metal-organic compounds
catena-[[(nitrato-κO)silver(I)]-μ-1,10-phenanthroline-5,6-dione-κ4O,O′:N,N′]
aDepartment of Chemistry, Northeast Normal University, Changchun 130021, People's Republic of China, and bJiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, People's Republic of China
*Correspondence e-mail: yulanzhu2008@126.com
In the title one-dimensional coordination polymer, [Ag(NO3)(C12H6N2O2)]n, the AgI atom is pentacoordinated by two N atoms from a 1,10-phenanthroline-5,6-dione (phen-dione) ligand, one O atom from the nitrate anion and two O atoms from another phen-dione ligand. The coordination environment around silver is slightly distorted square-pyramidal. Interestingly, the Ag—O distances to the phen-dione ligand are different [Ag—O = 2.612 (6) and 2.470 (5) Å]. The one-dimensional chains run parallel to [101] and are further interconnected by weak hydrogen bonds (C—H⋯O) and π–π stacking interactions [centroid–centroid distances 3.950 (4) and 3.792 (4) Å], forming a three-dimensional supramolecular network.
Related literature
For the use of 1,10-phenanthroline-5,6-dione (phen-dione) as an efficient chelating ligand establishing coordination polymers, see: Calderazzo et al. (2002); Wu et al. (1996); Liu & Xu (2006); Li et al. (2005). For examples of complexes with N,O-coordination of phen-dione, see: Paw & Eisenberg (1997); Ruiz et al. (1999); Shavaleev et al. (2003). For the synthesis of phen-dione, see: Paw & Eisenberg (1997). For the structure of a related phen-dione complex of AgI, see: Onuegbu et al. (2009). For a comparison of Ag—O bond lengths, see: Young & Hanton (2008); Sun et al. (2010); Wang et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811020939/im2282sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811020939/im2282Isup2.hkl
The title compound was synthesized according to the following steps: a solution of silver (I) nitrate (0.068 g, 0.4 mmol) and phen-dione (0.0212 g, 0.1 mmol) in methanol (8 ml) was stirred for 2 h. After filtering, the filtrate was left at room temperature for about two weeks. Yellow block shaped crystals of 1 were collected by vacuum filtration, washed thoroughly with methanol dried in air (yield 23% based on silver).
All non-hydrogen atoms were located from the difference Fourier maps, and were refined anisotropically. All H atoms were positioned geometrically, and were allowed to ride on their corresponding parent atoms with Uiso = 1.2 Ueq.
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).[Ag(NO3)(C12H6N2O2)] | F(000) = 744 |
Mr = 380.07 | Dx = 2.117 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1252 reflections |
a = 9.5058 (14) Å | θ = 2.6–22.6° |
b = 10.4647 (15) Å | µ = 1.72 mm−1 |
c = 12.1615 (17) Å | T = 296 K |
β = 99.766 (2)° | Block, yellow |
V = 1192.2 (3) Å3 | 0.3 × 0.2 × 0.1 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2307 independent reflections |
Radiation source: fine-focus sealed tube | 1374 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 0 pixels mm-1 | θmax = 26.0°, θmin = 2.6° |
ϕ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker 2000) | k = −12→12 |
Tmin = 0.66, Tmax = 0.84 | l = −14→7 |
6626 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0445P)2 + 3.5057P] where P = (Fo2 + 2Fc2)/3 |
2307 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.84 e Å−3 |
32 restraints | Δρmin = −1.05 e Å−3 |
[Ag(NO3)(C12H6N2O2)] | V = 1192.2 (3) Å3 |
Mr = 380.07 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.5058 (14) Å | µ = 1.72 mm−1 |
b = 10.4647 (15) Å | T = 296 K |
c = 12.1615 (17) Å | 0.3 × 0.2 × 0.1 mm |
β = 99.766 (2)° |
Bruker APEXII CCD area-detector diffractometer | 2307 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker 2000) | 1374 reflections with I > 2σ(I) |
Tmin = 0.66, Tmax = 0.84 | Rint = 0.041 |
6626 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 32 restraints |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.84 e Å−3 |
2307 reflections | Δρmin = −1.05 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.20025 (7) | 0.15378 (7) | 0.49084 (6) | 0.0703 (3) | |
C1 | 0.3824 (8) | −0.0492 (8) | 0.3745 (6) | 0.055 (2) | |
H1 | 0.3348 | −0.1065 | 0.4136 | 0.066* | |
C2 | 0.4710 (9) | −0.0969 (8) | 0.3058 (7) | 0.060 (2) | |
H2 | 0.4815 | −0.1846 | 0.2981 | 0.072* | |
C3 | 0.5436 (8) | −0.0134 (7) | 0.2488 (6) | 0.0489 (19) | |
H3 | 0.6034 | −0.0437 | 0.2015 | 0.059* | |
C4 | 0.5264 (7) | 0.1159 (6) | 0.2628 (6) | 0.0399 (17) | |
C5 | 0.6048 (7) | 0.2087 (6) | 0.2031 (6) | 0.0449 (18) | |
C6 | 0.5831 (7) | 0.3489 (6) | 0.2189 (5) | 0.0416 (16) | |
C7 | 0.4826 (7) | 0.3887 (7) | 0.2938 (5) | 0.0391 (17) | |
C8 | 0.4591 (7) | 0.5165 (7) | 0.3107 (6) | 0.0485 (19) | |
H8 | 0.5058 | 0.5787 | 0.2758 | 0.058* | |
C9 | 0.3654 (8) | 0.5503 (8) | 0.3800 (6) | 0.053 (2) | |
H9 | 0.3460 | 0.6358 | 0.3918 | 0.064* | |
C10 | 0.3008 (8) | 0.4552 (8) | 0.4318 (6) | 0.056 (2) | |
H10 | 0.2393 | 0.4790 | 0.4801 | 0.067* | |
C11 | 0.4114 (7) | 0.2975 (6) | 0.3479 (5) | 0.0356 (16) | |
C12 | 0.4337 (7) | 0.1596 (7) | 0.3331 (5) | 0.0380 (15) | |
N1 | 0.3214 (6) | 0.3316 (6) | 0.4165 (5) | 0.0439 (14) | |
N2 | 0.3618 (6) | 0.0775 (6) | 0.3874 (5) | 0.0424 (14) | |
N3 | −0.1319 (8) | 0.2293 (8) | 0.4504 (7) | 0.0784 (15) | |
O1 | 0.6449 (5) | 0.4259 (5) | 0.1699 (4) | 0.0567 (14) | |
O2 | 0.6867 (6) | 0.1721 (5) | 0.1428 (5) | 0.0708 (17) | |
O3 | −0.0348 (6) | 0.2265 (7) | 0.3995 (6) | 0.0846 (15) | |
O4 | −0.1158 (8) | 0.1860 (9) | 0.5450 (7) | 0.126 (2) | |
O5 | −0.2488 (6) | 0.2729 (7) | 0.4152 (5) | 0.0896 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0779 (5) | 0.0783 (5) | 0.0691 (5) | 0.0005 (4) | 0.0539 (4) | −0.0004 (4) |
C1 | 0.062 (5) | 0.052 (5) | 0.057 (5) | −0.006 (4) | 0.027 (4) | 0.012 (4) |
C2 | 0.066 (5) | 0.047 (5) | 0.071 (6) | 0.003 (4) | 0.023 (5) | 0.004 (4) |
C3 | 0.048 (4) | 0.052 (5) | 0.051 (5) | 0.008 (4) | 0.017 (4) | −0.006 (4) |
C4 | 0.040 (4) | 0.042 (4) | 0.040 (4) | 0.007 (3) | 0.016 (3) | −0.004 (3) |
C5 | 0.047 (4) | 0.052 (5) | 0.041 (4) | 0.001 (3) | 0.022 (4) | 0.001 (3) |
C6 | 0.040 (4) | 0.053 (4) | 0.035 (4) | −0.006 (4) | 0.015 (3) | 0.002 (4) |
C7 | 0.040 (4) | 0.047 (4) | 0.034 (4) | −0.003 (3) | 0.016 (3) | 0.001 (3) |
C8 | 0.053 (4) | 0.046 (5) | 0.051 (5) | −0.002 (4) | 0.020 (4) | 0.004 (4) |
C9 | 0.069 (5) | 0.042 (4) | 0.053 (5) | 0.009 (4) | 0.019 (4) | −0.004 (4) |
C10 | 0.062 (5) | 0.064 (6) | 0.048 (5) | 0.012 (4) | 0.027 (4) | −0.002 (4) |
C11 | 0.038 (4) | 0.042 (4) | 0.029 (4) | 0.005 (3) | 0.013 (3) | −0.004 (3) |
C12 | 0.036 (3) | 0.045 (4) | 0.035 (4) | −0.003 (3) | 0.011 (3) | −0.003 (3) |
N1 | 0.045 (3) | 0.045 (4) | 0.047 (4) | 0.003 (3) | 0.024 (3) | −0.002 (3) |
N2 | 0.044 (3) | 0.042 (4) | 0.045 (3) | 0.001 (3) | 0.019 (3) | 0.003 (3) |
N3 | 0.054 (3) | 0.111 (4) | 0.077 (3) | 0.003 (3) | 0.029 (3) | 0.021 (3) |
O1 | 0.059 (3) | 0.058 (3) | 0.062 (3) | −0.008 (3) | 0.034 (3) | 0.002 (3) |
O2 | 0.088 (4) | 0.066 (4) | 0.075 (4) | 0.012 (3) | 0.062 (3) | 0.003 (3) |
O3 | 0.061 (3) | 0.108 (4) | 0.092 (3) | 0.006 (3) | 0.036 (3) | 0.009 (3) |
O4 | 0.095 (4) | 0.188 (5) | 0.092 (4) | −0.022 (4) | 0.012 (3) | 0.058 (4) |
O5 | 0.059 (3) | 0.131 (5) | 0.078 (4) | 0.022 (3) | 0.010 (3) | −0.017 (3) |
Ag1—N2 | 2.287 (5) | C6—C7 | 1.487 (8) |
Ag1—O3 | 2.442 (6) | C7—C8 | 1.377 (10) |
Ag1—N1 | 2.442 (6) | C7—C11 | 1.397 (9) |
Ag1—O1i | 2.470 (5) | C8—C9 | 1.372 (10) |
C1—N2 | 1.354 (10) | C8—H8 | 0.9300 |
C1—C2 | 1.376 (10) | C9—C10 | 1.376 (10) |
C1—H1 | 0.9300 | C9—H9 | 0.9300 |
C2—C3 | 1.372 (10) | C10—N1 | 1.326 (9) |
C2—H2 | 0.9300 | C10—H10 | 0.9300 |
C3—C4 | 1.377 (9) | C11—N1 | 1.341 (7) |
C3—H3 | 0.9300 | C11—C12 | 1.474 (10) |
C4—C12 | 1.405 (8) | C12—N2 | 1.340 (8) |
C4—C5 | 1.486 (9) | N3—O3 | 1.195 (8) |
C5—O2 | 1.218 (7) | N3—O5 | 1.210 (9) |
C5—C6 | 1.499 (7) | N3—O4 | 1.222 (9) |
C6—O1 | 1.211 (7) | O1—Ag1ii | 2.470 (5) |
N2—Ag1—O3 | 120.4 (2) | C9—C8—C7 | 118.7 (7) |
N2—Ag1—N1 | 70.10 (19) | C9—C8—H8 | 120.6 |
O3—Ag1—N1 | 92.7 (2) | C7—C8—H8 | 120.6 |
N2—Ag1—O1i | 129.06 (19) | C8—C9—C10 | 118.8 (7) |
O3—Ag1—O1i | 101.00 (18) | C8—C9—H9 | 120.6 |
N1—Ag1—O1i | 140.18 (19) | C10—C9—H9 | 120.6 |
N2—C1—C2 | 122.8 (7) | N1—C10—C9 | 123.5 (6) |
N2—C1—H1 | 118.6 | N1—C10—H10 | 118.2 |
C2—C1—H1 | 118.6 | C9—C10—H10 | 118.2 |
C1—C2—C3 | 119.2 (7) | N1—C11—C7 | 121.5 (6) |
C1—C2—H2 | 120.4 | N1—C11—C12 | 117.2 (6) |
C3—C2—H2 | 120.4 | C7—C11—C12 | 121.3 (6) |
C2—C3—C4 | 118.9 (7) | N2—C12—C4 | 121.1 (6) |
C2—C3—H3 | 120.6 | N2—C12—C11 | 118.1 (5) |
C4—C3—H3 | 120.6 | C4—C12—C11 | 120.8 (6) |
C3—C4—C12 | 119.7 (7) | C10—N1—C11 | 118.2 (6) |
C3—C4—C5 | 120.1 (6) | C10—N1—Ag1 | 127.0 (4) |
C12—C4—C5 | 120.2 (6) | C11—N1—Ag1 | 114.7 (4) |
O2—C5—C4 | 120.9 (6) | C12—N2—C1 | 118.3 (6) |
O2—C5—C6 | 120.0 (6) | C12—N2—Ag1 | 119.6 (4) |
C4—C5—C6 | 119.1 (5) | C1—N2—Ag1 | 122.0 (4) |
O1—C6—C7 | 122.1 (6) | O3—N3—O5 | 124.7 (9) |
O1—C6—C5 | 119.9 (6) | O3—N3—O4 | 119.6 (9) |
C7—C6—C5 | 118.0 (6) | O5—N3—O4 | 115.7 (8) |
C8—C7—C11 | 119.3 (6) | C6—O1—Ag1ii | 113.8 (4) |
C8—C7—C6 | 120.0 (6) | N3—O3—Ag1 | 120.0 (6) |
C11—C7—C6 | 120.7 (6) |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x+1/2, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O4iii | 0.93 | 2.37 | 3.21 (1) | 149 |
Symmetry code: (iii) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ag(NO3)(C12H6N2O2)] |
Mr | 380.07 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 9.5058 (14), 10.4647 (15), 12.1615 (17) |
β (°) | 99.766 (2) |
V (Å3) | 1192.2 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.72 |
Crystal size (mm) | 0.3 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker 2000) |
Tmin, Tmax | 0.66, 0.84 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6626, 2307, 1374 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.124, 1.00 |
No. of reflections | 2307 |
No. of parameters | 190 |
No. of restraints | 32 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.84, −1.05 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O4i | 0.93 | 2.37 | 3.21 (1) | 148.8 |
Symmetry code: (i) −x, −y, −z+1. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (grant Nos. 20671038 and 20975043) and Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials (grant No. JSKC09061).
References
Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Calderazzo, F., Pampaloni, G. & Passarelli, V. (2002). Inorg. Chim. Acta, 330, 136–142. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Li, X., Cao, R., Bi, W. H., Yuan, D. Q. & Sun, D. F. (2005). Eur. J. Inorg. Chem. pp. 3156–3166. CrossRef Google Scholar
Liu, Q. Y. & Xu, L. (2006). Eur. J. Inorg. Chem. pp. 1620–1628. Web of Science CSD CrossRef Google Scholar
Onuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2009). Acta Cryst. E65, m1119–m1120. Web of Science CSD CrossRef IUCr Journals Google Scholar
Paw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287–2293. CSD CrossRef PubMed CAS Web of Science Google Scholar
Ruiz, R., Caneschi, A., Gatteschi, D., Gaspar, A. B., Real, J. A., Fernandez, I. & Munoz, M. C. (1999). Inorg. Chem. Commun. 2, 521–523. Web of Science CSD CrossRef CAS Google Scholar
Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003). Chem. Commun. pp. 1134–1135. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, D., Zhang, N., Huang, R. B. & Zheng, L. S. (2010). Cryst. Growth Des. 10, 3699–3709. Web of Science CSD CrossRef CAS Google Scholar
Wang, H., Yuan, G., Sun, C. & Yang, G. C. (2011). Inorg. Chem. Commun. 14, 347–350. CrossRef CAS Google Scholar
Wu, Q., Maskus, M., Pariente, F., Tobalina, F. & Fernandez, V. M. (1996). Anal. Chem. 68, 3688–3696. CrossRef CAS Google Scholar
Young, A. G. & Hanton, L. R. (2008). Coord. Chem. Rev. 252, 1346–1386. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1, 10-phenanthroline-5,6-dione (phen-dione) is an efficient chelating ligand exhibiting two types of coordinating atoms (N and O) that are electronically coupled due to conjugation throughout the ligand. While phen-dione usually binds to metals through N atoms, in some cases both the N and O atoms are used simultaneously (Paw & Eisenberg,1997; Ruiz et al., 1999; Shavaleev et al., 2003).
In this paper we report the synthesis and characterization of the title compound, [Ag(phen-dione)(NO3)]n (1). Single-crystal X-ray diffraction study of 1 reveals the asymmetric unit to consist of one Ag (I) ion, one phen-dione ligand and one nitrate anion (Fig. 1). The silver atom is coordinated to two N atoms of a 1,10-phenanthroline-5,6-dione (phen-dione), one O atom from the nitrate anion and two O atoms from another phen-dione ligand giving rise to a slightly distorted square-pyramidal coordination sphere. The corresponding Ag–N bond distances are 2.445 (6) Å for Ag–N(1), 2.287 (6) Å for Ag–N(2) and Ag–O bond distances are observed to 2.474 (6) Å for Ag–O(1 A), 2.438 (7) Å for Ag–O(3) and 2.612 (6) Å for Ag–O(2 A). The latter bond length is longer than Ag–O(1 A) and Ag–O(3), but is well–matched to other examples reported in the literature (Young & Hanton, 2008; Wang et al., 2011; Sun et al., 2010).
In compound 1, the basic building units with a [AgN2O3]center are firstly interconnected to each other to produce a one-dimensional chain by additional Ag—O(1 A) and Ag—O(2 A) bonds (Fig. 2). Then the adjacent one-dimensional chains are further linked to each other to form three-dimensional network structure by the weak hydrogen bond C (1)–H(1)···O(4) (3.184 Å) between a CH function of a pyridine and an oxygen atom of the nitrate anion and π–π stacking interactions (Fig. 3). Two types of aromatic stacking interactions in 1 are observed between pyridine ring I (N (1), C (10), C (9), C (8), C (7), C (11)) and pyridine ring II (N (1), C (10), C (9), C (8), C (7), C (11)). There is one close distance between the centroids of pyridine I and II and another between two neighboring pyridine I moieties. The respective centroid-to-centroid distances are 3.950 (4) Å and 3.792 (4) Å.
The combination of coordinative bonds, hydrogen bonds, and π–π stacking interactions assemble the one-dimensional chain into a complicated three-dimensional supramolecular network.