metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[(1,10-phenanthroline-κ2N,N′)zinc]-μ-pyridine-2,3-di­carboxyl­ato-κ4N,O2:O2′,O3] monohydrate]

aShangqiu Medical College, Shangqiu, Henan 476100, People's Republic of China
*Correspondence e-mail: qinzhenhua1969@163.com

(Received 14 April 2011; accepted 27 May 2011; online 4 June 2011)

In the title complex, {[Zn(C7H3NO4)(C12H8N2)]·H2O}n, the ZnII ion is in a distorted octa­hedral environment, defined by two N atoms from a chelating 1,10-phenanthroline (phen) ligand and one N atom and three O atoms from two pyridine-2,3-dicarboxyl­ate (2,3-pydc) ligands. The bridging 2,3-pydc ligands connect the ZnII ions into a chain extending along [010]. O—H⋯O hydrogen bonds between the uncoordinated water mol­ecules and the uncoordinated carboxyl­ate O atoms, as well as ππ inter­actions between the pyridine rings of the phen ligands [centroid–centroid distance = 3.557 (2) Å], are observed.

Related literature

For complexes based on pyridine-2,3-dicarb­oxy­lic acid, see: Du et al. (2008[Du, L., Fang, R.-B. & Zhao, Q.-H. (2008). Chin. J. Chem. 26, 957-961.]); Han et al. (2006[Han, Z.-B., Ma, Y., Sun, Z.-G. & Yu, W.-S. (2006). Inorg. Chem. Commun. 9, 844-847.]); Li & Li (2004[Li, L. & Li, Y. (2004). J. Mol. Struct. 694, 199-203.]); Patrick et al. (2003[Patrick, B. O., Stevens, C. L., Storr, A. & Thompason, R. C. (2003). Polyhedron, 22, 3025-3035.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For a related structure, see: Shit et al. (2008[Shit, S., Charkraborty, J., Howard, J. A. K., Spencer, E. C., Desplanches, C. & Mitra, S. (2008). Struct. Chem. 19, 553-558.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H3NO4)(C12H8N2)]·H2O

  • Mr = 428.69

  • Orthorhombic, P b c a

  • a = 12.2099 (8) Å

  • b = 11.6922 (8) Å

  • c = 23.2513 (15) Å

  • V = 3319.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 293 K

  • 0.23 × 0.19 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.721, Tmax = 0.839

  • 30212 measured reflections

  • 3802 independent reflections

  • 3010 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.175

  • S = 1.06

  • 3802 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.102 (2)
Zn1—O2i 2.110 (2)
Zn1—O4i 2.062 (2)
Zn1—N1 2.142 (3)
Zn1—N2 2.139 (3)
Zn1—N3 2.131 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3 0.85 2.22 3.022 (5) 157
O1W—H1WB⋯O3ii 0.85 2.42 3.215 (5) 157
Symmetry code: (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridine-carboxylic acids are widely used to form supramolecular architectures due to their diverse coordination modes such as monodentate terminal, monodentate bridging and bidentate chelating. Recently, pyridine-2,3-dicarboxylic acid (2,3-H2pydc) acts as a bidentate and bridging ligand to construct one-dimensional chain, two-dimensional layer and three-dimensional structures (Du et al., 2008; Han et al., 2006; Li & Li, 2004; Patrick et al., 2003). Herein, a one-dimensional polymeric complex based on 2,3-pydc was investigated.

The title compound is composed of polymeric chains and uncoordinated water molecules. The asymmetric unit contains one ZnII ion, one uncoordinated water molecule, one 2,3-pydc ligand and one 1,10-phenanthroline (1,10-phen) ligand. The coordination geometry of the ZnII ion can be described as distorted octahedral, which is defined by three N and three O atoms from one 1,10-phen and two 2,3-pydc ligands, with Zn—N and Zn—O distances of 2.131 (3)–2.142 (3) and 2.062 (2)–2.110 (2) Å, respectively (Fig. 1, Table 1). As shown in Fig. 2, adjacent ZnII ions are bridged by 2,3-pydc ligands, which adopt a syn–anti configuration, with an internuclear Zn···Zn distance of 5.9206 (6) Å, building an infinite one-dimensional architecture. The 1,10-phen molecule serves as a bidentate chelating ligand to coordinate to the ZnII ion. In the chain, the dihedral angle between the adjacent 1,10-phen ligands is 65.24 (3)°.

According to the search results in CSD database (Conquest version 1.12) (Allen, 2002), an isomorphous complex {[Mn(C7H3NO4)(C12H8N2)].H2O}n is reported (Shit et al., 2008).

Related literature top

For complexes based on pyridine-2,3-dicarboxylic acid, see: Du et al. (2008); Han et al. (2006); Li & Li (2004); Patrick et al. (2003). For a description of the Cambridge Structural Database, see: Allen (2002). For a related structure, see: Shit et al. (2008).

Experimental top

A mixture of pyridine-2,3-dicarboxylic acid (0.2 mmol), Zn(CH3COOH)2.2H2O (0.2 mmol), 1,10-phenanthroline (0.1 mmol) and 10 ml me thanol/distilled water(v/v 9:2) sealed in a 25 ml Teflon-lined stainless steel autoclave was kept at 393 K for three days and then cooled to room temperature. Colorless crystals suitable for X-ray analysis were obtained.

Refinement top

H atoms of aromatic rings were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecule were found in a difference Fourier map and refined as riding atoms, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the chain structure in the title complex. Displacement ellipsoids are drawn at the 30% probability level. Uncoordinated water molecule has been omitted. [Symmetry code: (i) 1/2 - x, -1/2 + y, z.]
[Figure 2] Fig. 2. The packing diagram of the title complex. Dashed lines denote hydrogen bonds. H atoms not involving in hydrogen bonds have been omitted.
catena-Poly[[[(1,10-phenanthroline-κ2N,N')zinc]- µ-pyridine-2,3-dicarboxylato- κ4N,O2:O2',O3] monohydrate] top
Crystal data top
[Zn(C7H3NO4)(C12H8N2)]·H2OF(000) = 1744
Mr = 428.69Dx = 1.716 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4015 reflections
a = 12.2099 (8) Åθ = 1.8–28.3°
b = 11.6922 (8) ŵ = 1.52 mm1
c = 23.2513 (15) ÅT = 293 K
V = 3319.4 (4) Å3Block, colorless
Z = 80.23 × 0.19 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3802 independent reflections
Radiation source: fine-focus sealed tube3010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.721, Tmax = 0.839k = 1515
30212 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1103P)2 + 4.4449P]
where P = (Fo2 + 2Fc2)/3
3802 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 1.02 e Å3
Crystal data top
[Zn(C7H3NO4)(C12H8N2)]·H2OV = 3319.4 (4) Å3
Mr = 428.69Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.2099 (8) ŵ = 1.52 mm1
b = 11.6922 (8) ÅT = 293 K
c = 23.2513 (15) Å0.23 × 0.19 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3802 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3010 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.839Rint = 0.040
30212 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.06Δρmax = 0.76 e Å3
3802 reflectionsΔρmin = 1.02 e Å3
253 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.21166 (4)0.05837 (3)0.378838 (18)0.02796 (19)
O10.1506 (2)0.22624 (19)0.37472 (10)0.0250 (5)
O20.19575 (19)0.4075 (2)0.38954 (11)0.0248 (5)
O30.2708 (3)0.4531 (3)0.53194 (15)0.0586 (10)
O40.3580 (2)0.53247 (19)0.45856 (10)0.0288 (5)
N10.0847 (2)0.0270 (2)0.33197 (12)0.0230 (6)
N20.2625 (2)0.0835 (2)0.29172 (12)0.0242 (6)
N30.3382 (2)0.1532 (2)0.42019 (11)0.0217 (5)
C10.0016 (3)0.0834 (3)0.35158 (15)0.0286 (7)
H1A0.01320.08530.39110.034*
C20.0768 (3)0.1405 (3)0.31582 (17)0.0345 (8)
H2A0.13510.18090.33170.041*
C30.0631 (3)0.1360 (3)0.25741 (17)0.0326 (8)
H3A0.11240.17270.23320.039*
C40.0263 (3)0.0752 (3)0.23440 (16)0.0277 (7)
C50.0465 (3)0.0641 (3)0.17420 (17)0.0368 (9)
H5A0.00090.09880.14830.044*
C60.1321 (3)0.0049 (4)0.15423 (15)0.0384 (9)
H6A0.14270.00090.11470.046*
C70.2082 (3)0.0498 (3)0.19250 (16)0.0288 (8)
C80.3005 (3)0.1110 (3)0.17423 (17)0.0342 (8)
H8A0.31380.12080.13520.041*
C90.3705 (3)0.1557 (3)0.21347 (16)0.0349 (8)
H9A0.43220.19580.20150.042*
C100.3491 (3)0.1410 (3)0.27237 (16)0.0307 (8)
H10A0.39730.17260.29890.037*
C110.1920 (3)0.0382 (3)0.25240 (15)0.0231 (7)
C120.0994 (3)0.0230 (3)0.27382 (14)0.0225 (6)
C130.3092 (2)0.2624 (3)0.43099 (13)0.0187 (6)
C140.3641 (3)0.3299 (3)0.47056 (14)0.0219 (6)
C150.4553 (3)0.2838 (3)0.49769 (16)0.0327 (8)
H15A0.49380.32660.52470.039*
C160.4885 (3)0.1736 (3)0.48438 (18)0.0379 (9)
H16A0.55150.14280.50080.045*
C170.4264 (3)0.1104 (3)0.44629 (16)0.0306 (8)
H17A0.44670.03530.43860.037*
C180.3260 (3)0.4482 (3)0.48823 (15)0.0268 (7)
C190.2113 (2)0.3025 (3)0.39622 (14)0.0184 (6)
O1W0.2841 (4)0.6974 (4)0.57381 (19)0.0825 (14)
H1WA0.27470.63820.55320.124*
H1WB0.27370.75620.55310.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0332 (3)0.0191 (3)0.0316 (3)0.00121 (15)0.00367 (16)0.00071 (14)
O10.0252 (12)0.0133 (11)0.0364 (13)0.0015 (9)0.0122 (10)0.0010 (9)
O20.0259 (12)0.0095 (11)0.0390 (13)0.0011 (9)0.0060 (10)0.0012 (9)
O30.089 (3)0.049 (2)0.0371 (18)0.0081 (17)0.0260 (17)0.0036 (14)
O40.0411 (14)0.0166 (11)0.0286 (12)0.0053 (10)0.0077 (10)0.0003 (9)
N10.0236 (14)0.0206 (13)0.0247 (13)0.0018 (11)0.0032 (11)0.0009 (11)
N20.0279 (14)0.0189 (13)0.0257 (14)0.0032 (11)0.0027 (11)0.0006 (11)
N30.0252 (14)0.0138 (12)0.0260 (13)0.0005 (10)0.0049 (11)0.0020 (10)
C10.0278 (17)0.0292 (18)0.0288 (18)0.0025 (14)0.0008 (14)0.0031 (14)
C20.0253 (17)0.0304 (19)0.048 (2)0.0060 (14)0.0013 (16)0.0016 (16)
C30.0268 (17)0.0309 (19)0.040 (2)0.0039 (15)0.0074 (15)0.0068 (15)
C40.0266 (17)0.0252 (17)0.0314 (18)0.0019 (13)0.0067 (14)0.0047 (13)
C50.037 (2)0.046 (2)0.0278 (18)0.0025 (17)0.0112 (16)0.0066 (15)
C60.043 (2)0.051 (2)0.0213 (17)0.0007 (18)0.0068 (15)0.0019 (16)
C70.0320 (19)0.031 (2)0.0229 (17)0.0047 (14)0.0040 (13)0.0016 (13)
C80.043 (2)0.033 (2)0.0273 (18)0.0008 (16)0.0061 (15)0.0068 (15)
C90.039 (2)0.0272 (18)0.039 (2)0.0074 (15)0.0070 (16)0.0053 (15)
C100.0335 (18)0.0228 (17)0.0358 (19)0.0083 (14)0.0003 (15)0.0011 (14)
C110.0262 (16)0.0192 (15)0.0238 (16)0.0014 (12)0.0047 (13)0.0005 (12)
C120.0229 (16)0.0193 (15)0.0253 (16)0.0003 (12)0.0051 (12)0.0002 (12)
C130.0217 (14)0.0157 (14)0.0188 (14)0.0006 (11)0.0015 (11)0.0016 (11)
C140.0279 (16)0.0152 (14)0.0227 (15)0.0050 (12)0.0033 (12)0.0014 (11)
C150.036 (2)0.0255 (18)0.0363 (19)0.0051 (14)0.0167 (16)0.0013 (14)
C160.034 (2)0.0265 (19)0.053 (2)0.0010 (15)0.0228 (18)0.0048 (16)
C170.0296 (18)0.0182 (16)0.044 (2)0.0040 (13)0.0109 (15)0.0016 (14)
C180.0351 (19)0.0217 (17)0.0237 (16)0.0009 (13)0.0046 (14)0.0049 (12)
C190.0218 (15)0.0156 (14)0.0178 (14)0.0004 (11)0.0007 (11)0.0003 (11)
O1W0.121 (4)0.069 (3)0.057 (3)0.019 (2)0.026 (2)0.006 (2)
Geometric parameters (Å, º) top
Zn1—O12.102 (2)C5—C61.336 (6)
Zn1—O2i2.110 (2)C5—H5A0.9300
Zn1—O4i2.062 (2)C6—C71.436 (5)
Zn1—N12.142 (3)C6—H6A0.9300
Zn1—N22.139 (3)C7—C81.401 (5)
Zn1—N32.131 (3)C7—C111.413 (5)
O1—C191.262 (4)C8—C91.355 (6)
O2—C191.252 (4)C8—H8A0.9300
O3—C181.221 (5)C9—C101.405 (5)
O4—C181.265 (4)C9—H9A0.9300
N1—C11.324 (4)C10—H10A0.9300
N1—C121.365 (4)C11—C121.429 (5)
N2—C101.331 (5)C13—C141.386 (4)
N2—C111.362 (4)C13—C191.518 (4)
N3—C171.333 (4)C14—C151.389 (5)
N3—C131.349 (4)C14—C181.516 (4)
C1—C21.407 (5)C15—C161.386 (5)
C1—H1A0.9300C15—H15A0.9300
C2—C31.369 (6)C16—C171.381 (5)
C2—H2A0.9300C16—H16A0.9300
C3—C41.408 (5)C17—H17A0.9300
C3—H3A0.9300O1W—H1WA0.85
C4—C121.417 (5)O1W—H1WB0.85
C4—C51.427 (5)
O4i—Zn1—O191.81 (9)C5—C6—H6A119.3
O4i—Zn1—O2i89.56 (9)C7—C6—H6A119.3
O1—Zn1—O2i167.49 (9)C8—C7—C11117.4 (3)
O4i—Zn1—N388.28 (10)C8—C7—C6124.0 (4)
O1—Zn1—N378.00 (9)C11—C7—C6118.6 (3)
O2i—Zn1—N389.61 (10)C9—C8—C7120.0 (3)
O4i—Zn1—N2172.42 (11)C9—C8—H8A120.0
O1—Zn1—N286.07 (10)C7—C8—H8A120.0
O2i—Zn1—N294.09 (11)C8—C9—C10119.4 (3)
N3—Zn1—N298.36 (11)C8—C9—H9A120.3
O4i—Zn1—N195.17 (11)C10—C9—H9A120.3
O1—Zn1—N198.93 (10)N2—C10—C9122.6 (3)
O2i—Zn1—N193.33 (10)N2—C10—H10A118.7
N3—Zn1—N1175.47 (10)C9—C10—H10A118.7
N2—Zn1—N178.01 (11)N2—C11—C7122.4 (3)
C19—O1—Zn1115.6 (2)N2—C11—C12117.5 (3)
C19—O2—Zn1ii138.9 (2)C7—C11—C12120.1 (3)
C18—O4—Zn1ii118.5 (2)N1—C12—C4122.9 (3)
C1—N1—C12117.6 (3)N1—C12—C11117.8 (3)
C1—N1—Zn1129.3 (2)C4—C12—C11119.3 (3)
C12—N1—Zn1113.1 (2)N3—C13—C14122.4 (3)
C10—N2—C11118.1 (3)N3—C13—C19113.6 (3)
C10—N2—Zn1128.3 (2)C14—C13—C19124.0 (3)
C11—N2—Zn1113.5 (2)C13—C14—C15117.9 (3)
C17—N3—C13118.8 (3)C13—C14—C18123.5 (3)
C17—N3—Zn1126.6 (2)C15—C14—C18118.5 (3)
C13—N3—Zn1112.7 (2)C16—C15—C14119.7 (3)
N1—C1—C2123.5 (3)C16—C15—H15A120.2
N1—C1—H1A118.3C14—C15—H15A120.2
C2—C1—H1A118.3C17—C16—C15118.7 (3)
C3—C2—C1119.2 (3)C17—C16—H16A120.7
C3—C2—H2A120.4C15—C16—H16A120.7
C1—C2—H2A120.4N3—C17—C16122.4 (3)
C2—C3—C4119.4 (3)N3—C17—H17A118.8
C2—C3—H3A120.3C16—C17—H17A118.8
C4—C3—H3A120.3O3—C18—O4126.0 (3)
C3—C4—C12117.4 (3)O3—C18—C14116.0 (3)
C3—C4—C5123.6 (3)O4—C18—C14117.9 (3)
C12—C4—C5119.1 (3)O2—C19—O1123.7 (3)
C6—C5—C4121.6 (3)O2—C19—C13119.2 (3)
C6—C5—H5A119.2O1—C19—C13117.1 (3)
C4—C5—H5A119.2H1WA—O1W—H1WB108.7
C5—C6—C7121.4 (3)
O4i—Zn1—O1—C1988.5 (2)Zn1—N2—C11—C7177.2 (3)
O2i—Zn1—O1—C197.6 (6)C10—N2—C11—C12179.9 (3)
N3—Zn1—O1—C190.6 (2)Zn1—N2—C11—C122.9 (4)
N2—Zn1—O1—C1998.8 (2)C8—C7—C11—N20.2 (5)
N1—Zn1—O1—C19176.0 (2)C6—C7—C11—N2177.4 (3)
O4i—Zn1—N1—C14.8 (3)C8—C7—C11—C12179.9 (3)
O1—Zn1—N1—C197.5 (3)C6—C7—C11—C122.4 (5)
O2i—Zn1—N1—C185.0 (3)C1—N1—C12—C40.6 (5)
N2—Zn1—N1—C1178.5 (3)Zn1—N1—C12—C4179.1 (3)
O4i—Zn1—N1—C12176.9 (2)C1—N1—C12—C11179.6 (3)
O1—Zn1—N1—C1284.2 (2)Zn1—N1—C12—C111.9 (4)
O2i—Zn1—N1—C1293.3 (2)C3—C4—C12—N11.8 (5)
N2—Zn1—N1—C120.2 (2)C5—C4—C12—N1178.4 (3)
O1—Zn1—N2—C1078.1 (3)C3—C4—C12—C11179.2 (3)
O2i—Zn1—N2—C1089.4 (3)C5—C4—C12—C110.7 (5)
N3—Zn1—N2—C100.8 (3)N2—C11—C12—N13.3 (4)
N1—Zn1—N2—C10178.1 (3)C7—C11—C12—N1176.9 (3)
O1—Zn1—N2—C1198.5 (2)N2—C11—C12—C4177.7 (3)
O2i—Zn1—N2—C1194.0 (2)C7—C11—C12—C42.2 (5)
N3—Zn1—N2—C11175.8 (2)C17—N3—C13—C143.6 (5)
N1—Zn1—N2—C111.5 (2)Zn1—N3—C13—C14161.9 (2)
O4i—Zn1—N3—C1781.9 (3)C17—N3—C13—C19176.9 (3)
O1—Zn1—N3—C17174.1 (3)Zn1—N3—C13—C1917.7 (3)
O2i—Zn1—N3—C177.7 (3)N3—C13—C14—C153.1 (5)
N2—Zn1—N3—C17101.8 (3)C19—C13—C14—C15177.4 (3)
O4i—Zn1—N3—C1382.2 (2)N3—C13—C14—C18173.2 (3)
O1—Zn1—N3—C1310.0 (2)C19—C13—C14—C186.3 (5)
O2i—Zn1—N3—C13171.8 (2)C13—C14—C15—C160.4 (5)
N2—Zn1—N3—C1394.2 (2)C18—C14—C15—C16176.8 (4)
C12—N1—C1—C21.3 (5)C14—C15—C16—C173.1 (6)
Zn1—N1—C1—C2176.9 (3)C13—N3—C17—C160.6 (5)
N1—C1—C2—C31.9 (6)Zn1—N3—C17—C16162.6 (3)
C1—C2—C3—C40.5 (6)C15—C16—C17—N32.7 (6)
C2—C3—C4—C121.2 (5)Zn1ii—O4—C18—O3109.1 (4)
C2—C3—C4—C5179.0 (4)Zn1ii—O4—C18—C1474.6 (4)
C3—C4—C5—C6179.6 (4)C13—C14—C18—O395.4 (5)
C12—C4—C5—C60.6 (6)C15—C14—C18—O380.8 (5)
C4—C5—C6—C70.3 (6)C13—C14—C18—O487.9 (4)
C5—C6—C7—C8178.7 (4)C15—C14—C18—O495.8 (4)
C5—C6—C7—C111.2 (6)Zn1ii—O2—C19—O1143.6 (3)
C11—C7—C8—C90.4 (5)Zn1ii—O2—C19—C1335.2 (5)
C6—C7—C8—C9177.1 (4)Zn1—O1—C19—O2168.5 (3)
C7—C8—C9—C100.5 (6)Zn1—O1—C19—C1310.3 (4)
C11—N2—C10—C90.4 (5)N3—C13—C19—O2159.6 (3)
Zn1—N2—C10—C9176.9 (3)C14—C13—C19—O220.9 (5)
C8—C9—C10—N20.5 (6)N3—C13—C19—O119.2 (4)
C10—N2—C11—C70.3 (5)C14—C13—C19—O1160.3 (3)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.852.223.022 (5)157
O1W—H1WB···O3ii0.852.423.215 (5)157
Symmetry code: (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Zn(C7H3NO4)(C12H8N2)]·H2O
Mr428.69
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.2099 (8), 11.6922 (8), 23.2513 (15)
V3)3319.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.23 × 0.19 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.721, 0.839
No. of measured, independent and
observed [I > 2σ(I)] reflections
30212, 3802, 3010
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.175, 1.06
No. of reflections3802
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 1.02

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O12.102 (2)Zn1—N12.142 (3)
Zn1—O2i2.110 (2)Zn1—N22.139 (3)
Zn1—O4i2.062 (2)Zn1—N32.131 (3)
Symmetry code: (i) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.852.223.022 (5)157
O1W—H1WB···O3ii0.852.423.215 (5)157
Symmetry code: (ii) x+1/2, y+1/2, z.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, L., Fang, R.-B. & Zhao, Q.-H. (2008). Chin. J. Chem. 26, 957–961.  CrossRef CAS Google Scholar
First citationHan, Z.-B., Ma, Y., Sun, Z.-G. & Yu, W.-S. (2006). Inorg. Chem. Commun. 9, 844–847.  CrossRef CAS Google Scholar
First citationLi, L. & Li, Y. (2004). J. Mol. Struct. 694, 199–203.  CrossRef CAS Google Scholar
First citationPatrick, B. O., Stevens, C. L., Storr, A. & Thompason, R. C. (2003). Polyhedron, 22, 3025–3035.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShit, S., Charkraborty, J., Howard, J. A. K., Spencer, E. C., Desplanches, C. & Mitra, S. (2008). Struct. Chem. 19, 553–558.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds