metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­[μ-1,3-bis­­(imidazol-1-ylmeth­yl)benzene-κ2N3:N3′]bis­­(nitrato-κO)cadmium]

aInstitute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: hbsyhxy@163.com

(Received 10 May 2011; accepted 31 May 2011; online 11 June 2011)

A novel metal–organic framework based on 1,3-bis­(imidazol-1-ylmeth­yl)benzene (1,3-bimb), [Cd(NO3)2(C14H14N4)2]n, has been synthesized hydro­thermally. The structure exhibits a two-dimensional metal–organic (4,4)-net composed of CdII atoms and bimb ligands, and such layers are further joined through inter­layer C—H⋯O hydrogen bonds to generate a three-dimensional supra­molecular structure.

Related literature

For background to the network topologies and applications of coordination polymers, see: Maspoch et al. (2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.]); Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]); Zang et al. (2006[Zang, S.-Q., Su, Y., Li, Y.-Z., Ni, Z.-P. & Meng, Q.-J. (2006). Inorg. Chem. 45, 174-180.]); Zhang et al. (2009[Zhang, Y.-B., Zhang, W.-X., Feng, F.-Y., Zhang, J.-P. & Chen, X.-M. (2009). Angew. Chem. Int. Ed. 48, 5287-5290.]). For synthesis and related structures with the bimb ligand, see: Hoskins et al. (1997[Hoskins, B. F., Robson, R. & Slizys, D. A. (1997). J. Am. Chem. Soc. 119, 2952-2953.]). For C—H⋯O hydrogen bonds, see: Desiraju (1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]); Broder et al. (2002[Broder, C. K., Davidson, M. G., Trevor Forsyth, V., Howard, J. A. K., Lamb, S. & Mason, S. A. (2002). Cryst. Growth Des. 2, 163-169.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NO3)2(C14H14N4)2]

  • Mr = 713.00

  • Monoclinic, P 21 /c

  • a = 8.4542 (8) Å

  • b = 19.3910 (18) Å

  • c = 9.2222 (8) Å

  • β = 102.415 (10)°

  • V = 1476.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.850, Tmax = 0.863

  • 5606 measured reflections

  • 2578 independent reflections

  • 2253 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.123

  • S = 1.06

  • 2578 reflections

  • 199 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.95 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.93 2.71 3.525 (8) 147
C4—H4B⋯O1i 0.97 2.67 3.525 (6) 148
C4—H4B⋯O2i 0.97 2.83 3.633 (9) 141
C10—H10⋯O2i 0.93 2.63 3.506 (9) 158
C11—H11A⋯O1ii 0.97 2.70 3.518 (7) 142
C12—H12⋯O1ii 0.93 2.37 3.210 (6) 151
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Extensive research has been focused on the supramolecular coordination assemblies not only for their variety of architectures but also for the potential applications as functional materials (Maspoch et al., 2007; Ockwig et al., 2005). Many imidazole-containing ligands have been successfully employed in the generation of many interesting systems in possession of multidimensional networks and properties (Zang et al., 2006; Zhang et al., 2009). To further explore various factors that influence the formation of result structures in the assembly reactions, we undertake synthetic and structural studies on one novel CdII coordination polymers based on the highly flexible bidentate ligand 1,3-bis(imidazol-1-ylmethyl)-benzene (1,3-bimb): [Cd(bimb)2(NO3)2]n (1).

X-ray crystallographic analysis revealed that 1 crystallizes in monoclinic space group P21/c. As depicted in Fig. 1, the asymmetric unit consists of a half CdII atom, one bimb ligand and one nitrate ion. Each Cd ion is in a slightly elongated octahedral coordination environment and coordinated by four N atoms from different bimb ligands and two O atoms from two nitrate ions. Four N atoms comprise the equatorial plane, while two O atoms occupy the axial positions. Each bimb ligand acts as a µ2-bridge in trans-conformation with the dihedral angle of the two imidazole rings being ca 68.40 (16)°. Adjacent metal atoms are bridged by bimb ligands from two directions which are almost mutually perpendicular to form a (4,4)-net with the Cd···Cd distances of ca 14.2654 (10) Å (Fig. 2). The coordinated nitrate ions hang from the layer. Neighboring layers are arranged parallel with the uncoordinated O atoms closed to some H atoms from adjacent layer, and a number of interlayer C—H···O hydrogen bonds can be detected which contribute to the formation of the three-dimensional supromolecular structure, as shown in Fig. 3. The hydrogen-bonding geometry is listed in Table 1.

Related literature top

For background to the network topologies and applications of coordination polymers, see: Maspoch et al. (2007); Ockwig et al. (2005); Zang et al. (2006); Zhang et al. (2009). For related synthesis and structures of the bimb ligand, see: Hoskins et al. (1997). For related C—H···O hydrogen bonds, see: Desiraju (1996); Broder et al. (2002).

Experimental top

1,3-bis(imidazol-1-ylmethyl)-benzene (bimb) was prepared according to the literature (Hoskins et al., 1997), all other starting materials were of analytical grade and obtained from commercial sources without further purification. Compound 1 was synthesized hydrothermally in a Teflon-lined stainless steel container by heating a mixture of 1,3-bis(imidazol-1-ylmethyl)-benzene (bimb) (0.0119 g, 0.05 mmol), Cd(NO3)2.4H2O (0.0154 g, 0.05 mmol) and KOH (0.0056 g, 0.1 mmol) in 7 ml of distilled water at 120°C for 3 d, and then cooled to room temperature. Colorless rectangular crystals of 1 were obtained in 79% yield based on Cd.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic H, and C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Metal coordination and atom labeling in title compound (thermal ellipsoids at 50% probability level). All H atoms are omitted for clarity.
[Figure 2] Fig. 2. A view of the layer structure in compound 1. Cd atoms are drawn as polyhedra.
[Figure 3] Fig. 3. The three-dimensional supramolecular structure connected by interlayer C—H···O hydrogen bonds. Dotted lines represent C—H···O bonds. Symmetry codes: #4 x + 1, y, z; #5 -x + 1, y - 1/2, -z + 1/2.
Poly[bis[µ-1,3-bis(imidazol-1-ylmethyl)benzene- κ2N3:N3']bis(nitrato-κO)cadmium] top
Crystal data top
[Cd(NO3)2(C14H14N4)2]F(000) = 724
Mr = 713.00Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3957 reflections
a = 8.4542 (8) Åθ = 3.1–29.1°
b = 19.3910 (18) ŵ = 0.80 mm1
c = 9.2222 (8) ÅT = 296 K
β = 102.415 (10)°Needle, colourless
V = 1476.5 (2) Å30.21 × 0.20 × 0.19 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2578 independent reflections
Radiation source: fine-focus sealed tube2253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 106
Tmin = 0.850, Tmax = 0.863k = 2123
5606 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0689P)2 + 2.589P]
where P = (Fo2 + 2Fc2)/3
2578 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 1.95 e Å3
1 restraintΔρmin = 0.86 e Å3
Crystal data top
[Cd(NO3)2(C14H14N4)2]V = 1476.5 (2) Å3
Mr = 713.00Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.4542 (8) ŵ = 0.80 mm1
b = 19.3910 (18) ÅT = 296 K
c = 9.2222 (8) Å0.21 × 0.20 × 0.19 mm
β = 102.415 (10)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2578 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2253 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.863Rint = 0.017
5606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.123H-atom parameters constrained
S = 1.06Δρmax = 1.95 e Å3
2578 reflectionsΔρmin = 0.86 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.00000.03330 (18)
O10.9948 (4)0.4485 (2)0.2556 (4)0.0657 (10)
O20.8878 (9)0.5415 (3)0.1617 (11)0.183 (4)
O30.7504 (4)0.45152 (19)0.1259 (4)0.0626 (7)
N10.4529 (4)0.55084 (17)0.2160 (4)0.0364 (7)
N20.3328 (4)0.57252 (16)0.4000 (3)0.0322 (7)
N30.2702 (4)0.81383 (18)0.3469 (4)0.0401 (8)
N40.4073 (4)0.89430 (17)0.4339 (4)0.0379 (8)
N50.8818 (5)0.4775 (3)0.1699 (6)0.0626 (7)
C10.5664 (5)0.5731 (2)0.3353 (5)0.0419 (10)
H10.67630.57810.33740.050*
C20.4946 (5)0.5868 (2)0.4507 (5)0.0463 (11)
H20.54460.60260.54460.056*
C30.3138 (5)0.5521 (2)0.2602 (4)0.0342 (8)
H30.21450.54000.20020.041*
C40.2053 (6)0.5788 (2)0.4856 (5)0.0414 (10)
H4A0.24430.55980.58410.050*
H4B0.11160.55210.43730.050*
C50.1556 (5)0.6528 (2)0.4988 (4)0.0335 (8)
C60.2395 (5)0.6941 (2)0.6119 (5)0.0436 (10)
H60.32240.67530.68390.052*
C70.2009 (5)0.7630 (2)0.6186 (5)0.0469 (11)
H70.25870.79040.69470.056*
C80.0777 (6)0.7914 (2)0.5137 (5)0.0440 (10)
H80.05380.83810.51780.053*
C90.0113 (5)0.7503 (2)0.4012 (4)0.0379 (9)
C100.0285 (5)0.6813 (2)0.3951 (4)0.0348 (8)
H100.03070.65350.32060.042*
C110.1437 (6)0.7816 (3)0.2829 (5)0.0509 (12)
H11A0.09690.81600.22830.061*
H11B0.19190.74590.21360.061*
C120.2881 (5)0.8817 (2)0.3668 (5)0.0410 (10)
H120.22410.91550.33680.049*
C130.4682 (5)0.8310 (2)0.4589 (5)0.0430 (10)
H130.55390.82360.50560.052*
C140.3855 (5)0.7810 (2)0.4059 (5)0.0469 (11)
H140.40310.73370.40880.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0367 (3)0.0294 (3)0.0390 (3)0.00351 (15)0.01983 (19)0.00143 (16)
O10.0330 (16)0.089 (3)0.072 (2)0.0071 (17)0.0045 (16)0.018 (2)
O20.124 (5)0.077 (2)0.302 (10)0.021 (4)0.058 (6)0.044 (5)
O30.0348 (12)0.0655 (16)0.082 (2)0.0069 (12)0.0001 (13)0.0074 (15)
N10.0393 (18)0.0353 (17)0.0387 (18)0.0008 (15)0.0175 (15)0.0031 (15)
N20.0369 (17)0.0287 (16)0.0330 (17)0.0082 (14)0.0121 (14)0.0015 (13)
N30.0437 (19)0.0371 (18)0.0404 (19)0.0151 (16)0.0112 (16)0.0011 (15)
N40.0347 (17)0.0343 (18)0.049 (2)0.0069 (14)0.0172 (15)0.0008 (15)
N50.0348 (12)0.0655 (16)0.082 (2)0.0069 (12)0.0001 (13)0.0074 (15)
C10.031 (2)0.040 (2)0.056 (3)0.0006 (18)0.0114 (19)0.007 (2)
C20.045 (3)0.051 (3)0.039 (2)0.005 (2)0.0020 (19)0.013 (2)
C30.035 (2)0.032 (2)0.037 (2)0.0019 (16)0.0102 (16)0.0000 (16)
C40.054 (3)0.037 (2)0.040 (2)0.0109 (19)0.025 (2)0.0086 (18)
C50.037 (2)0.037 (2)0.032 (2)0.0080 (17)0.0188 (16)0.0031 (16)
C60.039 (2)0.060 (3)0.033 (2)0.011 (2)0.0090 (18)0.0037 (19)
C70.043 (2)0.050 (3)0.049 (3)0.003 (2)0.013 (2)0.018 (2)
C80.049 (3)0.033 (2)0.056 (3)0.0035 (19)0.025 (2)0.0064 (19)
C90.042 (2)0.041 (2)0.035 (2)0.0125 (18)0.0183 (18)0.0013 (18)
C100.038 (2)0.035 (2)0.035 (2)0.0029 (17)0.0160 (17)0.0055 (17)
C110.062 (3)0.055 (3)0.039 (2)0.031 (2)0.018 (2)0.001 (2)
C120.042 (2)0.033 (2)0.054 (3)0.0082 (18)0.022 (2)0.0057 (19)
C130.036 (2)0.041 (2)0.054 (3)0.0010 (18)0.0125 (19)0.004 (2)
C140.047 (2)0.033 (2)0.057 (3)0.0044 (19)0.004 (2)0.001 (2)
Geometric parameters (Å, º) top
Cd1—N4i2.322 (3)C2—H20.9300
Cd1—N4ii2.322 (3)C3—H30.9300
Cd1—N1iii2.332 (3)C4—C51.508 (5)
Cd1—N12.332 (3)C4—H4A0.9700
Cd1—O32.378 (3)C4—H4B0.9700
Cd1—O3iii2.378 (3)C5—C61.384 (6)
O1—N51.236 (6)C5—C101.389 (6)
O2—N51.247 (8)C6—C71.379 (6)
O3—N51.207 (5)C6—H60.9300
N1—C31.326 (5)C7—C81.376 (7)
N1—C11.365 (5)C7—H70.9300
N2—C31.326 (5)C8—C91.394 (6)
N2—C21.375 (5)C8—H80.9300
N2—C41.472 (5)C9—C101.384 (6)
N3—C121.341 (5)C9—C111.512 (6)
N3—C141.371 (6)C10—H100.9300
N3—C111.468 (5)C11—H11A0.9700
N4—C121.314 (5)C11—H11B0.9700
N4—C131.369 (6)C12—H120.9300
N4—Cd1iv2.322 (3)C13—C141.347 (6)
C1—C21.360 (6)C13—H130.9300
C1—H10.9300C14—H140.9300
N4i—Cd1—N4ii180.0N2—C4—C5111.8 (3)
N4i—Cd1—N1iii91.13 (12)N2—C4—H4A109.3
N4ii—Cd1—N1iii88.87 (12)C5—C4—H4A109.3
N4i—Cd1—N188.87 (12)N2—C4—H4B109.3
N4ii—Cd1—N191.13 (12)C5—C4—H4B109.3
N1iii—Cd1—N1180.00 (15)H4A—C4—H4B107.9
N4i—Cd1—O399.31 (12)C6—C5—C10118.9 (4)
N4ii—Cd1—O380.69 (12)C6—C5—C4120.4 (4)
N1iii—Cd1—O387.27 (13)C10—C5—C4120.7 (4)
N1—Cd1—O392.73 (13)C7—C6—C5120.5 (4)
N4i—Cd1—O3iii80.69 (12)C7—C6—H6119.8
N4ii—Cd1—O3iii99.31 (12)C5—C6—H6119.8
N1iii—Cd1—O3iii92.73 (13)C8—C7—C6120.5 (4)
N1—Cd1—O3iii87.27 (13)C8—C7—H7119.8
O3—Cd1—O3iii180.0C6—C7—H7119.8
N5—O3—Cd1131.1 (3)C7—C8—C9120.0 (4)
C3—N1—C1105.2 (3)C7—C8—H8120.0
C3—N1—Cd1126.6 (3)C9—C8—H8120.0
C1—N1—Cd1127.1 (3)C10—C9—C8119.1 (4)
C3—N2—C2107.2 (3)C10—C9—C11120.5 (4)
C3—N2—C4126.6 (4)C8—C9—C11120.3 (4)
C2—N2—C4126.2 (4)C9—C10—C5121.0 (4)
C12—N3—C14106.9 (3)C9—C10—H10119.5
C12—N3—C11125.9 (4)C5—C10—H10119.5
C14—N3—C11127.1 (4)N3—C11—C9111.8 (3)
C12—N4—C13105.4 (3)N3—C11—H11A109.3
C12—N4—Cd1iv128.7 (3)C9—C11—H11A109.3
C13—N4—Cd1iv125.9 (3)N3—C11—H11B109.3
O3—N5—O1123.7 (5)C9—C11—H11B109.3
O3—N5—O2116.2 (5)H11A—C11—H11B107.9
O1—N5—O2117.1 (5)N4—C12—N3111.6 (4)
C2—C1—N1109.8 (4)N4—C12—H12124.2
C2—C1—H1125.1N3—C12—H12124.2
N1—C1—H1125.1C14—C13—N4109.9 (4)
C1—C2—N2105.9 (4)C14—C13—H13125.0
C1—C2—H2127.1N4—C13—H13125.0
N2—C2—H2127.1C13—C14—N3106.2 (4)
N1—C3—N2112.0 (4)C13—C14—H14126.9
N1—C3—H3124.0N3—C14—H14126.9
N2—C3—H3124.0
N4i—Cd1—O3—N513.2 (5)N2—C4—C5—C686.3 (5)
N4ii—Cd1—O3—N5166.8 (5)N2—C4—C5—C1091.6 (5)
N1iii—Cd1—O3—N5103.9 (5)C10—C5—C6—C72.1 (6)
N1—Cd1—O3—N576.1 (5)C4—C5—C6—C7175.8 (4)
N4i—Cd1—N1—C3124.0 (3)C5—C6—C7—C80.5 (7)
N4ii—Cd1—N1—C356.0 (3)C6—C7—C8—C91.3 (7)
O3—Cd1—N1—C3136.7 (3)C7—C8—C9—C101.4 (6)
O3iii—Cd1—N1—C343.3 (3)C7—C8—C9—C11178.2 (4)
N4i—Cd1—N1—C169.9 (3)C8—C9—C10—C50.2 (6)
N4ii—Cd1—N1—C1110.1 (3)C11—C9—C10—C5176.6 (4)
O3—Cd1—N1—C129.4 (3)C6—C5—C10—C92.0 (6)
O3iii—Cd1—N1—C1150.6 (3)C4—C5—C10—C9175.9 (4)
Cd1—O3—N5—O1167.3 (4)C12—N3—C11—C9102.7 (5)
Cd1—O3—N5—O27.5 (9)C14—N3—C11—C972.9 (6)
C3—N1—C1—C20.6 (5)C10—C9—C11—N3123.7 (4)
Cd1—N1—C1—C2167.8 (3)C8—C9—C11—N359.5 (6)
N1—C1—C2—N20.0 (5)C13—N4—C12—N30.3 (5)
C3—N2—C2—C10.6 (5)Cd1iv—N4—C12—N3179.9 (3)
C4—N2—C2—C1179.4 (4)C14—N3—C12—N40.2 (5)
C1—N1—C3—N21.0 (4)C11—N3—C12—N4176.6 (4)
Cd1—N1—C3—N2167.5 (2)C12—N4—C13—C140.3 (5)
C2—N2—C3—N11.0 (5)Cd1iv—N4—C13—C14179.9 (3)
C4—N2—C3—N1178.9 (3)N4—C13—C14—N30.2 (5)
C3—N2—C4—C5102.7 (5)C12—N3—C14—C130.0 (5)
C2—N2—C4—C577.3 (5)C11—N3—C14—C13176.3 (4)
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2v0.932.713.525 (8)147
C4—H4B···O1v0.972.673.525 (6)148
C4—H4B···O2v0.972.833.633 (9)141
C10—H10···O2v0.932.633.506 (9)158
C11—H11A···O1vi0.972.703.518 (7)142
C12—H12···O1vi0.932.373.210 (6)151
Symmetry codes: (v) x1, y, z; (vi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(NO3)2(C14H14N4)2]
Mr713.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.4542 (8), 19.3910 (18), 9.2222 (8)
β (°) 102.415 (10)
V3)1476.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.21 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.850, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
5606, 2578, 2253
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 1.06
No. of reflections2578
No. of parameters199
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.95, 0.86

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.713.525 (8)147.1
C4—H4B···O1i0.972.673.525 (6)147.7
C4—H4B···O2i0.972.833.633 (9)140.6
C10—H10···O2i0.932.633.506 (9)157.8
C11—H11A···O1ii0.972.703.518 (7)141.8
C12—H12···O1ii0.932.373.210 (6)150.6
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of Henan Province (grant No. 2010A140009) and the Inter­national Technology Cooperation Project of the Science and Technology Department of Henan Province of China (grant No. 104300510044).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroder, C. K., Davidson, M. G., Trevor Forsyth, V., Howard, J. A. K., Lamb, S. & Mason, S. A. (2002). Cryst. Growth Des. 2, 163–169.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHoskins, B. F., Robson, R. & Slizys, D. A. (1997). J. Am. Chem. Soc. 119, 2952–2953.  CSD CrossRef CAS Web of Science Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZang, S.-Q., Su, Y., Li, Y.-Z., Ni, Z.-P. & Meng, Q.-J. (2006). Inorg. Chem. 45, 174–180.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, Y.-B., Zhang, W.-X., Feng, F.-Y., Zhang, J.-P. & Chen, X.-M. (2009). Angew. Chem. Int. Ed. 48, 5287–5290.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds