metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m957-m958

catena-[[(nitrato-κO)silver(I)]-μ-1,10-phenanthroline-5,6-dione-κ4O,O′:N,N′]

aDepartment of Chemistry, Northeast Normal University, Changchun 130021, People's Republic of China, and bJiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, People's Republic of China
*Correspondence e-mail: yulanzhu2008@126.com

(Received 13 April 2011; accepted 31 May 2011; online 18 June 2011)

In the title one-dimensional coordination polymer, [Ag(NO3)(C12H6N2O2)]n, the AgI atom is penta­coordinated by two N atoms from a 1,10-phenanthroline-5,6-dione (phen-dione) ligand, one O atom from the nitrate anion and two O atoms from another phen-dione ligand. The coordination environment around silver is slightly distorted square-pyramidal. Inter­estingly, the Ag—O distances to the phen-dione ligand are different [Ag—O = 2.612 (6) and 2.470 (5) Å]. The one-dimensional chains run parallel to [101] and are further inter­connected by weak hydrogen bonds (C—H⋯O) and ππ stacking inter­actions [centroid–centroid distances 3.950 (4) and 3.792 (4) Å], forming a three-dimensional supra­molecular network.

Related literature

For the use of 1,10-phenanthroline-5,6-dione (phen-dione) as an efficient chelating ligand establishing coordination polymers, see: Calderazzo et al. (2002[Calderazzo, F., Pampaloni, G. & Passarelli, V. (2002). Inorg. Chim. Acta, 330, 136-142.]); Wu et al. (1996[Wu, Q., Maskus, M., Pariente, F., Tobalina, F. & Fernandez, V. M. (1996). Anal. Chem. 68, 3688-3696.]); Liu & Xu (2006[Liu, Q. Y. & Xu, L. (2006). Eur. J. Inorg. Chem. pp. 1620-1628.]); Li et al. (2005[Li, X., Cao, R., Bi, W. H., Yuan, D. Q. & Sun, D. F. (2005). Eur. J. Inorg. Chem. pp. 3156-3166.]). For examples of complexes with N,O-coordination of phen-dione, see: Paw & Eisenberg (1997[Paw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287-2293.]); Ruiz et al. (1999[Ruiz, R., Caneschi, A., Gatteschi, D., Gaspar, A. B., Real, J. A., Fernandez, I. & Munoz, M. C. (1999). Inorg. Chem. Commun. 2, 521-523.]); Shavaleev et al. (2003[Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003). Chem. Commun. pp. 1134-1135.]). For the synthesis of phen-dione, see: Paw & Eisenberg (1997[Paw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287-2293.]). For the structure of a related phen-dione complex of AgI, see: Onuegbu et al. (2009[Onuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2009). Acta Cryst. E65, m1119-m1120.]). For a comparison of Ag—O bond lengths, see: Young & Hanton (2008[Young, A. G. & Hanton, L. R. (2008). Coord. Chem. Rev. 252, 1346-1386. ]); Sun et al. (2010[Sun, D., Zhang, N., Huang, R. B. & Zheng, L. S. (2010). Cryst. Growth Des. 10, 3699-3709.]); Wang et al. (2011[Wang, H., Yuan, G., Sun, C. & Yang, G. C. (2011). Inorg. Chem. Commun. 14, 347-350.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(NO3)(C12H6N2O2)]

  • Mr = 380.07

  • Monoclinic, P 21 /n

  • a = 9.5058 (14) Å

  • b = 10.4647 (15) Å

  • c = 12.1615 (17) Å

  • β = 99.766 (2)°

  • V = 1192.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.72 mm−1

  • T = 296 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.66, Tmax = 0.84

  • 6626 measured reflections

  • 2307 independent reflections

  • 1374 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.124

  • S = 1.00

  • 2307 reflections

  • 190 parameters

  • 32 restraints

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −1.05 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4i 0.93 2.37 3.21 (1) 149
Symmetry code: (i) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1, 10-phenanthroline-5,6-dione (phen-dione) is an efficient chelating ligand exhibiting two types of coordinating atoms (N and O) that are electronically coupled due to conjugation throughout the ligand. While phen-dione usually binds to metals through N atoms, in some cases both the N and O atoms are used simultaneously (Paw & Eisenberg,1997; Ruiz et al., 1999; Shavaleev et al., 2003).

In this paper we report the synthesis and characterization of the title compound, [Ag(phen-dione)(NO3)]n (1). Single-crystal X-ray diffraction study of 1 reveals the asymmetric unit to consist of one Ag (I) ion, one phen-dione ligand and one nitrate anion (Fig. 1). The silver atom is coordinated to two N atoms of a 1,10-phenanthroline-5,6-dione (phen-dione), one O atom from the nitrate anion and two O atoms from another phen-dione ligand giving rise to a slightly distorted square-pyramidal coordination sphere. The corresponding Ag–N bond distances are 2.445 (6) Å for Ag–N(1), 2.287 (6) Å for Ag–N(2) and Ag–O bond distances are observed to 2.474 (6) Å for Ag–O(1 A), 2.438 (7) Å for Ag–O(3) and 2.612 (6) Å for Ag–O(2 A). The latter bond length is longer than Ag–O(1 A) and Ag–O(3), but is well–matched to other examples reported in the literature (Young & Hanton, 2008; Wang et al., 2011; Sun et al., 2010).

In compound 1, the basic building units with a [AgN2O3]center are firstly interconnected to each other to produce a one-dimensional chain by additional Ag—O(1 A) and Ag—O(2 A) bonds (Fig. 2). Then the adjacent one-dimensional chains are further linked to each other to form three-dimensional network structure by the weak hydrogen bond C (1)–H(1)···O(4) (3.184 Å) between a CH function of a pyridine and an oxygen atom of the nitrate anion and ππ stacking interactions (Fig. 3). Two types of aromatic stacking interactions in 1 are observed between pyridine ring I (N (1), C (10), C (9), C (8), C (7), C (11)) and pyridine ring II (N (1), C (10), C (9), C (8), C (7), C (11)). There is one close distance between the centroids of pyridine I and II and another between two neighboring pyridine I moieties. The respective centroid-to-centroid distances are 3.950 (4) Å and 3.792 (4) Å.

The combination of coordinative bonds, hydrogen bonds, and ππ stacking interactions assemble the one-dimensional chain into a complicated three-dimensional supramolecular network.

Related literature top

For the use of 1,10-phenanthroline-5,6-dione (phen-dione) as an efficient chelating ligand establishing coordination polymers, see: Calderazzo et al. (2002); Wu et al. (1996); Liu & Xu (2006); Li et al. (2005). For examples of complexes with N,O-coordination of phen-dione, see: Paw & Eisenberg (1997); Ruiz et al. (1999); Shavaleev et al. (2003). For the synthesis of phen-dione, see: Paw & Eisenberg (1997). For the structure of a related phen-dione complex of AgI, see: Onuegbu et al. (2009). For a comparison of Ag—O bond lengths, see: Young & Hanton (2008); Sun et al. (2010); Wang et al. (2011).

Experimental top

The title compound was synthesized according to the following steps: a solution of silver (I) nitrate (0.068 g, 0.4 mmol) and phen-dione (0.0212 g, 0.1 mmol) in methanol (8 ml) was stirred for 2 h. After filtering, the filtrate was left at room temperature for about two weeks. Yellow block shaped crystals of 1 were collected by vacuum filtration, washed thoroughly with methanol dried in air (yield 23% based on silver).

Refinement top

All non-hydrogen atoms were located from the difference Fourier maps, and were refined anisotropically. All H atoms were positioned geometrically, and were allowed to ride on their corresponding parent atoms with Uiso = 1.2 Ueq.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, displacement ellipsoids are drawn at the30% probability level.
[Figure 2] Fig. 2. One-dimensional polymeric structure of the title compound.
[Figure 3] Fig. 3. Crystal packing of the title compound, ππ stacking interactions are shown as green dashed lines and hydrogen bonds are shown as black dashed lines.
catena-[[(nitrato-κO)silver(I)]-µ-1,10-phenanthroline- 5,6-dione-κ4O,O':N,N'] top
Crystal data top
[Ag(NO3)(C12H6N2O2)]F(000) = 744
Mr = 380.07Dx = 2.117 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1252 reflections
a = 9.5058 (14) Åθ = 2.6–22.6°
b = 10.4647 (15) ŵ = 1.72 mm1
c = 12.1615 (17) ÅT = 296 K
β = 99.766 (2)°Block, yellow
V = 1192.2 (3) Å30.3 × 0.2 × 0.1 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2307 independent reflections
Radiation source: fine-focus sealed tube1374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 0 pixels mm-1θmax = 26.0°, θmin = 2.6°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker 2000)
k = 1212
Tmin = 0.66, Tmax = 0.84l = 147
6626 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0445P)2 + 3.5057P]
where P = (Fo2 + 2Fc2)/3
2307 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.84 e Å3
32 restraintsΔρmin = 1.05 e Å3
Crystal data top
[Ag(NO3)(C12H6N2O2)]V = 1192.2 (3) Å3
Mr = 380.07Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5058 (14) ŵ = 1.72 mm1
b = 10.4647 (15) ÅT = 296 K
c = 12.1615 (17) Å0.3 × 0.2 × 0.1 mm
β = 99.766 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2307 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2000)
1374 reflections with I > 2σ(I)
Tmin = 0.66, Tmax = 0.84Rint = 0.041
6626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05232 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.00Δρmax = 0.84 e Å3
2307 reflectionsΔρmin = 1.05 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.20025 (7)0.15378 (7)0.49084 (6)0.0703 (3)
C10.3824 (8)0.0492 (8)0.3745 (6)0.055 (2)
H10.33480.10650.41360.066*
C20.4710 (9)0.0969 (8)0.3058 (7)0.060 (2)
H20.48150.18460.29810.072*
C30.5436 (8)0.0134 (7)0.2488 (6)0.0489 (19)
H30.60340.04370.20150.059*
C40.5264 (7)0.1159 (6)0.2628 (6)0.0399 (17)
C50.6048 (7)0.2087 (6)0.2031 (6)0.0449 (18)
C60.5831 (7)0.3489 (6)0.2189 (5)0.0416 (16)
C70.4826 (7)0.3887 (7)0.2938 (5)0.0391 (17)
C80.4591 (7)0.5165 (7)0.3107 (6)0.0485 (19)
H80.50580.57870.27580.058*
C90.3654 (8)0.5503 (8)0.3800 (6)0.053 (2)
H90.34600.63580.39180.064*
C100.3008 (8)0.4552 (8)0.4318 (6)0.056 (2)
H100.23930.47900.48010.067*
C110.4114 (7)0.2975 (6)0.3479 (5)0.0356 (16)
C120.4337 (7)0.1596 (7)0.3331 (5)0.0380 (15)
N10.3214 (6)0.3316 (6)0.4165 (5)0.0439 (14)
N20.3618 (6)0.0775 (6)0.3874 (5)0.0424 (14)
N30.1319 (8)0.2293 (8)0.4504 (7)0.0784 (15)
O10.6449 (5)0.4259 (5)0.1699 (4)0.0567 (14)
O20.6867 (6)0.1721 (5)0.1428 (5)0.0708 (17)
O30.0348 (6)0.2265 (7)0.3995 (6)0.0846 (15)
O40.1158 (8)0.1860 (9)0.5450 (7)0.126 (2)
O50.2488 (6)0.2729 (7)0.4152 (5)0.0896 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0779 (5)0.0783 (5)0.0691 (5)0.0005 (4)0.0539 (4)0.0004 (4)
C10.062 (5)0.052 (5)0.057 (5)0.006 (4)0.027 (4)0.012 (4)
C20.066 (5)0.047 (5)0.071 (6)0.003 (4)0.023 (5)0.004 (4)
C30.048 (4)0.052 (5)0.051 (5)0.008 (4)0.017 (4)0.006 (4)
C40.040 (4)0.042 (4)0.040 (4)0.007 (3)0.016 (3)0.004 (3)
C50.047 (4)0.052 (5)0.041 (4)0.001 (3)0.022 (4)0.001 (3)
C60.040 (4)0.053 (4)0.035 (4)0.006 (4)0.015 (3)0.002 (4)
C70.040 (4)0.047 (4)0.034 (4)0.003 (3)0.016 (3)0.001 (3)
C80.053 (4)0.046 (5)0.051 (5)0.002 (4)0.020 (4)0.004 (4)
C90.069 (5)0.042 (4)0.053 (5)0.009 (4)0.019 (4)0.004 (4)
C100.062 (5)0.064 (6)0.048 (5)0.012 (4)0.027 (4)0.002 (4)
C110.038 (4)0.042 (4)0.029 (4)0.005 (3)0.013 (3)0.004 (3)
C120.036 (3)0.045 (4)0.035 (4)0.003 (3)0.011 (3)0.003 (3)
N10.045 (3)0.045 (4)0.047 (4)0.003 (3)0.024 (3)0.002 (3)
N20.044 (3)0.042 (4)0.045 (3)0.001 (3)0.019 (3)0.003 (3)
N30.054 (3)0.111 (4)0.077 (3)0.003 (3)0.029 (3)0.021 (3)
O10.059 (3)0.058 (3)0.062 (3)0.008 (3)0.034 (3)0.002 (3)
O20.088 (4)0.066 (4)0.075 (4)0.012 (3)0.062 (3)0.003 (3)
O30.061 (3)0.108 (4)0.092 (3)0.006 (3)0.036 (3)0.009 (3)
O40.095 (4)0.188 (5)0.092 (4)0.022 (4)0.012 (3)0.058 (4)
O50.059 (3)0.131 (5)0.078 (4)0.022 (3)0.010 (3)0.017 (3)
Geometric parameters (Å, º) top
Ag1—N22.287 (5)C6—C71.487 (8)
Ag1—O32.442 (6)C7—C81.377 (10)
Ag1—N12.442 (6)C7—C111.397 (9)
Ag1—O1i2.470 (5)C8—C91.372 (10)
C1—N21.354 (10)C8—H80.9300
C1—C21.376 (10)C9—C101.376 (10)
C1—H10.9300C9—H90.9300
C2—C31.372 (10)C10—N11.326 (9)
C2—H20.9300C10—H100.9300
C3—C41.377 (9)C11—N11.341 (7)
C3—H30.9300C11—C121.474 (10)
C4—C121.405 (8)C12—N21.340 (8)
C4—C51.486 (9)N3—O31.195 (8)
C5—O21.218 (7)N3—O51.210 (9)
C5—C61.499 (7)N3—O41.222 (9)
C6—O11.211 (7)O1—Ag1ii2.470 (5)
N2—Ag1—O3120.4 (2)C9—C8—C7118.7 (7)
N2—Ag1—N170.10 (19)C9—C8—H8120.6
O3—Ag1—N192.7 (2)C7—C8—H8120.6
N2—Ag1—O1i129.06 (19)C8—C9—C10118.8 (7)
O3—Ag1—O1i101.00 (18)C8—C9—H9120.6
N1—Ag1—O1i140.18 (19)C10—C9—H9120.6
N2—C1—C2122.8 (7)N1—C10—C9123.5 (6)
N2—C1—H1118.6N1—C10—H10118.2
C2—C1—H1118.6C9—C10—H10118.2
C1—C2—C3119.2 (7)N1—C11—C7121.5 (6)
C1—C2—H2120.4N1—C11—C12117.2 (6)
C3—C2—H2120.4C7—C11—C12121.3 (6)
C2—C3—C4118.9 (7)N2—C12—C4121.1 (6)
C2—C3—H3120.6N2—C12—C11118.1 (5)
C4—C3—H3120.6C4—C12—C11120.8 (6)
C3—C4—C12119.7 (7)C10—N1—C11118.2 (6)
C3—C4—C5120.1 (6)C10—N1—Ag1127.0 (4)
C12—C4—C5120.2 (6)C11—N1—Ag1114.7 (4)
O2—C5—C4120.9 (6)C12—N2—C1118.3 (6)
O2—C5—C6120.0 (6)C12—N2—Ag1119.6 (4)
C4—C5—C6119.1 (5)C1—N2—Ag1122.0 (4)
O1—C6—C7122.1 (6)O3—N3—O5124.7 (9)
O1—C6—C5119.9 (6)O3—N3—O4119.6 (9)
C7—C6—C5118.0 (6)O5—N3—O4115.7 (8)
C8—C7—C11119.3 (6)C6—O1—Ag1ii113.8 (4)
C8—C7—C6120.0 (6)N3—O3—Ag1120.0 (6)
C11—C7—C6120.7 (6)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4iii0.932.373.21 (1)149
Symmetry code: (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ag(NO3)(C12H6N2O2)]
Mr380.07
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.5058 (14), 10.4647 (15), 12.1615 (17)
β (°) 99.766 (2)
V3)1192.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2000)
Tmin, Tmax0.66, 0.84
No. of measured, independent and
observed [I > 2σ(I)] reflections
6626, 2307, 1374
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.124, 1.00
No. of reflections2307
No. of parameters190
No. of restraints32
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 1.05

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.932.373.21 (1)148.8
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant Nos. 20671038 and 20975043) and Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials (grant No. JSKC09061).

References

First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalderazzo, F., Pampaloni, G. & Passarelli, V. (2002). Inorg. Chim. Acta, 330, 136–142.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, X., Cao, R., Bi, W. H., Yuan, D. Q. & Sun, D. F. (2005). Eur. J. Inorg. Chem. pp. 3156–3166.  CrossRef Google Scholar
First citationLiu, Q. Y. & Xu, L. (2006). Eur. J. Inorg. Chem. pp. 1620–1628.  Web of Science CSD CrossRef Google Scholar
First citationOnuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2009). Acta Cryst. E65, m1119–m1120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287–2293.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationRuiz, R., Caneschi, A., Gatteschi, D., Gaspar, A. B., Real, J. A., Fernandez, I. & Munoz, M. C. (1999). Inorg. Chem. Commun. 2, 521–523.  Web of Science CSD CrossRef CAS Google Scholar
First citationShavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003). Chem. Commun. pp. 1134–1135.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D., Zhang, N., Huang, R. B. & Zheng, L. S. (2010). Cryst. Growth Des. 10, 3699–3709.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, H., Yuan, G., Sun, C. & Yang, G. C. (2011). Inorg. Chem. Commun. 14, 347–350.  CrossRef CAS Google Scholar
First citationWu, Q., Maskus, M., Pariente, F., Tobalina, F. & Fernandez, V. M. (1996). Anal. Chem. 68, 3688–3696.  CrossRef CAS Google Scholar
First citationYoung, A. G. & Hanton, L. R. (2008). Coord. Chem. Rev. 252, 1346–1386.   CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m957-m958
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds