metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m891-m892

Bis(8-hy­dr­oxy-2-methyl­quinolinium) bis­­(pyridine-2,6-di­carboxyl­ato)­nickelate(II) methanol monosolvate monohydrate

aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 917791436, Iran, and cDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: r3.chemist@gmail.com

(Received 8 May 2011; accepted 31 May 2011; online 11 June 2011)

In the title compound, (C10H10NO)2[Ni(C7H3NO4)2]·CH3OH·H2O, the coordination geometry of the NiII atom can be described as distorted octa­hedral. In the crystal, noncovalent inter­actions play an important role in the stabilization of the structure, involving O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonds and ππ stacking inter­actions between the pyridine rings of the pyridine-2,6-dicarboxyl­ate ligands [centroid–centroid distance = 3.7138 (15) Å] and between the 8-hy­droxy-2-methyl­quinolinium cations [centroid–centroid distances = 3.6737 (15), 3.4434 (14), 3.6743 (15), 3.7541 (16), 3.5020 (15) and 3.7947 (15) Å].

Related literature

For general background to proton transfer compounds based on carb­oxy­lic acid derivatives, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Eshtiagh-Hosseini, Aghabozorg et al. (2010[Eshtiagh-Hosseini, H., Aghabozorg, H., Mirzaei, M., Amini, M. M., Chen, Y.-G., Shokrollahi, A. & Aghaei, R. (2010). J. Mol. Struct. 973, 180-189.]); Eshtiagh-Hosseini, Alfi et al. (2010[Eshtiagh-Hosseini, H., Alfi, N., Mirzaei, M., Fanwick, P. & Fanwick, P. E. (2010). Acta Cryst. E66, m1450.]); Eshtiagh-Hosseini, Yousefi et al. (2010[Eshtiagh-Hosseini, H., Yousefi, Z., Safiee, M. & Mirzaei, M. (2010). J. Coord. Chem. 63, 3187-3197.]). For related structures, see: Aghabozorg et al. (2011[Aghabozorg, H., Gholizadeh, A., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, m379-m380.]); Pasdar et al. (2011[Pasdar, H., Sadat Kashani, S., Aghabozorg, H. & Notash, B. (2011). Acta Cryst. E67, m193-m194.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10NO)2[Ni(C7H3NO4)2]·CH4O·H2O

  • Mr = 759.34

  • Triclinic, [P \overline 1]

  • a = 10.100 (2) Å

  • b = 12.733 (3) Å

  • c = 14.638 (3) Å

  • α = 115.45 (3)°

  • β = 98.73 (3)°

  • γ = 95.89 (3)°

  • V = 1650.2 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 120 K

  • 0.50 × 0.50 × 0.23 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.723, Tmax = 0.856

  • 18115 measured reflections

  • 8795 independent reflections

  • 7132 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.138

  • S = 1.05

  • 8795 reflections

  • 492 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.35 e Å−3

  • Δρmin = −1.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O7i 0.93 2.54 3.164 (3) 124
C11—H11⋯O1ii 0.93 2.52 3.154 (3) 126
C15—H15A⋯O4iii 0.96 2.47 3.398 (3) 162
C17—H17⋯O6iv 0.93 2.27 3.155 (3) 158
C21—H21⋯O6 0.93 2.58 3.344 (3) 139
C25—H25A⋯O8ii 0.96 2.50 3.169 (3) 127
C27—H27⋯O4v 0.93 2.42 3.298 (3) 158
N3—H3A⋯O11iii 0.82 (3) 1.92 (3) 2.732 (3) 171 (3)
N4—H4A⋯O8ii 0.86 (3) 1.89 (3) 2.706 (3) 157 (3)
O9—H9A⋯O5v 0.82 1.75 2.574 (2) 178
O10—H10A⋯O2vi 0.82 1.76 2.562 (2) 166
O11—H11A⋯O3 0.87 (4) 1.83 (4) 2.699 (2) 171 (4)
O12—H12A⋯O7 0.82 (2) 2.05 (2) 2.852 (4) 167 (5)
O12—H12B⋯O4i 0.82 (2) 2.32 (3) 3.049 (4) 149 (4)
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) x+1, y, z; (v) -x+1, -y, -z+1; (vi) -x, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we have defined a plan to prepare water soluble proton transfer compounds as novel self-assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported cases in which proton transfers from pyridine-2,6-dicarboxylic acid (pydcH2) to different amine base ligands (Eshtiagh-Hosseini, Aghabozorg et al., 2010; Eshtiagh-Hosseini, Alfi et al., 2010; Eshtiagh-Hosseini, Yousefi et al., 2010). This research plan has resulted in the formation of some novel proton transfer compounds based on carboxylic acid derivatives. For more details and related literature see our review article (Aghabozorg et al., 2008).

We have recently reported an isostructural Cu(II) compound with formula (8hmqH)2[Cu(pydc)2].CH3OH.H2O (8hmq = 8-hydroxy-2-methylquinoline) (Aghabozorg et al., 2011) and a related Ni(II) compound (Pasdar et al., 2011). The molecular structure of the title compound is presented in Fig. 1. The NiII atom is six-coordinated by two pydc ligands. As it can be seen, atoms N1 and N2 of the two pydc ligands occupy the axial positions, while atoms O1, O3, O5, and O7 form the equatorial plane, with Ni—O distances ranging from 2.1247 (16) to 2.1449 (16) Å. The N1—Ni1—N2 angle [173.76 (7)°] deviates from linearity. Therefore, the geometry of the resulting NiN2O4 coordination can be described as distorted octahedral. In the crystal structure, non-covalent interactions play an important role in the stabilization of the structure, involving O—H···O, N—H···O and weak C—H···O hydrogen bonds and ππ stacking interactions between the pyridine rings of the pydc ligands [centroid–centroid distance = 3.7138 (15) Å] and between the 8hmqH cations [centroid–centroid distances = 3.6737 (15), 3.4434 (14), 3.6743 (15), 3.7541 (16), 3.5020 (15) and 3.7947 (15) Å].

Related literature top

For general background to proton transfer compounds based on carboxylic acid derivatives, see: Aghabozorg et al. (2008); ,Eshtiagh-Hosseini, Aghabozorg et al. (2010); Eshtiagh-Hosseini, Alfi et al. (2010); Eshtiagh-Hosseini, Yousefi et al. (2010). For related structures, see: Aghabozorg et al. (2011); Pasdar et al. (2011).

Experimental top

8-Hydroxy-2-methylquinoline (0.320 g, 2 mmol) in methanol (10 ml) and 2,6-pyridine dicarboxylic acid (0.170 g, 1 mmol) in methanol (10 ml) were mixed and stirred until a clear solution was obtained. A solution of Ni(NO3)2.6H2O (0.145 g, 0.5 mmol) in methanol (5 ml) was added to the mixture and stirred for 30 min. Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation after two weeks.

Refinement top

H atoms bonded to N atoms and methanol O atom were found in a difference Fourier map and refined isotropically, with a restraint of N4—H4 = 0.86 (3) Å. The water H atoms were found in a difference Fourier map and refined with distance restraints of O—H = 0.82 (2) and H···H = 1.7 (4) Å and with a fixed Uiso(H). H atoms bonded to C atoms and hydroxyl O atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C,O). The highest residual electron density was found at 0.83 Å from Ni1 atom and the deepest hole at 0.56 Å from O12 atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound. Intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds are shown as blue dashed lines.
[Figure 3] Fig. 3. The packing diagram of the title compound, showing ππ interactions between the pyridine rings of the pydc ligands and between the 8hmqH cations. H atoms have been omitted for clarity.
Bis(8-hydroxy-2-methylquinolinium) bis(pyridine-2,6-dicarboxylato)nickelate(II) methanol monosolvate monohydrate top
Crystal data top
(C10H10NO)2[Ni(C7H3NO4)2]·CH4O·H2OZ = 2
Mr = 759.34F(000) = 788
Triclinic, P1Dx = 1.528 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.100 (2) ÅCell parameters from 8795 reflections
b = 12.733 (3) Åθ = 2.1–29.1°
c = 14.638 (3) ŵ = 0.66 mm1
α = 115.45 (3)°T = 120 K
β = 98.73 (3)°Block, green
γ = 95.89 (3)°0.50 × 0.50 × 0.23 mm
V = 1650.2 (8) Å3
Data collection top
Stoe IPDS II
diffractometer
8795 independent reflections
Radiation source: fine-focus sealed tube7132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 29.1°, θmin = 2.1°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
h = 1313
Tmin = 0.723, Tmax = 0.856k = 1717
18115 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.095P)2]
where P = (Fo2 + 2Fc2)/3
8795 reflections(Δ/σ)max < 0.001
492 parametersΔρmax = 1.35 e Å3
4 restraintsΔρmin = 1.17 e Å3
Crystal data top
(C10H10NO)2[Ni(C7H3NO4)2]·CH4O·H2Oγ = 95.89 (3)°
Mr = 759.34V = 1650.2 (8) Å3
Triclinic, P1Z = 2
a = 10.100 (2) ÅMo Kα radiation
b = 12.733 (3) ŵ = 0.66 mm1
c = 14.638 (3) ÅT = 120 K
α = 115.45 (3)°0.50 × 0.50 × 0.23 mm
β = 98.73 (3)°
Data collection top
Stoe IPDS II
diffractometer
8795 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
7132 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 0.856Rint = 0.047
18115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0474 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.35 e Å3
8795 reflectionsΔρmin = 1.17 e Å3
492 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.48763 (3)0.22447 (2)0.253563 (19)0.01440 (9)
O10.31109 (16)0.28626 (14)0.21116 (11)0.0203 (3)
O20.10747 (16)0.21828 (15)0.10010 (13)0.0251 (3)
O30.61797 (15)0.09757 (14)0.23722 (12)0.0213 (3)
O40.62645 (19)0.09259 (16)0.13845 (14)0.0307 (4)
O50.39775 (15)0.19150 (14)0.36350 (12)0.0199 (3)
O60.42156 (16)0.25518 (16)0.53527 (13)0.0253 (3)
O70.61440 (16)0.32453 (13)0.20438 (11)0.0198 (3)
O80.77752 (18)0.48837 (15)0.26964 (13)0.0286 (4)
O90.83619 (15)0.06433 (14)0.67019 (13)0.0220 (3)
H9A0.76260.10600.65970.033*
O100.02135 (18)0.58541 (16)0.83206 (14)0.0277 (4)
H10A0.06020.64210.84620.042*
O110.87763 (18)0.13711 (17)0.34025 (16)0.0314 (4)
O120.4661 (4)0.3460 (3)0.0331 (3)0.0818 (10)
N10.38462 (18)0.08308 (15)0.12842 (13)0.0163 (3)
N20.58956 (17)0.35510 (15)0.38661 (13)0.0148 (3)
N31.04662 (17)0.04876 (16)0.63184 (13)0.0158 (3)
N40.11624 (18)0.42168 (16)0.84640 (14)0.0188 (3)
C10.2237 (2)0.20798 (19)0.13492 (16)0.0186 (4)
C20.2634 (2)0.08790 (19)0.08134 (15)0.0178 (4)
C30.1854 (2)0.0107 (2)0.00518 (17)0.0254 (5)
H30.10110.00700.03820.030*
C40.2365 (3)0.1150 (2)0.04118 (17)0.0275 (5)
H40.18630.18230.09900.033*
C50.3623 (3)0.11857 (19)0.00914 (17)0.0247 (5)
H50.39770.18780.01430.030*
C60.4345 (2)0.01672 (18)0.09532 (16)0.0179 (4)
C70.5721 (2)0.00531 (19)0.16093 (17)0.0207 (4)
C80.4523 (2)0.26155 (19)0.45925 (16)0.0177 (4)
C90.5642 (2)0.36054 (18)0.47561 (15)0.0156 (4)
C100.6345 (2)0.45077 (19)0.57041 (16)0.0187 (4)
H100.61560.45480.63190.022*
C110.7344 (2)0.5355 (2)0.57129 (16)0.0219 (4)
H110.78400.59670.63390.026*
C120.7593 (2)0.5279 (2)0.47794 (17)0.0222 (4)
H120.82570.58380.47730.027*
C130.6835 (2)0.43572 (18)0.38596 (15)0.0169 (4)
C140.6943 (2)0.41509 (19)0.27724 (16)0.0195 (4)
C151.2834 (2)0.0523 (2)0.61385 (17)0.0207 (4)
H15A1.32710.07450.68420.031*
H15B1.34310.08460.58320.031*
H15C1.26320.03240.57520.031*
C161.1540 (2)0.09952 (19)0.61216 (15)0.0171 (4)
C171.1436 (2)0.1982 (2)0.59303 (16)0.0211 (4)
H171.21670.23310.57750.025*
C181.0255 (2)0.2424 (2)0.59747 (17)0.0216 (4)
H181.01970.30830.58590.026*
C190.9126 (2)0.18995 (18)0.61924 (16)0.0182 (4)
C200.7884 (2)0.2320 (2)0.62389 (17)0.0226 (4)
H200.77870.29820.61360.027*
C210.6821 (2)0.1746 (2)0.64367 (18)0.0233 (4)
H210.60050.20250.64680.028*
C220.6949 (2)0.0737 (2)0.65937 (17)0.0216 (4)
H220.62140.03590.67220.026*
C230.8152 (2)0.03039 (18)0.65586 (15)0.0176 (4)
C240.9258 (2)0.08958 (18)0.63603 (15)0.0166 (4)
C250.3355 (2)0.3609 (2)0.8390 (2)0.0311 (5)
H25A0.33410.36960.77690.047*
H25B0.37310.29250.83270.047*
H25C0.39060.43010.89720.047*
C260.1934 (2)0.3462 (2)0.85504 (16)0.0219 (4)
C270.1390 (2)0.2585 (2)0.87963 (17)0.0239 (4)
H270.19150.20460.88500.029*
C280.0084 (2)0.2513 (2)0.89586 (16)0.0227 (4)
H280.02730.19210.91130.027*
C290.0716 (2)0.33329 (19)0.88931 (15)0.0192 (4)
C300.2050 (2)0.3338 (2)0.90747 (18)0.0251 (4)
H300.24520.27790.92480.030*
C310.2747 (2)0.4172 (2)0.89942 (18)0.0259 (5)
H310.36250.41690.91160.031*
C320.2177 (2)0.5032 (2)0.87334 (17)0.0234 (4)
H320.26790.55830.86800.028*
C330.0865 (2)0.50617 (19)0.85547 (16)0.0199 (4)
C340.0139 (2)0.42021 (19)0.86331 (15)0.0171 (4)
C350.9526 (3)0.2250 (3)0.3241 (3)0.0370 (6)
H35A0.95360.19510.25180.056*
H35B1.04440.24610.36380.056*
H35C0.91070.29370.34560.056*
H3A1.060 (3)0.010 (3)0.640 (2)0.030 (8)*
H4A0.154 (3)0.468 (3)0.825 (3)0.040 (9)*
H11A0.794 (4)0.117 (3)0.304 (3)0.051 (10)*
H12A0.516 (4)0.350 (4)0.085 (3)0.076*
H12B0.419 (4)0.291 (3)0.020 (2)0.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01386 (13)0.01242 (13)0.01467 (13)0.00045 (9)0.00241 (9)0.00496 (10)
O10.0209 (7)0.0180 (7)0.0190 (7)0.0041 (6)0.0015 (6)0.0063 (6)
O20.0182 (7)0.0275 (8)0.0287 (8)0.0042 (6)0.0006 (6)0.0135 (7)
O30.0185 (7)0.0215 (8)0.0239 (7)0.0048 (6)0.0046 (6)0.0101 (6)
O40.0376 (10)0.0272 (9)0.0353 (9)0.0177 (8)0.0153 (8)0.0164 (8)
O50.0176 (7)0.0198 (7)0.0218 (7)0.0027 (6)0.0049 (6)0.0102 (6)
O60.0224 (8)0.0343 (9)0.0252 (8)0.0001 (7)0.0080 (6)0.0192 (7)
O70.0233 (7)0.0179 (7)0.0152 (6)0.0015 (6)0.0052 (6)0.0055 (6)
O80.0325 (9)0.0242 (8)0.0258 (8)0.0073 (7)0.0148 (7)0.0085 (7)
O90.0155 (7)0.0219 (8)0.0323 (8)0.0004 (6)0.0055 (6)0.0165 (7)
O100.0278 (8)0.0280 (9)0.0395 (9)0.0097 (7)0.0165 (7)0.0225 (8)
O110.0183 (8)0.0322 (9)0.0500 (11)0.0004 (7)0.0011 (7)0.0273 (9)
O120.100 (3)0.080 (2)0.0591 (18)0.031 (2)0.0050 (18)0.0261 (17)
N10.0170 (8)0.0145 (8)0.0168 (8)0.0001 (6)0.0054 (6)0.0068 (6)
N20.0131 (7)0.0141 (8)0.0160 (7)0.0005 (6)0.0044 (6)0.0056 (6)
N30.0151 (8)0.0147 (8)0.0161 (7)0.0007 (6)0.0035 (6)0.0063 (6)
N40.0177 (8)0.0189 (8)0.0175 (8)0.0005 (7)0.0057 (6)0.0063 (7)
C10.0195 (9)0.0204 (10)0.0169 (9)0.0033 (8)0.0048 (7)0.0092 (8)
C20.0170 (9)0.0193 (10)0.0150 (9)0.0006 (8)0.0042 (7)0.0064 (8)
C30.0223 (10)0.0287 (12)0.0183 (10)0.0041 (9)0.0029 (8)0.0067 (9)
C40.0319 (12)0.0228 (11)0.0173 (10)0.0079 (9)0.0059 (9)0.0022 (8)
C50.0382 (13)0.0139 (9)0.0206 (10)0.0002 (9)0.0139 (9)0.0053 (8)
C60.0221 (10)0.0154 (9)0.0179 (9)0.0014 (8)0.0097 (7)0.0078 (8)
C70.0232 (10)0.0202 (10)0.0239 (10)0.0060 (8)0.0114 (8)0.0123 (8)
C80.0143 (9)0.0201 (10)0.0220 (9)0.0024 (7)0.0052 (7)0.0124 (8)
C90.0141 (8)0.0174 (9)0.0174 (9)0.0022 (7)0.0045 (7)0.0095 (7)
C100.0204 (9)0.0204 (10)0.0158 (9)0.0040 (8)0.0059 (7)0.0080 (8)
C110.0224 (10)0.0193 (10)0.0168 (9)0.0014 (8)0.0032 (8)0.0031 (8)
C120.0204 (10)0.0183 (10)0.0219 (10)0.0055 (8)0.0050 (8)0.0054 (8)
C130.0173 (9)0.0153 (9)0.0177 (9)0.0007 (7)0.0068 (7)0.0067 (7)
C140.0215 (10)0.0169 (9)0.0193 (9)0.0012 (8)0.0092 (8)0.0066 (8)
C150.0148 (9)0.0247 (10)0.0211 (10)0.0003 (8)0.0039 (7)0.0098 (8)
C160.0145 (9)0.0200 (9)0.0128 (8)0.0026 (7)0.0022 (7)0.0053 (7)
C170.0221 (10)0.0209 (10)0.0189 (9)0.0035 (8)0.0053 (8)0.0090 (8)
C180.0255 (11)0.0192 (10)0.0212 (10)0.0001 (8)0.0044 (8)0.0113 (8)
C190.0189 (9)0.0171 (9)0.0164 (9)0.0006 (8)0.0029 (7)0.0069 (7)
C200.0243 (10)0.0202 (10)0.0233 (10)0.0044 (8)0.0043 (8)0.0101 (8)
C210.0182 (10)0.0247 (11)0.0254 (10)0.0050 (8)0.0045 (8)0.0098 (9)
C220.0165 (9)0.0227 (10)0.0240 (10)0.0003 (8)0.0046 (8)0.0099 (8)
C230.0167 (9)0.0169 (9)0.0167 (9)0.0009 (7)0.0025 (7)0.0067 (7)
C240.0160 (9)0.0165 (9)0.0138 (8)0.0010 (7)0.0018 (7)0.0050 (7)
C250.0181 (10)0.0263 (12)0.0396 (13)0.0032 (9)0.0066 (9)0.0067 (10)
C260.0198 (10)0.0194 (10)0.0190 (9)0.0024 (8)0.0029 (8)0.0026 (8)
C270.0255 (11)0.0199 (10)0.0220 (10)0.0053 (8)0.0009 (8)0.0065 (8)
C280.0294 (11)0.0194 (10)0.0181 (9)0.0003 (8)0.0036 (8)0.0088 (8)
C290.0214 (10)0.0198 (10)0.0135 (8)0.0004 (8)0.0041 (7)0.0056 (7)
C300.0243 (11)0.0264 (11)0.0235 (10)0.0025 (9)0.0100 (8)0.0103 (9)
C310.0178 (10)0.0286 (12)0.0270 (11)0.0013 (9)0.0099 (8)0.0076 (9)
C320.0205 (10)0.0235 (11)0.0242 (10)0.0058 (8)0.0070 (8)0.0081 (9)
C330.0208 (10)0.0197 (10)0.0187 (9)0.0020 (8)0.0051 (8)0.0083 (8)
C340.0165 (9)0.0190 (9)0.0138 (8)0.0015 (7)0.0050 (7)0.0057 (7)
C350.0280 (12)0.0318 (13)0.0547 (17)0.0047 (10)0.0021 (11)0.0284 (13)
Geometric parameters (Å, º) top
Ni1—N21.969 (2)C11—C121.392 (3)
Ni1—N11.970 (2)C11—H110.9300
Ni1—O72.1247 (16)C12—C131.386 (3)
Ni1—O52.1298 (16)C12—H120.9300
Ni1—O12.1343 (16)C13—C141.521 (3)
Ni1—O32.1449 (16)C15—C161.495 (3)
O1—C11.258 (3)C15—H15A0.9600
O2—C11.250 (3)C15—H15B0.9600
O3—C71.280 (3)C15—H15C0.9600
O4—C71.229 (3)C16—C171.410 (3)
O5—C81.286 (3)C17—C181.369 (3)
O6—C81.232 (3)C17—H170.9300
O7—C141.269 (3)C18—C191.409 (3)
O8—C141.243 (3)C18—H180.9300
O9—C231.342 (3)C19—C201.413 (3)
O9—H9A0.8200C19—C241.417 (3)
O10—C331.341 (3)C20—C211.373 (3)
O10—H10A0.8200C20—H200.9300
O11—C351.411 (3)C21—C221.413 (3)
O11—H11A0.87 (4)C21—H210.9300
O12—H12A0.82 (2)C22—C231.384 (3)
O12—H12B0.82 (2)C22—H220.9300
N1—C21.332 (3)C23—C241.419 (3)
N1—C61.334 (3)C25—C261.495 (3)
N2—C131.329 (3)C25—H25A0.9600
N2—C91.340 (3)C25—H25B0.9600
N3—C161.337 (3)C25—H25C0.9600
N3—C241.374 (3)C26—C271.400 (3)
N3—H3A0.82 (3)C27—C281.376 (3)
N4—C261.333 (3)C27—H270.9300
N4—C341.374 (3)C28—C291.410 (3)
N4—H4A0.86 (3)C28—H280.9300
C1—C21.518 (3)C29—C301.412 (3)
C2—C31.389 (3)C29—C341.416 (3)
C3—C41.389 (4)C30—C311.368 (4)
C3—H30.9300C30—H300.9300
C4—C51.384 (4)C31—C321.405 (3)
C4—H40.9300C31—H310.9300
C5—C61.388 (3)C32—C331.389 (3)
C5—H50.9300C32—H320.9300
C6—C71.519 (3)C33—C341.413 (3)
C8—C91.513 (3)C35—H35A0.9600
C9—C101.383 (3)C35—H35B0.9600
C10—C111.394 (3)C35—H35C0.9600
C10—H100.9300
N2—Ni1—N1173.76 (7)O8—C14—C13117.26 (19)
N2—Ni1—O778.07 (7)O7—C14—C13115.06 (18)
N1—Ni1—O7107.32 (7)C16—C15—H15A109.5
N2—Ni1—O577.35 (7)C16—C15—H15B109.5
N1—Ni1—O597.45 (7)H15A—C15—H15B109.5
O7—Ni1—O5155.11 (6)C16—C15—H15C109.5
N2—Ni1—O1105.25 (7)H15A—C15—H15C109.5
N1—Ni1—O177.98 (7)H15B—C15—H15C109.5
O7—Ni1—O192.46 (6)N3—C16—C17119.24 (19)
O5—Ni1—O190.26 (6)N3—C16—C15119.15 (19)
N2—Ni1—O399.28 (7)C17—C16—C15121.58 (19)
N1—Ni1—O377.43 (7)C18—C17—C16119.7 (2)
O7—Ni1—O394.27 (6)C18—C17—H17120.1
O5—Ni1—O393.46 (6)C16—C17—H17120.1
O1—Ni1—O3155.41 (6)C17—C18—C19121.2 (2)
C1—O1—Ni1114.11 (14)C17—C18—H18119.4
C7—O3—Ni1115.21 (13)C19—C18—H18119.4
C8—O5—Ni1115.57 (13)C18—C19—C20123.2 (2)
C14—O7—Ni1114.82 (13)C18—C19—C24117.50 (19)
C23—O9—H9A109.5C20—C19—C24119.32 (19)
C33—O10—H10A109.5C21—C20—C19119.7 (2)
C35—O11—H11A111 (3)C21—C20—H20120.2
H12A—O12—H12B134 (4)C19—C20—H20120.2
C2—N1—C6121.35 (19)C20—C21—C22121.0 (2)
C2—N1—Ni1119.01 (14)C20—C21—H21119.5
C6—N1—Ni1119.57 (14)C22—C21—H21119.5
C13—N2—C9121.36 (18)C23—C22—C21120.9 (2)
C13—N2—Ni1118.90 (14)C23—C22—H22119.5
C9—N2—Ni1119.74 (14)C21—C22—H22119.5
C16—N3—C24122.90 (18)O9—C23—C22124.84 (19)
C16—N3—H3A113 (2)O9—C23—C24116.69 (18)
C24—N3—H3A124 (2)C22—C23—C24118.46 (19)
C26—N4—C34123.3 (2)N3—C24—C19119.42 (18)
C26—N4—H4A113 (2)N3—C24—C23119.95 (19)
C34—N4—H4A123 (2)C19—C24—C23120.62 (19)
O2—C1—O1126.9 (2)C26—C25—H25A109.5
O2—C1—C2116.94 (19)C26—C25—H25B109.5
O1—C1—C2116.19 (18)H25A—C25—H25B109.5
N1—C2—C3121.0 (2)C26—C25—H25C109.5
N1—C2—C1112.51 (18)H25A—C25—H25C109.5
C3—C2—C1126.51 (19)H25B—C25—H25C109.5
C2—C3—C4118.4 (2)N4—C26—C27119.0 (2)
C2—C3—H3120.8N4—C26—C25117.8 (2)
C4—C3—H3120.8C27—C26—C25123.2 (2)
C5—C4—C3119.9 (2)C28—C27—C26120.4 (2)
C5—C4—H4120.1C28—C27—H27119.8
C3—C4—H4120.1C26—C27—H27119.8
C4—C5—C6118.6 (2)C27—C28—C29120.4 (2)
C4—C5—H5120.7C27—C28—H28119.8
C6—C5—H5120.7C29—C28—H28119.8
N1—C6—C5120.8 (2)C28—C29—C30123.9 (2)
N1—C6—C7113.46 (18)C28—C29—C34117.7 (2)
C5—C6—C7125.7 (2)C30—C29—C34118.4 (2)
O4—C7—O3126.7 (2)C31—C30—C29119.6 (2)
O4—C7—C6119.0 (2)C31—C30—H30120.2
O3—C7—C6114.29 (18)C29—C30—H30120.2
O6—C8—O5126.6 (2)C30—C31—C32122.0 (2)
O6—C8—C9119.24 (19)C30—C31—H31119.0
O5—C8—C9114.17 (18)C32—C31—H31119.0
N2—C9—C10121.21 (19)C33—C32—C31120.2 (2)
N2—C9—C8112.99 (18)C33—C32—H32119.9
C10—C9—C8125.79 (18)C31—C32—H32119.9
C9—C10—C11118.25 (19)O10—C33—C32125.2 (2)
C9—C10—H10120.9O10—C33—C34116.59 (19)
C11—C10—H10120.9C32—C33—C34118.2 (2)
C12—C11—C10119.6 (2)N4—C34—C33119.24 (19)
C12—C11—H11120.2N4—C34—C29119.19 (19)
C10—C11—H11120.2C33—C34—C29121.57 (19)
C13—C12—C11118.8 (2)O11—C35—H35A109.5
C13—C12—H12120.6O11—C35—H35B109.5
C11—C12—H12120.6H35A—C35—H35B109.5
N2—C13—C12120.76 (19)O11—C35—H35C109.5
N2—C13—C14113.11 (18)H35A—C35—H35C109.5
C12—C13—C14126.12 (19)H35B—C35—H35C109.5
O8—C14—O7127.7 (2)
N2—Ni1—O1—C1170.54 (14)Ni1—N2—C9—C81.5 (2)
N1—Ni1—O1—C13.97 (15)O6—C8—C9—N2178.34 (18)
O7—Ni1—O1—C1111.16 (15)O5—C8—C9—N22.0 (2)
O5—Ni1—O1—C193.59 (15)O6—C8—C9—C102.9 (3)
O3—Ni1—O1—C15.3 (2)O5—C8—C9—C10176.70 (19)
N2—Ni1—O3—C7173.19 (15)N2—C9—C10—C110.9 (3)
N1—Ni1—O3—C71.41 (15)C8—C9—C10—C11179.59 (19)
O7—Ni1—O3—C7108.22 (15)C9—C10—C11—C120.7 (3)
O5—Ni1—O3—C795.46 (15)C10—C11—C12—C130.1 (3)
O1—Ni1—O3—C72.7 (2)C9—N2—C13—C120.5 (3)
N2—Ni1—O5—C84.03 (14)Ni1—N2—C13—C12178.84 (16)
N1—Ni1—O5—C8172.48 (14)C9—N2—C13—C14178.75 (17)
O7—Ni1—O5—C813.2 (2)Ni1—N2—C13—C141.9 (2)
O1—Ni1—O5—C8109.61 (15)C11—C12—C13—N20.7 (3)
O3—Ni1—O5—C894.72 (15)C11—C12—C13—C14178.5 (2)
N2—Ni1—O7—C141.19 (15)Ni1—O7—C14—O8179.45 (19)
N1—Ni1—O7—C14175.57 (14)Ni1—O7—C14—C130.5 (2)
O5—Ni1—O7—C1410.3 (2)N2—C13—C14—O8178.21 (19)
O1—Ni1—O7—C14106.26 (15)C12—C13—C14—O81.0 (3)
O3—Ni1—O7—C1497.41 (15)N2—C13—C14—O70.8 (3)
O7—Ni1—N1—C290.88 (16)C12—C13—C14—O7180.0 (2)
O5—Ni1—N1—C286.61 (16)C24—N3—C16—C171.1 (3)
O1—Ni1—N1—C22.05 (15)C24—N3—C16—C15177.27 (18)
O3—Ni1—N1—C2178.52 (16)N3—C16—C17—C181.7 (3)
O7—Ni1—N1—C692.11 (16)C15—C16—C17—C18176.62 (19)
O5—Ni1—N1—C690.39 (16)C16—C17—C18—C191.1 (3)
O1—Ni1—N1—C6179.06 (16)C17—C18—C19—C20179.5 (2)
O3—Ni1—N1—C61.51 (15)C17—C18—C19—C240.2 (3)
O7—Ni1—N2—C131.72 (15)C18—C19—C20—C21178.8 (2)
O5—Ni1—N2—C13177.78 (16)C24—C19—C20—C210.6 (3)
O1—Ni1—N2—C1391.02 (15)C19—C20—C21—C220.1 (3)
O3—Ni1—N2—C1390.73 (15)C20—C21—C22—C230.4 (3)
O7—Ni1—N2—C9178.94 (16)C21—C22—C23—O9179.8 (2)
O5—Ni1—N2—C92.87 (14)C21—C22—C23—C240.0 (3)
O1—Ni1—N2—C989.63 (15)C16—N3—C24—C190.2 (3)
O3—Ni1—N2—C988.62 (15)C16—N3—C24—C23179.11 (18)
Ni1—O1—C1—O2173.66 (18)C18—C19—C24—N30.8 (3)
Ni1—O1—C1—C25.0 (2)C20—C19—C24—N3179.81 (18)
C6—N1—C2—C31.1 (3)C18—C19—C24—C23178.48 (18)
Ni1—N1—C2—C3178.01 (16)C20—C19—C24—C230.9 (3)
C6—N1—C2—C1177.15 (17)O9—C23—C24—N30.3 (3)
Ni1—N1—C2—C10.2 (2)C22—C23—C24—N3179.88 (19)
O2—C1—C2—N1175.41 (18)O9—C23—C24—C19179.56 (18)
O1—C1—C2—N13.4 (3)C22—C23—C24—C190.6 (3)
O2—C1—C2—C32.7 (3)C34—N4—C26—C271.9 (3)
O1—C1—C2—C3178.5 (2)C34—N4—C26—C25177.4 (2)
N1—C2—C3—C40.4 (3)N4—C26—C27—C280.8 (3)
C1—C2—C3—C4177.5 (2)C25—C26—C27—C28178.4 (2)
C2—C3—C4—C50.0 (3)C26—C27—C28—C290.9 (3)
C3—C4—C5—C60.2 (3)C27—C28—C29—C30178.3 (2)
C2—N1—C6—C51.2 (3)C27—C28—C29—C341.4 (3)
Ni1—N1—C6—C5178.16 (15)C28—C29—C30—C31179.9 (2)
C2—N1—C6—C7178.34 (18)C34—C29—C30—C310.1 (3)
Ni1—N1—C6—C71.4 (2)C29—C30—C31—C320.1 (4)
C4—C5—C6—N10.8 (3)C30—C31—C32—C330.4 (4)
C4—C5—C6—C7178.7 (2)C31—C32—C33—O10178.7 (2)
Ni1—O3—C7—O4177.46 (19)C31—C32—C33—C340.6 (3)
Ni1—O3—C7—C61.1 (2)C26—N4—C34—C33178.0 (2)
N1—C6—C7—O4178.78 (19)C26—N4—C34—C291.3 (3)
C5—C6—C7—O40.8 (3)O10—C33—C34—N40.4 (3)
N1—C6—C7—O30.1 (3)C32—C33—C34—N4179.72 (19)
C5—C6—C7—O3179.4 (2)O10—C33—C34—C29178.94 (19)
Ni1—O5—C8—O6176.08 (17)C32—C33—C34—C290.4 (3)
Ni1—O5—C8—C94.3 (2)C28—C29—C34—N40.4 (3)
C13—N2—C9—C100.3 (3)C30—C29—C34—N4179.36 (19)
Ni1—N2—C9—C10179.66 (14)C28—C29—C34—C33179.72 (19)
C13—N2—C9—C8179.14 (17)C30—C29—C34—C330.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O7i0.932.543.164 (3)124
C11—H11···O1ii0.932.523.154 (3)126
C15—H15A···O4iii0.962.473.398 (3)162
C17—H17···O6iv0.932.273.155 (3)158
C21—H21···O60.932.583.344 (3)139
C25—H25A···O8ii0.962.503.169 (3)127
C27—H27···O4v0.932.423.298 (3)158
N3—H3A···O11iii0.82 (3)1.92 (3)2.732 (3)171 (3)
N4—H4A···O8ii0.86 (3)1.89 (3)2.706 (3)157 (3)
O9—H9A···O5v0.821.752.574 (2)178
O10—H10A···O2vi0.821.762.562 (2)166
O11—H11A···O30.87 (4)1.83 (4)2.699 (2)171 (4)
O12—H12A···O70.82 (2)2.05 (2)2.852 (4)167 (5)
O12—H12B···O4i0.82 (2)2.32 (3)3.049 (4)149 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1; (iv) x+1, y, z; (v) x+1, y, z+1; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C10H10NO)2[Ni(C7H3NO4)2]·CH4O·H2O
Mr759.34
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.100 (2), 12.733 (3), 14.638 (3)
α, β, γ (°)115.45 (3), 98.73 (3), 95.89 (3)
V3)1650.2 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.50 × 0.50 × 0.23
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.723, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
18115, 8795, 7132
Rint0.047
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.138, 1.05
No. of reflections8795
No. of parameters492
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.35, 1.17

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O7i0.932.543.164 (3)124.3
C11—H11···O1ii0.932.523.154 (3)125.9
C15—H15A···O4iii0.962.473.398 (3)162.1
C17—H17···O6iv0.932.273.155 (3)158.4
C21—H21···O60.932.583.344 (3)139.3
C25—H25A···O8ii0.962.503.169 (3)126.7
C27—H27···O4v0.932.423.298 (3)158.0
N3—H3A···O11iii0.82 (3)1.92 (3)2.732 (3)171 (3)
N4—H4A···O8ii0.86 (3)1.89 (3)2.706 (3)157 (3)
O9—H9A···O5v0.821.752.574 (2)178.0
O10—H10A···O2vi0.821.762.562 (2)166.2
O11—H11A···O30.87 (4)1.83 (4)2.699 (2)171 (4)
O12—H12A···O70.820 (18)2.05 (2)2.852 (4)167 (5)
O12—H12B···O4i0.820 (19)2.32 (3)3.049 (4)149 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1; (iv) x+1, y, z; (v) x+1, y, z+1; (vi) x, y+1, z+1.
 

Acknowledgements

The authors thank the Faculty of Chemistry, Islamic Azad University, North Tehran Branch, for supporting this work.

References

First citationAghabozorg, H., Gholizadeh, A., Mirzaei, M. & Notash, B. (2011). Acta Cryst. E67, m379–m380.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationEshtiagh-Hosseini, H., Aghabozorg, H., Mirzaei, M., Amini, M. M., Chen, Y.-G., Shokrollahi, A. & Aghaei, R. (2010). J. Mol. Struct. 973, 180–189.  CAS Google Scholar
First citationEshtiagh-Hosseini, H., Alfi, N., Mirzaei, M., Fanwick, P. & Fanwick, P. E. (2010). Acta Cryst. E66, m1450.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEshtiagh-Hosseini, H., Yousefi, Z., Safiee, M. & Mirzaei, M. (2010). J. Coord. Chem. 63, 3187–3197.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPasdar, H., Sadat Kashani, S., Aghabozorg, H. & Notash, B. (2011). Acta Cryst. E67, m193–m194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m891-m892
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds