metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ-5-bromo­nicotinato)-κ3O,O′:O′;κ3O:O,O′;κ4O:O′-bis­­[di­aqua­(5-bromo­nicotinato-κ2O,O′)neodymium(III)] dihydrate

aDepartment of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China, and bDepartment of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: thjchen@jnu.edu.cn

(Received 2 June 2011; accepted 17 June 2011; online 25 June 2011)

In the title compound, [Nd2(C6H3BrNO2)6(H2O)4]·2H2O, the NdIII ion is coordinated by nine O atoms from one chelating 5-bromo­nicotinate ligand, four bridging 5-bromo­nicotinate ligands and two water mol­ecules, exhibiting a distorted three-capped triangular-prismatic geometry. Two NdIII ions are bridged by four carboxyl­ate groups in bi- and tridentate modes, forming a centrosymmetric dinuclear unit, with an Nd⋯Nd distance of 4.0021 (5) Å, and intra­molecular ππ inter­actions between the pyridine rings [centroid–centroid distance = 3.960 (2) Å]. Inter­molecular ππ inter­actions [centroid–centroid distances = 3.820 (2) and 3.804 (2) Å] and O—H⋯N and O—H⋯O hydrogen bonds connect the dinuclear mol­ecules into a three-dimensional supra­molecular network.

Related literature

For general background to lanthanide complexes with carboxyl­ates, see: Ragunathan & Schneider (1996[Ragunathan, K. G. & Schneider, H. J. (1996). Angew. Chem. Int. Ed. 35, 1219-1221.]); Shibasaki & Yoshikawa (2002[Shibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187-2209.]). For dimeric lanthanide carboxyl­ates, see: Rupam et al. (2010[Rupam, S., Dipak, K. H., Subratanath, K., Madeleine, H., Monika, M. & Ashis, B. (2010). Polyhedron, 29, 3183-3191.]); Song et al. (2004[Song, Y.-S., Yan, B. & Chen, Z.-X. (2004). J. Solid State Chem. 177, 3805-3814.]); Yang & Chen (2009[Yang, J. & Chen, H.-J. (2009). Acta Cryst. E65, m1262-m1263.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd2(C6H3BrNO2)6(H2O)4]·2H2O

  • Mr = 1602.60

  • Monoclinic, P 21 /n

  • a = 11.5278 (13) Å

  • b = 16.6616 (18) Å

  • c = 12.2711 (13) Å

  • β = 102.478 (2)°

  • V = 2301.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.52 mm−1

  • T = 110 K

  • 0.42 × 0.38 × 0.36 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.059, Tmax = 0.067

  • 11552 measured reflections

  • 4999 independent reflections

  • 4295 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.054

  • S = 1.07

  • 4999 reflections

  • 331 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.02 e Å−3

  • Δρmin = −1.07 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H71⋯N3i 0.84 (1) 1.94 (2) 2.769 (3) 165 (5)
O7—H72⋯O9ii 0.85 (3) 1.97 (2) 2.780 (3) 160 (4)
O8—H81⋯O9ii 0.85 (1) 1.87 (1) 2.699 (3) 164 (3)
O8—H82⋯N2iii 0.85 (1) 1.88 (1) 2.735 (3) 175 (5)
O9—H91⋯N1 0.85 (3) 1.96 (3) 2.801 (3) 172 (4)
O9—H92⋯O4iii 0.84 (1) 2.21 (2) 2.981 (3) 153 (4)
O9—H92⋯O8iii 0.84 (1) 2.37 (4) 2.989 (3) 131 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Part of attentions has been paid to rational design and synthesis of lanthanide carboxylates due to their structural diversity and potential applications as catalysts (Ragunathan & Schneider, 1996; Shibasaki & Yoshikawa, 2002). Recent research results showed that olefin epoxidation reaction can be catalyzed by dimeric lanthanide carboxylates (Rupam et al., 2010). A few crystal structures of dimeric lanthanide carboxylates from 5-bromonicotinic acid (5-BrnicH) ligand, such as [La(5-Brnic)3(H2O)2]2.H2O, [Gd(5-Brnic)3(H2O)2]2 (Rupam et al., 2010) and [Sm(5-Brnic)3(H2O)2]2.H2O (Song et al., 2004), have been reported. As the research interest in the catalytic behavior of lanthanide compounds and the easy formation of dinuclear unit by using 5-BrnicH ligand (Yang & Chen, 2009), we synthesized a lanthanide carboxylate, the title compound. We report here its crystal structure.

The title compound is a dimeric lanthanide carboxylate that contains two NdIII ions, six 5-Brnic ligands and four coordinated and two uncoordinated water molecules (Fig. 1). In the dimer, each NdIII ion is nine-coordinated by nine O atoms, two of them from one (κ2O,O')-carboxylate group, two from two (κ2O:O')-carboxylate groups, three from two (κ3O,O':O')-carboxylate groups, and two from the coordinated water molecules. The coordination environment of the metal atom can be described as distorted three-capped triangular-prismatic. The two NdIII ions are bridged by four carboxylate groups in bi- and tridentate modes, forming a centrosymmetric dinuclear unit, with a Nd···Nd distance of 4.0021 (5) Å and intramolecular ππ interactions between the pyridine rings [centroid–centroid distance = 3.960 (2) Å]. Intermolecular ππ interactions [centroid–centroid distances = 3.820 (2) and 3.804 (2) Å] and O—H···N and O—H···O hydrogen bonds (Table 1) connect the dinuclear molecules into a three-dimensional supramolecular network (Fig. 2).

In addition, the nine-coordinated NdIII ion in the title compound exhibits higher coordination number than that in the dimers [Gd(5-Brnic)3(H2O)2]2 (Rupam et al., 2010) and [Sm(5-Brnic)3(H2O)2]2.H2O (Song et al., 2004). As NdIII ion has bigger ionic radius than that of GdIII and SmIII ions, we owe the increasing in coordination number to the principle of lanthanide contraction.

Related literature top

For general background to lanthanide complexes with carboxylates, see: Ragunathan & Schneider (1996); Shibasaki & Yoshikawa (2002). For dimeric lanthanide carboxylates, see: Rupam et al. (2010); Song et al. (2004); Yang & Chen (2009).

Experimental top

A mixture of neodymium oxide (0.2 mmol, 0.067 g), 5-bromonicotinic acid (0.5 mmol, 0.101 g) and 10 ml water was sealed in a 15 ml Teflon-line autoclave and heated to 363 K for 72 h. The reaction solution was then cooled down to room temperature at a rate of 5 K per hour. Brown single crystals suitable for X-ray crystallography analysis were obtained (yield: 42%). Analysis, calculated for C18H15Br3N3NdO9: C 26.38, H 1.89, N 5.24%; found: C 26.17, H 1.98, N 5.41%. IR (cm-1, KBr): 3403 bm, 3051 m, 1618 vs, 1550 s, 1541 s, 1442 vs, 1400 vs, 1292 m, 1186 vw, 1130 w, 1026 w, 953 vw, 891 vw, 881 w, 789 m, 741 m, 687 m, 442 m.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). H atoms of water molecules were located from a difference Fourier map and refined isotropically, with a distance restraint of O—H = 0.85 (1) Å. The highest residual electron density was found at 0.86 Å from Nd1 atom and the deepest hole at 0.79 Å from Nd1 atom.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level. [Symmetry code: (i) -x, 1-y, 2-z.]
[Figure 2] Fig. 2. Hydrogen-bonded network in the title compound. Dashed lines denote hydrogen bonds.
Tetrakis(µ-5-bromonicotinato)-κ3O,O':O'; κ3O:O,O';κ4O:O'-bis[diaqua(5- bromonicotinato-κ2O,O')neodymium(III)] dihydrate top
Crystal data top
[Nd2(C6H3BrNO2)6(H2O)4]·2H2OF(000) = 1524
Mr = 1602.60Dx = 2.313 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4999 reflections
a = 11.5278 (13) Åθ = 2.5–27.1°
b = 16.6616 (18) ŵ = 7.52 mm1
c = 12.2711 (13) ÅT = 110 K
β = 102.478 (2)°Block, brown
V = 2301.3 (4) Å30.42 × 0.38 × 0.36 mm
Z = 2
Data collection top
Bruker APEX CCD
diffractometer
4999 independent reflections
Radiation source: fine-focus sealed tube4295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1114
Tmin = 0.059, Tmax = 0.067k = 2119
11552 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0266P)2]
where P = (Fo2 + 2Fc2)/3
4999 reflections(Δ/σ)max = 0.066
331 parametersΔρmax = 1.02 e Å3
6 restraintsΔρmin = 1.07 e Å3
Crystal data top
[Nd2(C6H3BrNO2)6(H2O)4]·2H2OV = 2301.3 (4) Å3
Mr = 1602.60Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.5278 (13) ŵ = 7.52 mm1
b = 16.6616 (18) ÅT = 110 K
c = 12.2711 (13) Å0.42 × 0.38 × 0.36 mm
β = 102.478 (2)°
Data collection top
Bruker APEX CCD
diffractometer
4999 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4295 reflections with I > 2σ(I)
Tmin = 0.059, Tmax = 0.067Rint = 0.023
11552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0226 restraints
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.02 e Å3
4999 reflectionsΔρmin = 1.07 e Å3
331 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.09938 (3)0.096820 (19)1.12865 (3)0.01690 (8)
Br20.24543 (3)0.605255 (19)0.35014 (3)0.01538 (8)
Br30.08252 (3)0.38137 (2)1.62068 (3)0.01714 (8)
C10.0190 (2)0.35415 (17)0.9159 (2)0.0080 (6)
C20.0119 (2)0.26663 (17)0.9148 (2)0.0091 (6)
C30.0484 (3)0.23220 (18)1.0047 (2)0.0100 (6)
H30.06210.26411.06480.012*
C40.0640 (3)0.15010 (18)1.0039 (3)0.0120 (6)
C50.0505 (3)0.10527 (18)0.9120 (3)0.0143 (7)
H50.06540.04920.91140.017*
C60.0039 (3)0.21785 (18)0.8270 (3)0.0123 (6)
H60.03060.24170.76650.015*
C70.2081 (3)0.60360 (18)0.7791 (2)0.0108 (6)
C80.2037 (3)0.64877 (18)0.6724 (2)0.0102 (6)
C90.2253 (3)0.60917 (18)0.5792 (2)0.0105 (6)
H90.24310.55350.58140.013*
C100.2200 (3)0.65385 (18)0.4825 (2)0.0103 (6)
C110.1923 (3)0.73465 (18)0.4816 (3)0.0134 (6)
H110.18920.76440.41500.016*
C120.1762 (3)0.72998 (18)0.6646 (3)0.0119 (6)
H120.16110.75660.72860.014*
C130.1084 (3)0.42457 (17)1.1932 (2)0.0107 (6)
C140.1252 (3)0.37044 (18)1.2944 (2)0.0100 (6)
C150.0977 (3)0.39880 (18)1.3926 (2)0.0107 (6)
H150.07180.45251.39800.013*
C160.1090 (3)0.34655 (19)1.4820 (2)0.0110 (6)
C170.1423 (3)0.26774 (18)1.4697 (2)0.0130 (6)
H170.14850.23231.53130.016*
C180.1593 (3)0.29081 (18)1.2895 (2)0.0106 (6)
H180.17890.27181.22280.013*
H710.313 (4)0.6236 (10)1.119 (4)0.063 (16)*
H720.368 (2)0.548 (2)1.133 (3)0.033 (12)*
H810.395 (2)0.4366 (19)1.0285 (15)0.010 (9)*
H820.340 (4)0.3837 (7)0.958 (4)0.066 (17)*
H910.001 (3)0.0648 (16)0.704 (2)0.026 (11)*
H920.0725 (15)0.017 (3)0.656 (4)0.052 (15)*
N10.0172 (2)0.13855 (15)0.8243 (2)0.0146 (6)
N20.1699 (2)0.77251 (15)0.5710 (2)0.0126 (5)
N30.1659 (2)0.23932 (15)1.3751 (2)0.0142 (6)
Nd10.157605 (13)0.506682 (9)0.957077 (13)0.00682 (5)
O10.10185 (18)0.37520 (12)0.87133 (17)0.0113 (4)
O20.03578 (18)0.59795 (12)1.03191 (17)0.0118 (4)
O30.18480 (19)0.64042 (12)0.86189 (17)0.0138 (5)
O40.23363 (18)0.53005 (12)0.78226 (17)0.0126 (4)
O50.17948 (19)0.41883 (13)1.12916 (18)0.0150 (5)
O60.02224 (19)0.52807 (13)0.81744 (17)0.0144 (5)
O70.3080 (2)0.57471 (14)1.1001 (2)0.0164 (5)
O80.34606 (19)0.43444 (13)0.96599 (18)0.0116 (4)
O90.0016 (2)0.02805 (14)0.65696 (19)0.0140 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02332 (18)0.01014 (16)0.01978 (17)0.00051 (12)0.01028 (14)0.00525 (13)
Br20.02280 (17)0.01451 (17)0.01077 (15)0.00214 (12)0.00791 (12)0.00125 (12)
Br30.01782 (16)0.02518 (19)0.00977 (15)0.00330 (13)0.00597 (12)0.00356 (13)
C10.0111 (14)0.0073 (14)0.0042 (13)0.0020 (11)0.0014 (11)0.0000 (11)
C20.0093 (14)0.0054 (14)0.0124 (15)0.0008 (11)0.0015 (12)0.0000 (12)
C30.0099 (14)0.0086 (15)0.0124 (15)0.0018 (11)0.0047 (12)0.0013 (12)
C40.0102 (15)0.0105 (15)0.0159 (16)0.0010 (11)0.0043 (12)0.0040 (13)
C50.0166 (16)0.0051 (15)0.0207 (17)0.0013 (12)0.0033 (13)0.0007 (13)
C60.0120 (15)0.0119 (16)0.0129 (15)0.0012 (12)0.0023 (12)0.0013 (12)
C70.0089 (14)0.0108 (15)0.0129 (15)0.0020 (11)0.0029 (12)0.0026 (12)
C80.0113 (15)0.0081 (15)0.0109 (15)0.0023 (11)0.0015 (12)0.0016 (12)
C90.0102 (14)0.0101 (15)0.0116 (15)0.0011 (11)0.0029 (12)0.0011 (12)
C100.0117 (15)0.0107 (15)0.0080 (14)0.0032 (11)0.0011 (12)0.0016 (12)
C110.0171 (16)0.0118 (16)0.0115 (15)0.0028 (12)0.0038 (12)0.0029 (12)
C120.0116 (15)0.0119 (16)0.0123 (15)0.0017 (12)0.0031 (12)0.0011 (12)
C130.0150 (15)0.0062 (15)0.0092 (15)0.0059 (12)0.0012 (12)0.0008 (12)
C140.0089 (14)0.0089 (15)0.0116 (15)0.0013 (11)0.0011 (12)0.0017 (12)
C150.0122 (15)0.0073 (15)0.0125 (15)0.0002 (11)0.0027 (12)0.0008 (12)
C160.0109 (15)0.0143 (16)0.0085 (14)0.0028 (12)0.0035 (12)0.0013 (12)
C170.0169 (16)0.0126 (16)0.0091 (15)0.0001 (12)0.0018 (12)0.0060 (12)
C180.0137 (15)0.0111 (16)0.0069 (14)0.0003 (11)0.0019 (12)0.0006 (12)
N10.0177 (14)0.0087 (13)0.0179 (14)0.0015 (10)0.0051 (11)0.0043 (11)
N20.0169 (13)0.0088 (13)0.0122 (13)0.0023 (10)0.0030 (11)0.0025 (10)
N30.0193 (14)0.0095 (13)0.0137 (14)0.0029 (10)0.0034 (11)0.0044 (11)
Nd10.01072 (8)0.00413 (8)0.00615 (8)0.00027 (6)0.00303 (6)0.00031 (6)
O10.0151 (11)0.0077 (11)0.0124 (11)0.0005 (8)0.0059 (9)0.0002 (8)
O20.0175 (11)0.0081 (11)0.0105 (10)0.0025 (9)0.0046 (9)0.0008 (9)
O30.0235 (12)0.0086 (11)0.0110 (11)0.0032 (9)0.0074 (9)0.0013 (9)
O40.0197 (11)0.0083 (11)0.0113 (11)0.0020 (9)0.0064 (9)0.0023 (9)
O50.0155 (11)0.0180 (12)0.0112 (11)0.0039 (9)0.0020 (9)0.0056 (9)
O60.0198 (12)0.0088 (11)0.0120 (11)0.0027 (9)0.0026 (9)0.0002 (9)
O70.0201 (13)0.0080 (12)0.0187 (12)0.0007 (9)0.0009 (10)0.0038 (10)
O80.0137 (11)0.0078 (12)0.0124 (11)0.0004 (9)0.0009 (9)0.0017 (9)
O90.0157 (12)0.0138 (12)0.0128 (12)0.0015 (9)0.0039 (10)0.0042 (9)
Geometric parameters (Å, º) top
Br1—C41.888 (3)C13—O51.255 (4)
Br2—C101.894 (3)C13—C141.513 (4)
Br3—C161.884 (3)C14—C181.389 (4)
C1—O11.249 (3)C14—C151.393 (4)
C1—O2i1.273 (3)C15—C161.385 (4)
C1—C21.500 (4)C15—H150.9500
C2—C31.386 (4)C16—C171.385 (4)
C2—C61.393 (4)C17—N31.335 (4)
C3—C41.380 (4)C17—H170.9500
C3—H30.9500C18—N31.345 (4)
C4—C51.389 (4)C18—H180.9500
C5—N11.340 (4)Nd1—O22.384 (2)
C5—H50.9500Nd1—O62.414 (2)
C6—N11.342 (4)Nd1—O12.455 (2)
C6—H60.9500Nd1—O72.461 (2)
C7—O41.259 (3)Nd1—O82.465 (2)
C7—O31.264 (4)Nd1—O42.517 (2)
C7—C81.501 (4)Nd1—O52.537 (2)
C8—C91.389 (4)Nd1—O32.566 (2)
C8—C121.388 (4)Nd1—O2i2.856 (2)
C9—C101.390 (4)Nd1—Nd1i4.0022 (5)
C9—H90.9500O7—H710.84 (1)
C10—C111.383 (4)O7—H720.85 (3)
C11—N21.338 (4)O8—H810.85 (1)
C11—H110.9500O8—H820.85 (1)
C12—N21.338 (4)O9—H910.85 (3)
C12—H120.9500O9—H920.84 (1)
C13—O6i1.253 (4)
O1—C1—O2i123.6 (3)O7—Nd1—O873.44 (7)
O1—C1—C2118.1 (3)O2—Nd1—O4124.90 (7)
O2i—C1—C2118.1 (3)O6—Nd1—O477.05 (7)
O1—C1—Nd153.38 (14)O1—Nd1—O483.10 (7)
O2i—C1—Nd171.76 (16)O7—Nd1—O4102.44 (8)
C2—C1—Nd1161.08 (19)O8—Nd1—O469.36 (7)
C3—C2—C6119.1 (3)O2—Nd1—O590.48 (7)
C3—C2—C1120.5 (3)O6—Nd1—O5126.28 (7)
C6—C2—C1120.2 (3)O1—Nd1—O579.14 (7)
C4—C3—C2117.8 (3)O7—Nd1—O575.17 (7)
C4—C3—H3121.1O8—Nd1—O575.71 (7)
C2—C3—H3121.1O4—Nd1—O5143.95 (7)
C3—C4—C5120.1 (3)O2—Nd1—O376.21 (7)
C3—C4—Br1120.8 (2)O6—Nd1—O373.70 (7)
C5—C4—Br1119.1 (2)O1—Nd1—O3128.77 (7)
N1—C5—C4122.2 (3)O7—Nd1—O377.78 (7)
N1—C5—H5118.9O8—Nd1—O3104.54 (7)
C4—C5—H5118.9O4—Nd1—O351.57 (7)
N1—C6—C2122.7 (3)O5—Nd1—O3151.64 (7)
N1—C6—H6118.7O2—Nd1—O2i80.82 (7)
C2—C6—H6118.7O6—Nd1—O2i64.17 (7)
O4—C7—O3122.4 (3)O1—Nd1—O2i48.76 (6)
O4—C7—C8118.6 (3)O7—Nd1—O2i133.17 (7)
O3—C7—C8119.0 (3)O8—Nd1—O2i112.90 (7)
O4—C7—Nd160.93 (15)O4—Nd1—O2i123.63 (6)
O3—C7—Nd163.19 (15)O5—Nd1—O2i63.04 (6)
C8—C7—Nd1165.9 (2)O3—Nd1—O2i136.46 (6)
C9—C8—C12119.0 (3)O2—Nd1—C799.62 (8)
C9—C8—C7120.1 (3)O6—Nd1—C770.22 (8)
C12—C8—C7120.9 (3)O1—Nd1—C7104.64 (8)
C8—C9—C10117.7 (3)O7—Nd1—C793.22 (8)
C8—C9—H9121.1O8—Nd1—C789.25 (8)
C10—C9—H9121.1O4—Nd1—C725.93 (7)
C11—C10—C9119.7 (3)O5—Nd1—C7163.03 (8)
C11—C10—Br2119.1 (2)O3—Nd1—C726.09 (7)
C9—C10—Br2121.1 (2)O2i—Nd1—C7131.83 (7)
N2—C11—C10122.5 (3)O2—Nd1—C1105.66 (8)
N2—C11—H11118.8O6—Nd1—C170.10 (7)
C10—C11—H11118.8O1—Nd1—C124.09 (7)
N2—C12—C8123.0 (3)O7—Nd1—C1141.37 (8)
N2—C12—H12118.5O8—Nd1—C191.49 (7)
C8—C12—H12118.5O4—Nd1—C1105.05 (7)
O6i—C13—O5126.3 (3)O5—Nd1—C166.61 (7)
O6i—C13—C14114.8 (3)O3—Nd1—C1140.85 (7)
O5—C13—C14118.9 (3)O2i—Nd1—C125.04 (7)
C18—C14—C15118.7 (3)C7—Nd1—C1122.56 (8)
C18—C14—C13121.4 (3)O2—Nd1—Nd1i44.79 (5)
C15—C14—C13119.7 (3)O6—Nd1—Nd1i60.37 (5)
C16—C15—C14118.2 (3)O1—Nd1—Nd1i83.95 (5)
C16—C15—H15120.9O7—Nd1—Nd1i112.19 (6)
C14—C15—H15120.9O8—Nd1—Nd1i143.38 (5)
C17—C16—C15119.4 (3)O4—Nd1—Nd1i137.40 (5)
C17—C16—Br3119.5 (2)O5—Nd1—Nd1i71.42 (5)
C15—C16—Br3121.1 (2)O3—Nd1—Nd1i112.04 (5)
N3—C17—C16123.0 (3)O2i—Nd1—Nd1i36.03 (4)
N3—C17—H17118.5C7—Nd1—Nd1i125.13 (6)
C16—C17—H17118.5C1—Nd1—Nd1i60.94 (6)
N3—C18—C14123.0 (3)C1—O1—Nd1102.53 (17)
N3—C18—H18118.5C1i—O2—Nd1172.35 (19)
C14—C18—H18118.5C1i—O2—Nd1i83.20 (17)
C5—N1—C6118.0 (3)Nd1—O2—Nd1i99.18 (7)
C12—N2—C11118.0 (3)C7—O3—Nd190.72 (17)
C17—N3—C18117.7 (3)C7—O4—Nd193.14 (17)
O2—Nd1—O672.07 (7)C13—O5—Nd1121.09 (19)
O2—Nd1—O1127.79 (7)C13i—O6—Nd1135.0 (2)
O6—Nd1—O173.88 (7)Nd1—O7—H71129 (3)
O2—Nd1—O779.30 (8)Nd1—O7—H72118 (3)
O6—Nd1—O7143.42 (7)H71—O7—H72113 (4)
O1—Nd1—O7142.70 (7)Nd1—O8—H81115 (2)
O2—Nd1—O8151.76 (7)Nd1—O8—H82115 (3)
O6—Nd1—O8135.81 (7)H81—O8—H82100 (4)
O1—Nd1—O874.33 (7)H91—O9—H92110 (4)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···N3ii0.84 (1)1.94 (2)2.769 (3)165 (5)
O7—H72···O9iii0.85 (3)1.97 (2)2.780 (3)160 (4)
O8—H81···O9iii0.85 (1)1.87 (1)2.699 (3)164 (3)
O8—H82···N2iv0.85 (1)1.88 (1)2.735 (3)175 (5)
O9—H91···N10.85 (3)1.96 (3)2.801 (3)172 (4)
O9—H92···O4iv0.84 (1)2.21 (2)2.981 (3)153 (4)
O9—H92···O8iv0.84 (1)2.37 (4)2.989 (3)131 (4)
Symmetry codes: (ii) x+1/2, y+1/2, z+5/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Nd2(C6H3BrNO2)6(H2O)4]·2H2O
Mr1602.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)110
a, b, c (Å)11.5278 (13), 16.6616 (18), 12.2711 (13)
β (°) 102.478 (2)
V3)2301.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)7.52
Crystal size (mm)0.42 × 0.38 × 0.36
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.059, 0.067
No. of measured, independent and
observed [I > 2σ(I)] reflections
11552, 4999, 4295
Rint0.023
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.054, 1.07
No. of reflections4999
No. of parameters331
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.02, 1.07

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···N3i0.84 (1)1.94 (2)2.769 (3)165 (5)
O7—H72···O9ii0.85 (3)1.97 (2)2.780 (3)160 (4)
O8—H81···O9ii0.85 (1)1.87 (1)2.699 (3)164 (3)
O8—H82···N2iii0.85 (1)1.88 (1)2.735 (3)175 (5)
O9—H91···N10.85 (3)1.96 (3)2.801 (3)172 (4)
O9—H92···O4iii0.84 (1)2.21 (2)2.981 (3)153 (4)
O9—H92···O8iii0.84 (1)2.37 (4)2.989 (3)131 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+5/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+3/2.
 

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRagunathan, K. G. & Schneider, H. J. (1996). Angew. Chem. Int. Ed. 35, 1219–1221.  CrossRef CAS Google Scholar
First citationRupam, S., Dipak, K. H., Subratanath, K., Madeleine, H., Monika, M. & Ashis, B. (2010). Polyhedron, 29, 3183–3191.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibasaki, M. & Yoshikawa, N. (2002). Chem. Rev. 102, 2187–2209.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSong, Y.-S., Yan, B. & Chen, Z.-X. (2004). J. Solid State Chem. 177, 3805–3814.  CAS Google Scholar
First citationYang, J. & Chen, H.-J. (2009). Acta Cryst. E65, m1262–m1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds