metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m921-m922

Poly[[hexa­aqua­bis­­(μ3-benzene-1,3,5-tri­carboxyl­ato-κ3O1:O3:O5)bis­­(5,5′-di­methyl-2,2′-bi­pyridine-κ2N,N′)trizinc] hexa­hydrate]

aNorth China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: hbsysww@163.com

(Received 1 June 2011; accepted 8 June 2011; online 18 June 2011)

In the title compound, {[Zn3(C9H3O6)2(C12H12N2)2(H2O)6]·6H2O}n, one ZnII atom, lying on an inversion center, is six-coordinated by two O atoms from two benzene-1,3,5-tricarboxyl­ate (btc) ligands and four water mol­ecules in a distorted octa­hedral geometry. The other ZnII atom is five-coordinated by two N atoms from a 5,5′-dimethyl-2,2′-bipyridine (dmbpy) ligand, two O atoms from two btc ligands and one water mol­ecule in a distorted trigonal–bipyramidal geometry. The compound features a one-dimensional ladder structure, with windows of ca 10.245 (1) × 15.446 (2) Å. The ladders are linked together by inter­molecular O—H⋯O hydrogen bonds and ππ inter­actions between the benzene rings and between the pyridine rings [centroid-to-centroid distances 3.858 (2) and 3.911 (3) Å, respectively] to form a three-dimensional supra­molecular structure. One of the lattice water molecules is disordered over two positions in a 0.592:0.408 ratio.

Related literature

For background to network topologies and the applications of coordination polymers, see: Maspoch et al. (2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.]); Ockwig et al. (2005[Ockwig, N. W., Delgado-Friedrichs, O., O'Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.]). For background to effective methods for the construction of coordination polymers, see: Du et al. (2007[Du, M., Jiang, X.-J. & Zhao, X.-J. (2007). Inorg. Chem. 46, 3984-3995.]); Zang et al. (2006[Zang, S.-Q., Su, Y., Li, Y.-Z., Ni, Z.-P. & Meng, Q.-J. (2006). Inorg. Chem. 45, 174-180.], 2010[Zang, S.-Q., Liang, R., Fan, Y.-J., Hou, H.-W. & Mak, T. C. W. (2010). Dalton Trans. pp. 8022-8032.]). For O—H⋯O hydrogen bonds, see: Desiraju (2004[Desiraju, G. R. (2004). Hydrogen Bonding. Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 658-665. New York: Marcel Dekker Inc.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn3(C9H3O6)2(C12H12N2)2(H2O)6]·6H2O

  • Mr = 1195.00

  • Triclinic, [P \overline 1]

  • a = 10.2454 (10) Å

  • b = 10.5799 (10) Å

  • c = 12.658 (1) Å

  • α = 68.910 (8)°

  • β = 74.848 (8)°

  • γ = 81.834 (8)°

  • V = 1233.90 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.739, Tmax = 0.759

  • 9149 measured reflections

  • 4330 independent reflections

  • 3426 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.01

  • 4330 reflections

  • 336 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O5i 0.84 1.93 2.754 (4) 166
O1W—H1WB⋯O6Wii 0.84 1.96 2.805 (5) 176
O2W—H2WA⋯O2iii 0.85 1.95 2.768 (4) 162
O2W—H2WB⋯O5Wiii 0.85 2.14 2.806 (6) 135
O3W—H3WB⋯O3iii 0.85 2.16 2.740 (4) 125
O3W—H3WC⋯O5 0.85 2.26 2.705 (4) 113
O4W—H4WA⋯O5W 0.95 2.22 3.166 (19) 173
O4W′—H4WD⋯O2 0.87 2.63 3.499 (11) 177
O5W—H5WA⋯O6W 0.85 2.14 2.987 (9) 179
O5W—H5WC⋯O6iv 0.90 2.28 3.151 (7) 164
O6W—H6WB⋯O1iv 0.85 2.16 2.947 (5) 154
O6W—H6WD⋯O4v 0.85 2.23 3.019 (6) 154
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y-1, z; (iv) x, y+1, z; (v) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years, supramolecular coordination assemblies have received much attention not only for their variety of architectures but also for the potential applications as functional materials (Maspoch et al., 2007; Ockwig et al., 2005). According to literature, carboxylate-based ligands are good bridging ligands to construct coordination polymers, in which many supramolecular structures have been furnished (Zang et al., 2006, 2010). The rational assembly of target metal–organic networks depends on deliberate designs of the ligands with adjustable connectivity and a reasonable choice of metal ions with specific coordination nature. Additionally, the use of auxiliary ligands is also an effective method for the construction of coordination polymers (Du et al., 2007). To further explore the influence of multicarboxylates and N-donor ligands on the properties and construction of coordination compounds, we undertake synthetic and structural studies on the title compound, a Zn(II) complex based on benzene-1,3,5-tricarboxylic acid (H3btc) and 5,5'-dimethyl-2,2'-bipyridine (dmbpy).

As shown in Fig. 1, the asymmetric unit of the title compound consists of one and a half ZnII atoms, one btc ligand, one dmbpy ligand, three coordinated and three uncoordinated water molecules. Zn2 atom is located on an inversion center. Zn1 atom is coordinated by two O atoms from two btc ligands, one water molecule and two N atoms from one chelating dmbpy ligand, completing a distorted trigonal–bipyramidal geometry. N2, O1 and O4i [symmetry code: (i) x - 1, y, z] comprise the equatorial plane, while O1W and N1 occupy the axial positions. Zn2 atom is in a distorted octahedral coordination environment and coordinated by two O atoms from a pair of symmetry-related btc ligands and four O atoms from two pairs of coordinated water molecules. O2W, O2Wii, O3W and O3Wii [symmetry code: (ii) -x + 1, -y - 1, -z + 1] comprise the equatorial plane, while O6 and O6ii occupy the axial positions. As depicted in Fig. 2, adjacent Zn1 atoms are linked together through btc ligands, forming a chain running along the a axis with the dmbpy ligands hanging from the chain. A pair of symmetry-related chains are connected by Zn2 atoms, resulting in a one-dimensional ladder structure containing large windows [ca 10.245 (1) × 15.446 (2) Å2]. The ladders are extended into a three-dimensional supramolecular structure through hydrogen bonds (Table 1) (Desiraju, 2004) and ππ stacking interactions (Zang et al., 2010), with centroid–centroid distances of 3.858 (2) and 3.911 (3) between the benzene rings and between the pyridine rings (Fig. 3).

Related literature top

For background to network topologies and the applications of coordination polymers, see: Maspoch et al. (2007); Ockwig et al. (2005). For background to effective methods for the construction of coordination polymers, see: Du et al. (2007); Zang et al. (2006, 2010). For O—H···O hydrogen bonds, see: Desiraju (2004).

Experimental top

All starting materials used in the synthesis were of analytical grade and obtained from commercial sources without further purification. The title compound was synthesized hydrothermally in a Teflon-lined stainless steel container by heating a mixture of benzene-1,3,5-tricarboxylic acid (0.011 g, 0.05 mmol), 5,5'-dimethyl-2,2'-bipyridine (0.009 g, 0.05 mmol), Zn(NO3)2.6H2O (0.015 g, 0.05 mmol) and NaOH (0.004 g, 0.1 mmol) in 7 ml of distilled water at 120°C for 3 d, and then cooled to room temperature. Washed with deionized water and dried, colorless block crystals of the title compound were obtained in 72% yield based on zinc.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The approximate positions of the water H atoms were obtained from a difference Fourier map, then restrained to ideal configuration and fixed in the final stages of the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y - 1, -z + 1.]
[Figure 2] Fig. 2. The one-dimensional ladder structure in the title compound.
[Figure 3] Fig. 3. A view of the three-dimensional supramolecular structure in the title compound. Dashed lines represent hydrogen bonds.
Poly[[hexaaquabis(µ3-benzene-1,3,5-tricarboxylato- κ3O1:O3:O5)bis(5,5'-dimethyl-2,2'-bipyridine- κ2N,N')trizinc] hexahydrate] top
Crystal data top
[Zn3(C9H3O6)2(C12H12N2)2(H2O)6]·6H2OZ = 1
Mr = 1195.00F(000) = 616
Triclinic, P1Dx = 1.608 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2454 (10) ÅCell parameters from 3902 reflections
b = 10.5799 (10) Åθ = 3.0–29.2°
c = 12.658 (1) ŵ = 1.54 mm1
α = 68.910 (8)°T = 296 K
β = 74.848 (8)°Block, colourless
γ = 81.834 (8)°0.21 × 0.20 × 0.19 mm
V = 1233.90 (19) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4330 independent reflections
Radiation source: fine-focus sealed tube3426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1211
Tmin = 0.739, Tmax = 0.759k = 1212
9149 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.3228P]
where P = (Fo2 + 2Fc2)/3
4330 reflections(Δ/σ)max < 0.001
336 parametersΔρmax = 0.74 e Å3
12 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Zn3(C9H3O6)2(C12H12N2)2(H2O)6]·6H2Oγ = 81.834 (8)°
Mr = 1195.00V = 1233.90 (19) Å3
Triclinic, P1Z = 1
a = 10.2454 (10) ÅMo Kα radiation
b = 10.5799 (10) ŵ = 1.54 mm1
c = 12.658 (1) ÅT = 296 K
α = 68.910 (8)°0.21 × 0.20 × 0.19 mm
β = 74.848 (8)°
Data collection top
Bruker APEXII CCD
diffractometer
4330 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3426 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.759Rint = 0.034
9149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04512 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.01Δρmax = 0.74 e Å3
4330 reflectionsΔρmin = 0.59 e Å3
336 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.12533 (4)0.26423 (4)0.27950 (4)0.02392 (16)
Zn20.50000.50000.50000.0307 (2)
O10.2755 (2)0.1223 (3)0.3318 (2)0.0318 (7)
O20.3634 (3)0.3178 (3)0.2870 (3)0.0402 (7)
O30.8425 (3)0.3214 (2)0.3035 (2)0.0308 (7)
O40.9762 (2)0.1367 (2)0.3164 (2)0.0291 (6)
O50.7603 (3)0.3095 (2)0.4380 (3)0.0328 (7)
O60.5455 (3)0.3002 (3)0.4271 (3)0.0361 (7)
O1W0.0603 (3)0.3070 (3)0.4344 (2)0.0333 (7)
H1WA0.12500.30220.46560.050*
H1WB0.00070.25600.48210.050*
O2W0.4783 (3)0.4920 (3)0.3334 (3)0.0432 (8)
H2WA0.43870.55810.33560.065*
H2WB0.45040.43220.27700.065*
O3W0.7074 (3)0.5649 (3)0.4677 (3)0.0408 (8)
H3WB0.71550.63980.45550.061*
H3WC0.75080.50560.40820.061*
O4W0.4365 (14)0.6435 (16)0.0453 (12)0.117 (3)0.408 (9)
H4WA0.40590.67950.10720.175*0.408 (9)
H4WB0.45780.58640.05340.175*0.408 (9)
O4W'0.4797 (10)0.5541 (10)0.0114 (9)0.117 (3)0.592 (9)
H4WD0.45290.49240.07920.175*0.592 (9)
H4WE0.42580.62060.01400.175*0.592 (9)
O5W0.3621 (5)0.7702 (6)0.2466 (6)0.142 (2)
H5WA0.29690.79850.29140.213*
H5WC0.42260.76490.28850.213*
O6W0.1335 (5)0.8711 (5)0.4028 (4)0.1048 (18)
H6WB0.17750.93250.40470.157*
H6WD0.09610.93890.35840.157*
N10.1983 (3)0.2550 (3)0.1050 (3)0.0302 (8)
N20.1122 (3)0.4690 (3)0.1716 (3)0.0269 (7)
C10.3732 (4)0.1913 (4)0.3168 (3)0.0247 (8)
C20.8611 (4)0.1978 (4)0.3186 (3)0.0207 (8)
C30.6509 (4)0.2463 (4)0.4204 (3)0.0248 (8)
C40.5062 (3)0.1165 (4)0.3354 (3)0.0216 (8)
C50.6183 (3)0.1867 (4)0.3203 (3)0.0235 (8)
H50.61100.28080.29880.028*
C60.7415 (3)0.1176 (3)0.3371 (3)0.0207 (8)
C70.7516 (3)0.0216 (3)0.3692 (3)0.0201 (8)
H70.83380.06790.38060.024*
C80.6407 (4)0.0943 (3)0.3851 (3)0.0215 (8)
C90.5189 (4)0.0233 (4)0.3676 (3)0.0225 (8)
H90.44430.07080.37770.027*
C100.2447 (4)0.1427 (4)0.0791 (4)0.0375 (10)
H100.24630.06100.14000.045*
C110.2910 (4)0.1418 (5)0.0342 (4)0.0412 (11)
C120.3435 (6)0.0116 (5)0.0579 (5)0.0621 (15)
H12A0.34120.06150.01440.093*
H12B0.43490.02100.10320.093*
H12C0.28760.00750.10000.093*
C130.2863 (5)0.2651 (5)0.1217 (4)0.0447 (11)
H130.31570.26940.19880.054*
C140.2389 (5)0.3818 (5)0.0967 (4)0.0419 (11)
H140.23640.46450.15640.050*
C150.1949 (4)0.3746 (4)0.0188 (3)0.0304 (9)
C160.1458 (4)0.4930 (4)0.0569 (4)0.0287 (9)
C170.1358 (4)0.6233 (4)0.0215 (4)0.0386 (11)
H170.15770.63870.10100.046*
C180.0930 (5)0.7297 (4)0.0198 (4)0.0443 (12)
H180.08710.81750.03220.053*
C190.0590 (4)0.7070 (4)0.1378 (4)0.0381 (11)
C200.0129 (5)0.8197 (5)0.1863 (5)0.0533 (13)
H20A0.07630.82580.22810.080*
H20B0.07470.80180.23810.080*
H20C0.00730.90380.12400.080*
C210.0697 (4)0.5739 (4)0.2107 (4)0.0341 (10)
H210.04650.55610.29060.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0188 (3)0.0242 (3)0.0267 (3)0.00367 (17)0.00609 (18)0.00453 (19)
Zn20.0273 (4)0.0215 (3)0.0435 (4)0.0059 (3)0.0063 (3)0.0107 (3)
O10.0175 (14)0.0356 (15)0.0417 (18)0.0021 (11)0.0126 (12)0.0080 (13)
O20.0321 (17)0.0315 (16)0.059 (2)0.0060 (12)0.0200 (15)0.0145 (14)
O30.0290 (15)0.0192 (14)0.0441 (18)0.0061 (11)0.0087 (13)0.0086 (12)
O40.0138 (13)0.0267 (14)0.0460 (18)0.0001 (11)0.0073 (12)0.0112 (13)
O50.0298 (16)0.0214 (14)0.0508 (19)0.0007 (11)0.0178 (14)0.0111 (13)
O60.0268 (15)0.0224 (14)0.062 (2)0.0077 (11)0.0145 (14)0.0120 (14)
O1W0.0301 (15)0.0433 (17)0.0287 (16)0.0092 (12)0.0089 (12)0.0104 (13)
O2W0.055 (2)0.0332 (16)0.046 (2)0.0066 (14)0.0158 (16)0.0136 (14)
O3W0.0314 (16)0.0288 (15)0.062 (2)0.0021 (12)0.0040 (14)0.0191 (15)
O4W0.113 (3)0.119 (3)0.118 (3)0.0102 (14)0.0282 (15)0.0372 (15)
O4W'0.113 (3)0.119 (3)0.118 (3)0.0102 (14)0.0282 (15)0.0372 (15)
O5W0.101 (4)0.110 (4)0.181 (6)0.005 (3)0.051 (4)0.001 (4)
O6W0.134 (4)0.123 (4)0.060 (3)0.088 (3)0.015 (3)0.010 (3)
N10.0326 (19)0.0304 (18)0.0263 (19)0.0060 (14)0.0052 (15)0.0074 (15)
N20.0208 (17)0.0305 (18)0.028 (2)0.0039 (13)0.0064 (14)0.0063 (15)
C10.0166 (19)0.034 (2)0.024 (2)0.0013 (16)0.0068 (15)0.0099 (17)
C20.021 (2)0.0235 (19)0.0158 (19)0.0072 (15)0.0019 (15)0.0034 (15)
C30.029 (2)0.0240 (19)0.023 (2)0.0083 (17)0.0042 (16)0.0090 (16)
C40.0177 (19)0.029 (2)0.018 (2)0.0007 (15)0.0030 (15)0.0088 (16)
C50.0210 (19)0.0210 (18)0.027 (2)0.0016 (15)0.0076 (16)0.0039 (16)
C60.0172 (18)0.0230 (18)0.023 (2)0.0042 (14)0.0044 (15)0.0075 (16)
C70.0162 (18)0.0193 (17)0.023 (2)0.0018 (14)0.0043 (15)0.0054 (15)
C80.024 (2)0.0216 (18)0.020 (2)0.0039 (15)0.0046 (15)0.0082 (16)
C90.0166 (19)0.0274 (19)0.024 (2)0.0048 (15)0.0049 (15)0.0085 (16)
C100.044 (3)0.032 (2)0.035 (3)0.0078 (19)0.009 (2)0.008 (2)
C110.040 (3)0.051 (3)0.039 (3)0.005 (2)0.007 (2)0.023 (2)
C120.077 (4)0.057 (3)0.058 (4)0.001 (3)0.007 (3)0.034 (3)
C130.050 (3)0.057 (3)0.029 (3)0.008 (2)0.007 (2)0.017 (2)
C140.050 (3)0.044 (3)0.028 (3)0.008 (2)0.008 (2)0.006 (2)
C150.025 (2)0.036 (2)0.031 (2)0.0059 (17)0.0084 (18)0.0081 (19)
C160.025 (2)0.029 (2)0.033 (3)0.0058 (16)0.0085 (18)0.0090 (18)
C170.050 (3)0.033 (2)0.025 (2)0.005 (2)0.009 (2)0.0014 (19)
C180.049 (3)0.030 (2)0.045 (3)0.003 (2)0.017 (2)0.002 (2)
C190.031 (2)0.031 (2)0.050 (3)0.0001 (18)0.012 (2)0.011 (2)
C200.056 (3)0.040 (3)0.063 (4)0.001 (2)0.010 (3)0.020 (3)
C210.033 (2)0.033 (2)0.036 (3)0.0050 (18)0.0079 (19)0.0092 (19)
Geometric parameters (Å, º) top
Zn1—O4i2.033 (2)N2—C161.338 (5)
Zn1—O12.055 (3)N2—C211.346 (5)
Zn1—O1W2.089 (3)C1—C41.505 (5)
Zn1—N22.112 (3)C2—C61.509 (5)
Zn1—N12.172 (3)C3—C81.502 (5)
Zn2—O6ii2.047 (2)C4—C91.382 (5)
Zn2—O62.047 (2)C4—C51.390 (5)
Zn2—O3Wii2.119 (3)C5—C61.393 (5)
Zn2—O3W2.119 (3)C5—H50.9300
Zn2—O2W2.148 (3)C6—C71.375 (5)
Zn2—O2Wii2.148 (3)C7—C81.393 (5)
O1—C11.256 (4)C7—H70.9300
O2—C11.250 (5)C8—C91.389 (5)
O3—C21.246 (4)C9—H90.9300
O4—C21.260 (4)C10—C111.391 (6)
O4—Zn1iii2.033 (2)C10—H100.9300
O5—C31.250 (4)C11—C131.378 (6)
O6—C31.260 (4)C11—C121.510 (7)
O1W—H1WA0.8433C12—H12A0.9600
O1W—H1WB0.8428C12—H12B0.9600
O2W—H2WA0.8457C12—H12C0.9600
O2W—H2WB0.8499C13—C141.375 (7)
O3W—H3WB0.8500C13—H130.9300
O3W—H3WC0.8500C14—C151.390 (6)
O4W—H4WA0.9537C14—H140.9300
O4W—H4WB0.5942C15—C161.477 (6)
O4W—H4WE0.9037C16—C171.387 (5)
O4W'—O4W'iv1.27 (2)C17—C181.377 (6)
O4W'—H4WB0.7048C17—H170.9300
O4W'—H4WD0.8736C18—C191.380 (6)
O4W'—H4WE0.8501C18—H180.9300
O5W—H5WA0.8514C19—C211.386 (6)
O5W—H5WC0.9000C19—C201.496 (6)
O6W—H6WB0.8520C20—H20A0.9599
O6W—H6WD0.8499C20—H20B0.9600
N1—C101.335 (5)C20—H20C0.9601
N1—C151.344 (5)C21—H210.9300
O4i—Zn1—O198.75 (10)O6—C3—C8115.5 (3)
O4i—Zn1—O1W95.22 (11)C9—C4—C5118.9 (3)
O1—Zn1—O1W95.94 (11)C9—C4—C1120.4 (3)
O4i—Zn1—N2121.50 (11)C5—C4—C1120.7 (3)
O1—Zn1—N2137.13 (11)C4—C5—C6120.7 (3)
O1W—Zn1—N294.52 (12)C4—C5—H5119.7
O4i—Zn1—N191.75 (12)C6—C5—H5119.7
O1—Zn1—N189.17 (12)C7—C6—C5119.4 (3)
O1W—Zn1—N1170.62 (11)C7—C6—C2121.7 (3)
N2—Zn1—N176.46 (13)C5—C6—C2119.0 (3)
O6ii—Zn2—O6180.00 (15)C6—C7—C8121.1 (3)
O6ii—Zn2—O3Wii91.78 (11)C6—C7—H7119.4
O6—Zn2—O3Wii88.22 (11)C8—C7—H7119.4
O6ii—Zn2—O3W88.22 (11)C9—C8—C7118.6 (3)
O6—Zn2—O3W91.78 (11)C9—C8—C3120.0 (3)
O3Wii—Zn2—O3W180.0C7—C8—C3121.4 (3)
O6ii—Zn2—O2W91.61 (11)C4—C9—C8121.4 (3)
O6—Zn2—O2W88.39 (11)C4—C9—H9119.3
O3Wii—Zn2—O2W86.71 (12)C8—C9—H9119.3
O3W—Zn2—O2W93.29 (12)N1—C10—C11123.4 (4)
O6ii—Zn2—O2Wii88.39 (11)N1—C10—H10118.3
O6—Zn2—O2Wii91.61 (11)C11—C10—H10118.3
O3Wii—Zn2—O2Wii93.29 (12)C13—C11—C10116.4 (4)
O3W—Zn2—O2Wii86.71 (12)C13—C11—C12122.7 (4)
O2W—Zn2—O2Wii180.0C10—C11—C12120.9 (4)
C1—O1—Zn1104.3 (2)C11—C12—H12A109.5
C2—O4—Zn1iii112.2 (2)C11—C12—H12B109.5
C3—O6—Zn2129.0 (2)H12A—C12—H12B109.5
Zn1—O1W—H1WA111.8C11—C12—H12C109.5
Zn1—O1W—H1WB112.0H12A—C12—H12C109.5
H1WA—O1W—H1WB110.0H12B—C12—H12C109.5
Zn2—O2W—H2WA114.2C14—C13—C11121.1 (4)
Zn2—O2W—H2WB135.2C14—C13—H13119.5
H2WA—O2W—H2WB97.6C11—C13—H13119.5
Zn2—O3W—H3WB109.3C13—C14—C15119.2 (4)
Zn2—O3W—H3WC109.3C13—C14—H14120.4
H3WB—O3W—H3WC109.5C15—C14—H14120.4
H4WA—O4W—H4WB121.9N1—C15—C14120.4 (4)
H4WA—O4W—H4WE153.9N1—C15—C16115.2 (4)
H4WB—O4W—H4WE73.1C14—C15—C16124.3 (4)
O4W'iv—O4W'—H4WB148.4N2—C16—C17121.1 (4)
O4W'iv—O4W'—H4WD78.5N2—C16—C15116.7 (3)
H4WB—O4W'—H4WD71.6C17—C16—C15122.3 (4)
O4W'iv—O4W'—H4WE133.7C18—C17—C16119.3 (4)
H4WB—O4W'—H4WE72.4C18—C17—H17120.4
H4WD—O4W'—H4WE119.7C16—C17—H17120.4
H5WA—O5W—H5WC94.0C17—C18—C19120.5 (4)
H6WB—O6W—H6WD82.4C17—C18—H18119.8
C10—N1—C15119.6 (4)C19—C18—H18119.8
C10—N1—Zn1125.4 (3)C18—C19—C21116.9 (4)
C15—N1—Zn1115.0 (3)C18—C19—C20122.2 (4)
C16—N2—C21119.0 (3)C21—C19—C20120.8 (4)
C16—N2—Zn1116.5 (3)C19—C20—H20A109.5
C21—N2—Zn1124.5 (3)C19—C20—H20B109.4
O2—C1—O1122.5 (3)H20A—C20—H20B109.5
O2—C1—C4119.7 (3)C19—C20—H20C109.5
O1—C1—C4117.8 (3)H20A—C20—H20C109.5
O3—C2—O4123.0 (3)H20B—C20—H20C109.5
O3—C2—C6118.8 (3)N2—C21—C19123.2 (4)
O4—C2—C6118.2 (3)N2—C21—H21118.4
O5—C3—O6125.0 (3)C19—C21—H21118.4
O5—C3—C8119.5 (3)
O4i—Zn1—O1—C1177.5 (2)C2—C6—C7—C8179.4 (3)
O1W—Zn1—O1—C181.3 (3)C6—C7—C8—C90.1 (6)
N2—Zn1—O1—C122.0 (3)C6—C7—C8—C3179.9 (3)
N1—Zn1—O1—C190.9 (3)O5—C3—C8—C9178.7 (4)
O3Wii—Zn2—O6—C3152.0 (4)O6—C3—C8—C93.0 (5)
O3W—Zn2—O6—C328.0 (4)O5—C3—C8—C71.3 (6)
O2W—Zn2—O6—C3121.2 (4)O6—C3—C8—C7177.1 (3)
O2Wii—Zn2—O6—C358.8 (4)C5—C4—C9—C80.1 (6)
O4i—Zn1—N1—C1060.6 (3)C1—C4—C9—C8179.9 (3)
O1—Zn1—N1—C1038.1 (3)C7—C8—C9—C40.2 (6)
N2—Zn1—N1—C10177.4 (3)C3—C8—C9—C4179.8 (3)
O4i—Zn1—N1—C15119.6 (3)C15—N1—C10—C110.0 (6)
O1—Zn1—N1—C15141.7 (3)Zn1—N1—C10—C11179.8 (3)
N2—Zn1—N1—C152.4 (3)N1—C10—C11—C130.3 (7)
O4i—Zn1—N2—C1680.7 (3)N1—C10—C11—C12179.5 (4)
O1—Zn1—N2—C1676.6 (3)C10—C11—C13—C140.3 (7)
O1W—Zn1—N2—C16179.7 (3)C12—C11—C13—C14179.4 (5)
N1—Zn1—N2—C162.9 (3)C11—C13—C14—C150.1 (7)
O4i—Zn1—N2—C2197.6 (3)C10—N1—C15—C140.2 (6)
O1—Zn1—N2—C21105.1 (3)Zn1—N1—C15—C14180.0 (3)
O1W—Zn1—N2—C211.3 (3)C10—N1—C15—C16178.1 (3)
N1—Zn1—N2—C21178.7 (3)Zn1—N1—C15—C161.7 (4)
Zn1—O1—C1—O26.0 (5)C13—C14—C15—N10.1 (6)
Zn1—O1—C1—C4173.7 (3)C13—C14—C15—C16178.0 (4)
Zn1iii—O4—C2—O32.2 (5)C21—N2—C16—C170.9 (6)
Zn1iii—O4—C2—C6176.1 (2)Zn1—N2—C16—C17177.5 (3)
Zn2—O6—C3—O514.6 (6)C21—N2—C16—C15178.5 (3)
Zn2—O6—C3—C8167.1 (2)Zn1—N2—C16—C153.0 (4)
O2—C1—C4—C9179.5 (4)N1—C15—C16—N20.8 (5)
O1—C1—C4—C90.1 (5)C14—C15—C16—N2177.4 (4)
O2—C1—C4—C50.3 (6)N1—C15—C16—C17179.7 (4)
O1—C1—C4—C5180.0 (3)C14—C15—C16—C172.0 (6)
C9—C4—C5—C60.1 (6)N2—C16—C17—C181.3 (6)
C1—C4—C5—C6179.8 (3)C15—C16—C17—C18178.1 (4)
C4—C5—C6—C70.1 (6)C16—C17—C18—C190.8 (7)
C4—C5—C6—C2179.3 (3)C17—C18—C19—C210.1 (6)
O3—C2—C6—C7171.4 (3)C17—C18—C19—C20179.6 (4)
O4—C2—C6—C710.2 (5)C16—N2—C21—C190.0 (6)
O3—C2—C6—C59.1 (5)Zn1—N2—C21—C19178.4 (3)
O4—C2—C6—C5169.2 (3)C18—C19—C21—N20.6 (6)
C5—C6—C7—C80.0 (6)C20—C19—C21—N2179.2 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5v0.841.932.754 (4)166
O1W—H1WB···O6Wvi0.841.962.805 (5)176
O2W—H2WA···O2vii0.851.952.768 (4)162
O2W—H2WB···O5Wvii0.852.142.806 (6)135
O3W—H3WB···O3vii0.852.162.740 (4)125
O3W—H3WC···O50.852.262.705 (4)113
O4W—H4WA···O5W0.952.223.166 (19)173
O4W—H4WD···O20.872.633.499 (11)177
O5W—H5WA···O6W0.852.142.987 (9)179
O5W—H5WC···O6viii0.902.283.151 (7)164
O6W—H6WB···O1viii0.852.162.947 (5)154
O6W—H6WD···O4ix0.852.233.019 (6)154
Symmetry codes: (v) x+1, y, z+1; (vi) x, y+1, z+1; (vii) x, y1, z; (viii) x, y+1, z; (ix) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn3(C9H3O6)2(C12H12N2)2(H2O)6]·6H2O
Mr1195.00
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.2454 (10), 10.5799 (10), 12.658 (1)
α, β, γ (°)68.910 (8), 74.848 (8), 81.834 (8)
V3)1233.90 (19)
Z1
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.21 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.739, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
9149, 4330, 3426
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.01
No. of reflections4330
No. of parameters336
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.59

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5i0.841.932.754 (4)166
O1W—H1WB···O6Wii0.841.962.805 (5)176
O2W—H2WA···O2iii0.851.952.768 (4)162
O2W—H2WB···O5Wiii0.852.142.806 (6)135
O3W—H3WB···O3iii0.852.162.740 (4)125
O3W—H3WC···O50.852.262.705 (4)113
O4W—H4WA···O5W0.952.223.166 (19)173
O4W'—H4WD···O20.872.633.499 (11)177
O5W—H5WA···O6W0.852.142.987 (9)179
O5W—H5WC···O6iv0.902.283.151 (7)164
O6W—H6WB···O1iv0.852.162.947 (5)154
O6W—H6WD···O4v0.852.233.019 (6)154
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+1; (iii) x, y1, z; (iv) x, y+1, z; (v) x1, y+1, z.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of Henan Province (grant No. 2010A140009) and the Inter­national Technology Cooperation Project of the Science and Technology Department of Henan Province of China (grant No. 104300510044).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2004). Hydrogen Bonding. Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 658–665. New York: Marcel Dekker Inc.  Google Scholar
First citationDu, M., Jiang, X.-J. & Zhao, X.-J. (2007). Inorg. Chem. 46, 3984–3995.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOckwig, N. W., Delgado-Friedrichs, O., O'Keefee, M. & Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176–182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZang, S.-Q., Liang, R., Fan, Y.-J., Hou, H.-W. & Mak, T. C. W. (2010). Dalton Trans. pp. 8022–8032.  CSD CrossRef Google Scholar
First citationZang, S.-Q., Su, Y., Li, Y.-Z., Ni, Z.-P. & Meng, Q.-J. (2006). Inorg. Chem. 45, 174–180.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m921-m922
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds