11iv | 2.9900 | H10C···H11 | 2.3000 |
C6···H2 | 2.6300 | H10C···H12C | 2.4800 |
C7···H2 | 2.9000 | H11···C3vi | 2.9900 |
C7···H4A | 3.0700 | H11···C10 | 2.9200 |
C8···H15C | 2.8000 | H11···H3Bvi | 2.3400 |
C8···H12C | 2.7800 | H11···H10C | 2.3000 |
C9···H14 | 2.9300 | H12A···C15 | 2.9700 |
C9···H15C | 3.1000 | H12A···H13B | 2.5200 |
C9···H4Av | 3.0900 | H12A···H15B | 2.1800 |
C10···H11 | 2.9200 | H12B···H3Bvi | 2.5100 |
C10···H12C | 3.0500 | H12B···H13A | 2.5300 |
C11···H3Bvi | 3.0900 | H12C···C8 | 2.7800 |
C11···H10C | 2.8000 | H12C···C10 | 3.0500 |
C12···H3Bvi | 3.0400 | H12C···H8 | 2.2500 |
C12···H15B | 2.9100 | H12C···H10C | 2.4800 |
C12···H10C | 3.0400 | H12C···H6Cix | 2.5100 |
C12···H8 | 2.9000 | H13A···H12B | 2.5300 |
C13···H13Avii | 3.0800 | H13A···C13vii | 3.0800 |
C13···H16A | 2.9200 | H13A···H13Avii | 2.5800 |
C14···H9C | 2.8200 | H13B···C16 | 2.9300 |
C15···H8 | 2.8700 | H13B···H12A | 2.5200 |
C15···H12A | 2.9700 | H13B···H16A | 2.2100 |
C16···H13B | 2.9300 | H13C···N4 | 2.6600 |
H2···C6 | 2.6300 | H14···C9 | 2.9300 |
H2···C7 | 2.9000 | H14···H9C | 2.3000 |
H2···H6A | 2.1600 | H15A···Cu1v | 2.6200 |
H2···H7B | 2.4500 | H15A···N3v | 2.8900 |
H2···H6Aviii | 2.6000 | H15A···H16B | 2.5300 |
H3A···C1 | 2.9400 | H15B···C12 | 2.9100 |
H3A···N4i | 2.5800 | H15B···H12A | 2.1800 |
H3B···C11iv | 3.0900 | H15B···H16A | 2.5500 |
H3B···C12iv | 3.0400 | H15C···C8 | 2.8000 |
H3B···H11iv | 2.3400 | H15C···C9 | 3.1000 |
H3B···H12Biv | 2.5100 | H15C···H8 | 2.2600 |
H3C···H4C | 2.4800 | H15C···H9C | 2.5300 |
H3C···H6Aviii | 2.5000 | H16A···C13 | 2.9200 |
H4A···C7 | 3.0700 | H16A···H13B | 2.2100 |
H4A···C9ii | 3.0900 | H16A···H15B | 2.5500 |
H4A···H9Aii | 2.5700 | H16B···H15A | 2.5300 |
H4B···C1 | 2.7900 | H16B···N1iii | 2.8500 |
H4B···N4i | 2.4800 | H16B···N2iii | 2.6900 |
H4B···H16Ci | 2.5800 | H16C···N4 | 2.7700 |
H4C···H3C | 2.4800 | H16C···H4Bi | 2.5800 |
H4C···H6Bii | 2.4500 | ||
P1—Cu1—N2 | 126.53 (4) | C5—C6—H6B | 109.00 |
P1—Cu1—N3 | 126.52 (4) | C5—C6—H6C | 109.00 |
N2—Cu1—N3 | 106.96 (5) | H6A—C6—H6B | 109.00 |
Cu1—P1—C8 | 116.09 (5) | H6A—C6—H6C | 109.00 |
Cu1—P1—C11 | 109.53 (5) | H6B—C6—H6C | 109.00 |
Cu1—P1—C14 | 112.78 (6) | C5—C7—H7A | 110.00 |
C8—P1—C11 | 103.02 (7) | C5—C7—H7B | 110.00 |
C8—P1—C14 | 103.05 (7) | C5—C7—H7C | 109.00 |
C11—P1—C14 | 111.91 (8) | H7A—C7—H7B | 109.00 |
N2—N1—C1 | 103.91 (12) | H7A—C7—H7C | 109.00 |
Cu1—N2—N1 | 122.29 (10) | H7B—C7—H7C | 109.00 |
Cu1—N2—N3i | 126.91 (10) | P1—C8—H8 | 108.00 |
N1—N2—N3i | 109.86 (13) | C9—C8—H8 | 108.00 |
Cu1—N3—N4 | 124.44 (10) | C10—C8—H8 | 108.00 |
Cu1—N3—N2i | 125.54 (10) | C8—C9—H9A | 110.00 |
N2i—N3—N4 | 110.00 (12) | C8—C9—H9B | 109.00 |
N3—N4—C1i | 103.64 (13) | C8—C9—H9C | 109.00 |
C1—N5—C2 | 120.27 (13) | H9A—C9—H9B | 109.00 |
C1—N5—C5 | 117.08 (15) | H9A—C9—H9C | 109.00 |
C2—N5—C5 | 118.88 (14) | H9B—C9—H9C | 109.00 |
N1—C1—N5 | 122.80 (14) | C8—C10—H10A | 109.00 |
N1—C1—N4i | 112.59 (14) | C8—C10—H10B | 109.00 |
N4i—C1—N5 | 124.55 (15) | C8—C10—H10C | 109.00 |
N5—C2—C3 | 110.45 (13) | H10A—C10—H10B | 109.00 |
N5—C2—C4 | 114.69 (14) | H10A—C10—H10C | 109.00 |
C3—C2—C4 | 112.02 (13) | H10B—C10—H10C | 109.00 |
N5—C5—C6 | 111.51 (16) | P1—C11—H11 | 105.00 |
N5—C5—C7 | 111.98 (19) | C12—C11—H11 | 105.00 |
C6—C5—C7 | 112.07 (16) | C13—C11—H11 | 105.00 |
P1—C8—C9 | 110.57 (11) | C11—C12—H12A | 109.00 |
P1—C8—C10 | 111.09 (11) | C11—C12—H12B | 109.00 |
C9—C8—C10 | 110.22 (14) | C11—C12—H12C | 109.00 |
P1—C11—C12 | 117.76 (11) | H12A—C12—H12B | 109.00 |
P1—C11—C13 | 112.62 (12) | H12A—C12—H12C | 109.00 |
C12—C11—C13 | 110.39 (14) | H12B—C12—H12C | 109.00 |
P1—C14—C15 | 117.04 (12) | C11—C13—H13A | 109.00 |
P1—C14—C16 | 111.77 (11) | C11—C13—H13B | 110.00 |
C15—C14—C16 | 111.12 (14) | C11—C13—H13C | 109.00 |
N5—C2—H2 | 106.00 | H13A—C13—H13B | 109.00 |
C3—C2—H2 | 106.00 | H13A—C13—H13C | 109.00 |
C4—C2—H2 | 106.00 | H13B—C13—H13C | 109.00 |
C2—C3—H3A | 109.00 | P1—C14—H14 | 105.00 |
C2—C3—H3B | 109.00 | C15—C14—H14 | 105.00 |
C2—C3—H3C | 109.00 | C16—C14—H14 | 105.00 |
H3A—C3—H3B | 109.00 | C14—C15—H15A | 109.00 |
H3A—C3—H3C | 109.00 | C14—C15—H15B | 109.00 |
H3B—C3—H3C | 110.00 | C14—C15—H15C | 109.00 |
C2—C4—H4A | 109.00 | H15A—C15—H15B | 110.00 |
C2—C4—H4B | 109.00 | H15A—C15—H15C | 110.00 |
C2—C4—H4C | 109.00 | H15B—C15—H15C | 109.00 |
H4A—C4—H4B | 110.00 | C14—C16—H16A | 109.00 |
H4A—C4—H4C | 109.00 | C14—C16—H16B | 109.00 |
H4B—C4—H4C | 109.00 | C14—C16—H16C | 109.00 |
N5—C5—H5 | 107.00 | H16A—C16—H16B | 109.00 |
C6—C5—H5 | 107.00 | H16A—C16—H16C | 109.00 |
C7—C5—H5 | 107.00 | H16B—C16—H16C | 110.00 |
C5—C6—H6A | 110.00 | ||
N2—Cu1—P1—C8 | −2.92 (8) | C8—P1—C14—C15 | 48.70 (15) |
N2—Cu1—P1—C11 | 113.17 (7) | C8—P1—C14—C16 | 178.45 (13) |
N2—Cu1—P1—C14 | −121.49 (8) | C11—P1—C14—C15 | −61.33 (15) |
N3—Cu1—P1—C8 | 177.48 (7) | C11—P1—C14—C16 | 68.43 (15) |
N3—Cu1—P1—C11 | −66.43 (7) | C1—N1—N2—Cu1 | 168.56 (10) |
N3—Cu1—P1—C14 | 58.91 (8) | C1—N1—N2—N3i | −1.07 (16) |
P1—Cu1—N2—N1 | 4.13 (14) | N2—N1—C1—N5 | −176.03 (14) |
P1—Cu1—N2—N3i | 171.90 (10) | N2—N1—C1—N4i | 1.06 (18) |
N3—Cu1—N2—N1 | −176.21 (11) | Cu1—N2—N3i—Cu1i | 9.93 (19) |
N3—Cu1—N2—N3i | −8.43 (14) | Cu1—N2—N3i—N4i | −168.30 (10) |
P1—Cu1—N3—N4 | 9.97 (14) | N1—N2—N3i—Cu1i | 178.95 (10) |
P1—Cu1—N3—N2i | −172.05 (10) | N1—N2—N3i—N4i | 0.73 (17) |
N2—Cu1—N3—N4 | −169.69 (12) | Cu1—N3—N4—C1i | 178.31 (10) |
N2—Cu1—N3—N2i | 8.29 (14) | N2i—N3—N4—C1i | 0.06 (16) |
Cu1—P1—C8—C9 | −62.53 (13) | N3—N4—C1i—N1i | 0.65 (17) |
Cu1—P1—C8—C10 | 60.18 (13) | N3—N4—C1i—N5i | −176.39 (15) |
C11—P1—C8—C9 | 177.79 (12) | C2—N5—C1—N1 | −162.27 (15) |
C11—P1—C8—C10 | −59.51 (13) | C2—N5—C1—N4i | 21.0 (2) |
C14—P1—C8—C9 | 61.25 (14) | C5—N5—C1—N1 | −4.4 (2) |
C14—P1—C8—C10 | −176.04 (12) | C5—N5—C1—N4i | 178.88 (16) |
Cu1—P1—C11—C12 | −171.57 (10) | C1—N5—C2—C3 | −78.37 (18) |
Cu1—P1—C11—C13 | 58.21 (13) | C1—N5—C2—C4 | 49.4 (2) |
C8—P1—C11—C12 | −47.46 (13) | C5—N5—C2—C3 | 124.14 (16) |
C8—P1—C11—C13 | −177.68 (12) | C5—N5—C2—C4 | −108.15 (18) |
C14—P1—C11—C12 | 62.59 (14) | C1—N5—C5—C6 | 142.57 (15) |
C14—P1—C11—C13 | −67.63 (14) | C1—N5—C5—C7 | −90.96 (19) |
Cu1—P1—C14—C15 | 174.64 (11) | C2—N5—C5—C6 | −59.2 (2) |
Cu1—P1—C14—C16 | −55.61 (14) | C2—N5—C5—C7 | 67.3 (2) |
Symmetry codes: (i) −x, −y+1, −z; (ii) x−1, y, z; (iii) −x+1, −y+1, −z; (iv) x, y+1, z; (v) x+1, y, z; (vi) x, y−1, z; (vii) −x, −y, −z; (viii) −x, −y+2, −z+1; (ix) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···N4i | 0.98 | 2.58 | 3.182 (2) | 119 |
C4—H4B···N4i | 0.98 | 2.48 | 3.082 (2) | 120 |
C5—H5···N1 | 1.00 | 2.32 | 2.784 (2) | 107 |
Symmetry code: (i) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C7H14N5)2(C9H21P)2] |
Mr | 784.02 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.3573 (6), 10.8987 (8), 12.7134 (9) |
α, β, γ (°) | 94.273 (2), 96.993 (2), 93.548 (2) |
V (Å3) | 1006.43 (13) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.17 |
Crystal size (mm) | 0.37 × 0.28 × 0.21 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.675, 0.791 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17280, 4689, 4336 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.079, 1.05 |
No. of reflections | 4689 |
No. of parameters | 218 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.70, −0.42 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).
Cu1—P1 | 2.1957 (5) | Cu1—N3 | 1.9938 (13) |
Cu1—N2 | 1.9919 (14) | ||
P1—Cu1—N2 | 126.53 (4) | N2—Cu1—N3 | 106.96 (5) |
P1—Cu1—N3 | 126.52 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···N4i | 0.98 | 2.58 | 3.182 (2) | 119 |
C4—H4B···N4i | 0.98 | 2.48 | 3.082 (2) | 120 |
C5—H5···N1 | 1.00 | 2.32 | 2.784 (2) | 107 |
Symmetry code: (i) −x, −y+1, −z. |
Footnotes
‡On leave from the Faculty of Engineering, Ain Shams University, Cairo, Egypt.
Acknowledgements
The authors would like to acknowledge Professor Charles H. Winter for his support.
References
Allinger, N. L., Hirsch, J. A., Miller, M. A., Tyminski, I. J. & Van-Catledge, F. A. (1968). J. Am. Chem. Soc. 90, 1199–1210. CrossRef CAS Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burke, L. A., Butler, R. N. & Stephens, J. C. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1679–1684. CrossRef Google Scholar
Dezelah, C. L. IV, El- Kadri, O. M., Heeg, M. J. & Winter, C. H. (2004). J. Mater. Chem. 14, 3167–3176. CAS Google Scholar
Dinca, M., Yu, A. F. & Long, J. R. (2006). J. Am. Chem. Soc. 128, 8904–8913. Web of Science PubMed CAS Google Scholar
Frunzke, J., Lein, M. & Frenking, G. (2002). Organometallics, 21, 3351–3359. CrossRef CAS Google Scholar
Gust, K. R., Heeg, M. J. & Winter, C. H. (2001). Polyhedron, 20, 805–813. CrossRef CAS Google Scholar
Gust, K. R., Knox, J. E., Heeg, M. J., Schlegel, H. B. & Winter, C. H. (2002). Angew. Chem. Int. Ed. 41, 1591–1594. CrossRef CAS Google Scholar
Haasnoot, G. (2000). Coord. Chem. Rev. 200–202, 131–185. CrossRef CAS Google Scholar
Hitzbleck, J., Deacon, G. B. & Ruhlandt-Senge, K. (2004). Angew. Chem. Int. Ed. 43, 5218–5220. CrossRef CAS Google Scholar
Hunyh, M. H. V., Meyer, T. J., Labouriau, A., White, P. S. & Morris, D. E. (2003). J. Am. Chem. Soc. 125, 2828–2829. Web of Science PubMed Google Scholar
Jiang, C., Yu, Z., Wang, S., Jiao, C., Li, J., Wang, Z. & Cui, Y. (2004). Eur. J. Inorg. Chem. pp. 3662–3667. Google Scholar
Kobrsi, I., Knox, J. E., Heeg, M. J., Schlegel, H. B. & Winter, C. H. (2005). Inorg. Chem. 44, 4894–4896. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kobrsi, I., Zheng, W., Knox, J. E., Heeg, M. J., Schlegel, H. B. & Winter, C. H. (2006). Inorg. Chem. 45, 8700–8710. Web of Science CrossRef PubMed CAS Google Scholar
Lein, M., Frunzke, J., Timoshkin, A. & Frenking, G. (2001). Chem. Eur. J. 7, 4155–4163. CrossRef PubMed CAS Google Scholar
Nief, F. (2001). Eur. J. Inorg. Chem. pp. 891–904. CrossRef Google Scholar
Rottger, D., Erker, G., Grehl, M. & Frolich, R. (1994). Organometallics, 13, 3897–3902. Google Scholar
Sebe, E., Guzei, I. A., Heeg, M. J., Liable-Sands, L. M., Rheingold, A. L. & Winter, C. H. (2005). Eur. J. Inorg. Chem. pp. 3955–3961. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vela, J., Vaddadi, S., Kingsley, S., Flaschenriem, C. J., Lachicotte, R. J., Cundari, T. R. & Holland, P. L. (2006). Angew. Chem. Int. Ed. 45, 1607–1611. CrossRef CAS Google Scholar
Zhang, X.-M., Zhao, Y.-F., Wu, H.-S., Batten, S. R. & Ng, S. W. (2006). Dalton Trans. pp. 3170–3178. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of anionic five-membered nitrogen heterocyclic ligands has generated considerable recent interest from several different perspectives (Nief 2001, Rottger et al. 1994, Hitzbleck et al. 2004, Gust et al. 2001, Dezelah et al. 2004, Sebe et al. 2005, Gust et al. 2002, Vela et al. 2006). Due to the presence of many nitrogen atoms in 1,2,4-triazolato and tetrazolato ligands, complexes containing these ligands have a strong tendency to form oligomeric and polymeric compounds through bridging ligand coordination modes (Haasnoot 2000, Zhang et al. 2006, Dinca et al. 2006). Furthermore, η1-coordination is the most commonly observed binding mode in monomeric complexes containing 1,2,4-triazolato and tetrazolato ligands (Jiang et al. 2004, Hunyh et al. 2003). Theoretical predictions regarding the high stability of the pentazolate (N5-) ion suggest that metal complexes containing this ligand might be stable enough to allow isolation (Frunzke et al. 2002, Lein et al. 2001, Burke et al. 2001).
Since complexes containing N5- ligands may be at the edge of isolability due to facile loss of dinitrogen, it is important to develop a knowledge base that allows the synthesis of soluble, tractable 1,2,4-triazolato and tetrazolato complexes. Presumably, the basic coordination chemistry of pentazolato ligands will share similarities with that of tetrazolato ligands.
Several years ago, we reported the synthesis, structure, and molecular orbital calculations of a series of barium complexes of the formula Ba(alkyltetrazolate)2(18-crown-6), potassium complexes of formula K(alkyltetrazolate)(18-crown-6), as well as calculations of Ba(pentazolate)2(18-crown-6) and K(pentazolate)(18-crown-6). These complexes contained highly distorted tetrazolato and pentazolato ligand bonding (Kobrsi et al. 2005, Kobrsi et al. 2006).
The present work demonstrates the stabilization of copper tetrazolate complexes using a 2-electron donor phosphane ligand. The copper complex crystallizes as a dimer having all nuclei except the isopropyl groups' in the same plane. The phosphane ligands are terminal, while each tetrazolate ligand bridges two Cu(I) centers.
While the work aimed for a monomeric complex, it can be concluded that the combination of isopropyl groups in the phosphane ligand and the tetrazolate ligand does not provide the necessary steric repulsion. However, enough steric hindrance is provided for the tetrazolate to coordinate in an N2—N3 bridging mode as opposed to the normally observed N1—N2 bridging mode.
The C1—N5—C5 angle of 120.30 (13)° and the C2—N5—C5 angle of 118.89 (13)° suggest that the N-atom of the amino group is sp2-hybridized, having its electrons donated to the aromatic ring, thus providing stability to the electron-deficient heterocycle.
Several intramolecular CH—N interactions exist between the tetrazolate's N1 and N4, and the hydrogen atoms on C9, C10, C13, C16. The CH—N distances range from 2.64 to 2.77 Å, whereas the sum of the van der Waals radii for N and H is about 2.7–3.0 Å (Bondi 1964, Allinger et al. 1968), which supports weak, attractive CH—N interactions. These types of interactions have been previously observed, where calculations have shown that these interactions provide stability to the heterocycle (Kobrsi et al. 2005, Kobrsi et al. 2006).