metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(2,2′-di­methyl-4,4′-bi-1,3-thia­zole-κ2N,N′)cadmium]-di-μ-bromido]

aDepartment of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: anita_abedi@yahoo.com

(Received 23 May 2011; accepted 31 May 2011; online 11 June 2011)

In the title coordination polymer, [CdBr2(C8H8N2S2)]n, the CdII atom is six-coordinated in a distorted octa­hedral geometry by two N atoms from a 2,2′-dimethyl-4,4′-bi-1,3-thia­zole ligand and four bridging Br atoms. The bridging function of the Br atoms leads to a chain structure along [100]. Inter­chain C—H⋯Br hydrogen bonds and ππ contacts between the thia­zole rings [centroid–centroid distances = 3.810 (5) and 3.679 (5) Å] are observed.

Related literature

For metal complexes with 2,2′-dimethyl-4,4′-bi-1,3-thia­zole, see: Abedi (2011[Abedi, A. (2011). Acta Cryst. E67, m76-m77.]); Abedi & Yahyazade Bali (2010[Abedi, A. & Yahyazade Bali, E. (2010). Acta Cryst. E66, m1023.]); Al-Hashemi et al. (2009[Al-Hashemi, R., Safari, N., Abedi, A., Notash, B., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 2909-2918.], 2010[Al-Hashemi, R., Safari, N., Amani, S., Amani, V., Abedi, A., Khavasi, H. R. & Ng, S. W. (2010). J. Coord. Chem. 63, 3207-3217.]); Khavasi et al. (2008[Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.]); Notash et al. (2008[Notash, B., Safari, N., Khavasi, H. R., Amani, V. & Abedi, A. (2008). J. Organomet. Chem. 693, 3553-3557.], 2009[Notash, B., Safari, N., Abedi, A., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1638-1649.]); Safari et al. (2009[Safari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372.]).

[Scheme 1]

Experimental

Crystal data
  • [CdBr2(C8H8N2S2)]

  • Mr = 468.51

  • Triclinic, [P \overline 1]

  • a = 7.1936 (10) Å

  • b = 9.5775 (11) Å

  • c = 10.4218 (14) Å

  • α = 112.714 (9)°

  • β = 104.149 (11)°

  • γ = 92.68 (1)°

  • V = 634.20 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.32 mm−1

  • T = 298 K

  • 0.28 × 0.18 × 0.13 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.180, Tmax = 0.340

  • 7003 measured reflections

  • 3400 independent reflections

  • 2495 reflections with I > 2σ(I)

  • Rint = 0.160

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.232

  • S = 1.05

  • 3400 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 2.22 e Å−3

  • Δρmin = −4.78 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1 2.435 (7)
Cd1—N2 2.372 (7)
Cd1—Br1 2.7112 (11)
Cd1—Br2i 2.7640 (12)
Cd1—Br1ii 2.8362 (12)
Cd1—Br2 2.7845 (12)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Br1iii 0.93 2.87 3.754 (11) 159
C6—H6⋯Br1iii 0.93 2.86 3.772 (10) 166
C8—H8C⋯Br2 0.96 2.74 3.681 (16) 167
Symmetry code: (iii) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported the synthesis and crystal structures of [HgI2(dm4bt)] (Abedi & Yahyazade Bali, 2010) and [HgBr2(dm4bt)] (Abedi, 2011) (dm4bt = 2,2'-dimethyl-4,4'-bi-1,3-thiazole). Dm4bt is a good bidentate ligand, and numerous complexes with dm4bt have been prepared, such as that of zinc (Khavasi et al., 2008), thallium (Notash et al., 2008), cadmium (Notash et al., 2009), mercury (Safari et al., 2009) and copper (Al-Hashemi et al., 2009, 2010). For further investigation of dm4bt, we synthesized the title complex and report herein its crystal structure.

In the title coordination polymer (Fig. 1), the CdII atom is six-coordinated in a distorted octahedral geometry by two N atoms from a dm4bt ligand and four bridging Br atoms (Table 1). The bridging function of the bromide atoms leads to a one-dimensional chain structure along [1 0 0] (Fig. 2).

In the crystal structure, intermolecular C—H···Br hydrogen bonds (Table 2) and ππ contacts (Fig. 2) between the thiazole rings, Cg4···Cg5i = 3.810 (5) and Cg5···Cg5ii = 3.679 (5) Å [symmetry codes: (i) 1-x, 2-y, 1-z; (ii) -x, 2-y, 1-z. Cg4 and Cg5 are the centroids of the S1/C2/N1/C4/C3 and S2/C6/C5/N2/C7 rings], stabilize the structure.

Related literature top

For metal complexes with 2,2'-dimethyl-4,4'-bi-1,3-thiazole, see: Abedi (2011); Abedi & Yahyazade Bali (2010); Al-Hashemi et al. (2009, 2010); Khavasi et al. (2008); Notash et al. (2008, 2009); Safari et al. (2009).

Experimental top

For the preparation of the title compound, a solution of dm4bt (0.26 g, 1.3 mmol) in methanol (15 ml) was added to a solution of CdBr2.4H2O (0.44 g, 1.3 mmol) in methanol (15 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion into a colorless solution in DMF. The crystals were isolated after one week (yield: 0.45 g, 73.9%).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The highest residual electron density was found at 0.89 Å from Cd1 atom and the deepest hole at 0.88 Å from Cd1 atom.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Part of the chain structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) -x, 1-y, 1-z; (b) 1-x, 1-y, 1-z.]
[Figure 2] Fig. 2. The packing diagram for the title compound.
catena-Poly[[(2,2'-dimethyl-4,4'-bi-1,3-thiazole- κ2N,N')cadmium]-di-µ-bromido] top
Crystal data top
[CdBr2(C8H8N2S2)]Z = 2
Mr = 468.51F(000) = 440
Triclinic, P1Dx = 2.454 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1936 (10) ÅCell parameters from 7003 reflections
b = 9.5775 (11) Åθ = 2.2–29.2°
c = 10.4218 (14) ŵ = 8.32 mm1
α = 112.714 (9)°T = 298 K
β = 104.149 (11)°Block, colorless
γ = 92.68 (1)°0.28 × 0.18 × 0.13 mm
V = 634.20 (16) Å3
Data collection top
Bruker APEX CCD
diffractometer
3400 independent reflections
Radiation source: fine-focus sealed tube2495 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.160
ϕ and ω scansθmax = 29.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.180, Tmax = 0.340k = 1312
7003 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.149P)2]
where P = (Fo2 + 2Fc2)/3
3400 reflections(Δ/σ)max = 0.005
136 parametersΔρmax = 2.22 e Å3
0 restraintsΔρmin = 4.78 e Å3
Crystal data top
[CdBr2(C8H8N2S2)]γ = 92.68 (1)°
Mr = 468.51V = 634.20 (16) Å3
Triclinic, P1Z = 2
a = 7.1936 (10) ÅMo Kα radiation
b = 9.5775 (11) ŵ = 8.32 mm1
c = 10.4218 (14) ÅT = 298 K
α = 112.714 (9)°0.28 × 0.18 × 0.13 mm
β = 104.149 (11)°
Data collection top
Bruker APEX CCD
diffractometer
3400 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2495 reflections with I > 2σ(I)
Tmin = 0.180, Tmax = 0.340Rint = 0.160
7003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.232H-atom parameters constrained
S = 1.05Δρmax = 2.22 e Å3
3400 reflectionsΔρmin = 4.78 e Å3
136 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2848 (18)0.4579 (13)0.0750 (12)0.050 (3)
H1A0.17420.39460.07100.060*
H1B0.40150.43170.12210.060*
H1C0.28540.44150.02180.060*
C20.2745 (13)0.6214 (11)0.1579 (9)0.0338 (18)
C30.2515 (14)0.8908 (11)0.2347 (10)0.0362 (19)
H30.24370.99180.24780.043*
C40.2597 (11)0.8389 (10)0.3383 (9)0.0277 (16)
C50.2502 (11)0.9274 (9)0.4849 (9)0.0262 (15)
C60.2499 (13)1.0824 (10)0.5464 (10)0.0342 (18)
H60.25711.14780.50040.041*
C70.2327 (13)0.9521 (11)0.7021 (10)0.0332 (18)
C80.220 (2)0.9124 (16)0.8265 (12)0.057 (3)
H8C0.22070.80450.79870.068*
H8B0.10280.93880.85110.068*
H8A0.33000.96860.90890.068*
N10.2720 (11)0.6838 (9)0.2955 (8)0.0298 (14)
N20.2379 (10)0.8540 (8)0.5760 (8)0.0282 (14)
Cd10.24677 (9)0.58678 (7)0.47579 (7)0.0302 (2)
Br10.36362 (13)0.31498 (11)0.34631 (11)0.0364 (3)
Br20.14395 (13)0.49070 (11)0.67291 (10)0.0353 (3)
S10.2574 (4)0.7476 (3)0.0763 (2)0.0420 (6)
S20.2347 (4)1.1375 (3)0.7182 (2)0.0364 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.056 (6)0.038 (5)0.047 (6)0.009 (5)0.019 (5)0.007 (4)
C20.034 (4)0.035 (5)0.030 (4)0.007 (4)0.009 (3)0.011 (3)
C30.041 (5)0.032 (5)0.038 (4)0.009 (4)0.013 (4)0.016 (4)
C40.023 (4)0.033 (4)0.031 (4)0.010 (3)0.012 (3)0.014 (3)
C50.022 (4)0.021 (4)0.036 (4)0.005 (3)0.008 (3)0.012 (3)
C60.035 (5)0.026 (4)0.045 (5)0.007 (3)0.016 (4)0.016 (4)
C70.032 (4)0.030 (4)0.039 (4)0.007 (3)0.011 (3)0.014 (4)
C80.084 (9)0.059 (7)0.037 (5)0.032 (7)0.026 (5)0.021 (5)
N10.031 (4)0.031 (4)0.031 (3)0.004 (3)0.013 (3)0.013 (3)
N20.025 (3)0.028 (3)0.035 (3)0.011 (3)0.011 (3)0.014 (3)
Cd10.0309 (4)0.0278 (4)0.0387 (4)0.0106 (2)0.0152 (3)0.0168 (3)
Br10.0350 (5)0.0295 (5)0.0480 (5)0.0114 (4)0.0154 (4)0.0163 (4)
Br20.0306 (5)0.0426 (6)0.0383 (5)0.0062 (4)0.0109 (4)0.0220 (4)
S10.0533 (15)0.0470 (14)0.0313 (11)0.0098 (11)0.0142 (10)0.0205 (10)
S20.0375 (12)0.0300 (11)0.0378 (11)0.0091 (9)0.0129 (9)0.0082 (9)
Geometric parameters (Å, º) top
C1—C21.484 (14)C6—H60.9300
C1—H1A0.9600C7—N21.298 (11)
C1—H1B0.9600C7—C81.505 (14)
C1—H1C0.9600C7—S21.717 (10)
C2—N11.329 (11)C8—H8C0.9600
C2—S11.719 (10)C8—H8B0.9600
C3—C41.343 (13)C8—H8A0.9600
C3—S11.703 (9)Cd1—N12.435 (7)
C3—H30.9300Cd1—N22.372 (7)
C4—N11.390 (11)Cd1—Br12.7112 (11)
C4—C51.454 (11)Cd1—Br2i2.7640 (12)
C5—C61.372 (12)Cd1—Br1ii2.8362 (12)
C5—N21.397 (11)Cd1—Br22.7845 (12)
C6—S21.693 (10)
C2—C1—H1A109.5H8C—C8—H8A109.5
C2—C1—H1B109.5H8B—C8—H8A109.5
H1A—C1—H1B109.5C2—N1—C4110.3 (8)
C2—C1—H1C109.5C2—N1—Cd1135.3 (7)
H1A—C1—H1C109.5C4—N1—Cd1114.0 (5)
H1B—C1—H1C109.5C7—N2—C5110.7 (8)
N1—C2—C1125.4 (9)C7—N2—Cd1134.0 (6)
N1—C2—S1113.9 (7)C5—N2—Cd1115.2 (5)
C1—C2—S1120.7 (7)N2—Cd1—N171.9 (2)
C4—C3—S1111.2 (7)N2—Cd1—Br1161.12 (17)
C4—C3—H3124.4N1—Cd1—Br196.12 (18)
S1—C3—H3124.4N2—Cd1—Br2i94.19 (17)
C3—C4—N1114.9 (7)N1—Cd1—Br2i84.58 (18)
C3—C4—C5126.3 (8)Br1—Cd1—Br2i99.26 (4)
N1—C4—C5118.8 (7)N2—Cd1—Br2103.26 (18)
C6—C5—N2114.2 (8)N1—Cd1—Br2168.62 (18)
C6—C5—C4125.9 (8)Br1—Cd1—Br291.01 (4)
N2—C5—C4120.0 (7)Br2i—Cd1—Br285.52 (3)
C5—C6—S2110.2 (7)N2—Cd1—Br1ii82.02 (17)
C5—C6—H6124.9N1—Cd1—Br1ii98.39 (18)
S2—C6—H6124.9Br1—Cd1—Br1ii85.48 (4)
N2—C7—C8124.8 (9)Br2i—Cd1—Br1ii174.15 (3)
N2—C7—S2114.6 (7)Br2—Cd1—Br1ii90.99 (3)
C8—C7—S2120.6 (7)Cd1—Br1—Cd1ii94.52 (4)
C7—C8—H8C109.5Cd1i—Br2—Cd194.48 (3)
C7—C8—H8B109.5C3—S1—C289.8 (4)
H8C—C8—H8B109.5C6—S2—C790.3 (4)
C7—C8—H8A109.5
S1—C3—C4—N10.4 (10)C7—N2—Cd1—Br214.8 (8)
S1—C3—C4—C5177.4 (7)C5—N2—Cd1—Br2169.0 (5)
C3—C4—C5—C66.7 (14)C7—N2—Cd1—Br1ii74.4 (8)
N1—C4—C5—C6175.7 (8)C5—N2—Cd1—Br1ii101.8 (5)
C3—C4—C5—N2172.6 (8)C2—N1—Cd1—N2174.0 (9)
N1—C4—C5—N25.1 (11)C4—N1—Cd1—N22.8 (5)
N2—C5—C6—S20.1 (9)C2—N1—Cd1—Br121.0 (9)
C4—C5—C6—S2179.4 (7)C4—N1—Cd1—Br1167.8 (5)
C1—C2—N1—C4179.4 (9)C2—N1—Cd1—Br2i77.8 (8)
S1—C2—N1—C41.2 (10)C4—N1—Cd1—Br2i93.4 (6)
C1—C2—N1—Cd18.0 (15)C2—N1—Cd1—Br2107.5 (11)
S1—C2—N1—Cd1170.3 (5)C4—N1—Cd1—Br263.8 (12)
C3—C4—N1—C20.5 (11)C2—N1—Cd1—Br1ii107.3 (8)
C5—C4—N1—C2178.5 (7)C4—N1—Cd1—Br1ii81.5 (6)
C3—C4—N1—Cd1172.9 (6)N2—Cd1—Br1—Cd1ii48.6 (6)
C5—C4—N1—Cd15.0 (9)N1—Cd1—Br1—Cd1ii97.98 (18)
C8—C7—N2—C5179.7 (10)Br2i—Cd1—Br1—Cd1ii176.54 (3)
S2—C7—N2—C51.9 (10)Br2—Cd1—Br1—Cd1ii90.92 (4)
C8—C7—N2—Cd13.4 (15)Br1ii—Cd1—Br1—Cd1ii0.0
S2—C7—N2—Cd1178.2 (4)N2—Cd1—Br2—Cd1i93.26 (18)
C6—C5—N2—C71.3 (10)N1—Cd1—Br2—Cd1i29.7 (9)
C4—C5—N2—C7179.4 (7)Br1—Cd1—Br2—Cd1i99.21 (4)
C6—C5—N2—Cd1178.4 (6)Br2i—Cd1—Br2—Cd1i0.0
C4—C5—N2—Cd12.3 (9)Br1ii—Cd1—Br2—Cd1i175.30 (3)
C7—N2—Cd1—N1176.0 (9)C4—C3—S1—C20.8 (7)
C5—N2—Cd1—N10.2 (5)N1—C2—S1—C31.2 (7)
C7—N2—Cd1—Br1123.4 (8)C1—C2—S1—C3179.5 (9)
C5—N2—Cd1—Br152.8 (9)C5—C6—S2—C70.8 (7)
C7—N2—Cd1—Br2i101.1 (8)N2—C7—S2—C61.6 (8)
C5—N2—Cd1—Br2i82.7 (5)C8—C7—S2—C6179.9 (9)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Br1iii0.932.873.754 (11)159
C6—H6···Br1iii0.932.863.772 (10)166
C8—H8C···Br20.962.743.681 (16)167
Symmetry code: (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[CdBr2(C8H8N2S2)]
Mr468.51
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.1936 (10), 9.5775 (11), 10.4218 (14)
α, β, γ (°)112.714 (9), 104.149 (11), 92.68 (1)
V3)634.20 (16)
Z2
Radiation typeMo Kα
µ (mm1)8.32
Crystal size (mm)0.28 × 0.18 × 0.13
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.180, 0.340
No. of measured, independent and
observed [I > 2σ(I)] reflections
7003, 3400, 2495
Rint0.160
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.232, 1.05
No. of reflections3400
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.22, 4.78

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cd1—N12.435 (7)Cd1—Br2i2.7640 (12)
Cd1—N22.372 (7)Cd1—Br1ii2.8362 (12)
Cd1—Br12.7112 (11)Cd1—Br22.7845 (12)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Br1iii0.932.873.754 (11)159
C6—H6···Br1iii0.932.863.772 (10)166
C8—H8C···Br20.962.743.681 (16)167
Symmetry code: (iii) x, y+1, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAbedi, A. (2011). Acta Cryst. E67, m76–m77.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAbedi, A. & Yahyazade Bali, E. (2010). Acta Cryst. E66, m1023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Hashemi, R., Safari, N., Abedi, A., Notash, B., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 2909–2918.  Web of Science CSD CrossRef CAS Google Scholar
First citationAl-Hashemi, R., Safari, N., Amani, S., Amani, V., Abedi, A., Khavasi, H. R. & Ng, S. W. (2010). J. Coord. Chem. 63, 3207–3217.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationNotash, B., Safari, N., Abedi, A., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1638–1649.  Web of Science CSD CrossRef CAS Google Scholar
First citationNotash, B., Safari, N., Khavasi, H. R., Amani, V. & Abedi, A. (2008). J. Organomet. Chem. 693, 3553–3557.  Web of Science CrossRef CAS Google Scholar
First citationSafari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds