metal-organic compounds
cis-Dichloridobis(5,5′-dimethyl-2,2′-bipyridine)manganese(II) 2.5-hydrate
aNúcleo de Espectroscopia e Estrutura Molecular (NEEM), Department of Chemistry - Federal University of Juiz de Fora - Minas Gerais, 36036-900, Brazil
*Correspondence e-mail: renata.diniz@ufjf.edu.br
The metal site in the title compound [MnCl2(C12H12N2)2]·2.5H2O has a distorted octahedral geometry, coordinated by four N atoms of two 5,5′-dimethyl-2,2′-dipyridine ligands and two Cl atoms. Two and a half water molecules of hydration per complex unit are observed in the The compounds extend along the c axis with O—H⋯Cl, O—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds and π–π interactions [centroid-centroid distance = 3.70 (2) Å] contributing substantially to the crystal packing. The Mn and one of the water O atoms, the latter being half-occupied, are located on special positions, in this case a rotation axis of order 2.
Related literature
For the structures and applications of bipyridine and analogous ligands, see: Hazell (2004); Bakir et al. (1992); Cordes et al. (1982); Hung-Low et al. (2009). For the structure and applications of 5,5′-dimethyl-2,2′-dipyridine, see: Marandi et al. (2009); van Albada et al. (2005). For weak intermolecular interactions, see: Calhorda (2000); Desiraju (1996); Janiak (2000).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811021805/im2285sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811021805/im2285Isup2.hkl
All chemicals were obtained commercially and used without further purification. The complex was synthesized by mixing of 0.38 mmol of dmdpy dissolved in ethanol and 0.38 mmol of MnCl2 × 4 H2O dissolved in water. The mixture was placed under agitation for 40 h. After a few weeks, yellow single crystals suitable for the analysis of X-ray diffraction were obtained (yield: 39%).
H atoms were positioned geometrically and refined using the riding model approximation with C—H = 0.95 Å, and Uiso(H) was refined in group. H atoms of water molecule were located from
fixed in these positions and assigned the same isotropic displacement parameters for all H atoms.Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell
CrysAlis PRO (Oxford Diffraction, 2008); data reduction: CrysAlis PRO (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).[MnCl2(C12H12N2)2]·2.5H2O | F(000) = 1120 |
Mr = 539.35 | Dx = 1.341 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6304 reflections |
a = 18.6703 (9) Å | θ = 2.9–29.4° |
b = 14.0598 (4) Å | µ = 0.72 mm−1 |
c = 12.0536 (7) Å | T = 293 K |
β = 122.430 (7)° | Prismatic, yellow |
V = 2670.6 (2) Å3 | 0.47 × 0.35 × 0.34 mm |
Z = 4 |
Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer | 3317 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2499 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 10.4186 pixels mm-1 | θmax = 29.4°, θmin = 2.9° |
ω scans | h = −25→23 |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2008) based on expressions derived by Clark & Reid (1995)] | k = −14→18 |
Tmin = 0.470, Tmax = 0.697 | l = −16→16 |
11860 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.150 | w = 1/[σ2(Fo2) + (0.094P)2 + 0.4813P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
3317 reflections | Δρmax = 0.72 e Å−3 |
155 parameters | Δρmin = −0.31 e Å−3 |
0 restraints | Extinction correction: SHELXL |
Primary atom site location: structure-invariant direct methods | Absolute structure: no |
[MnCl2(C12H12N2)2]·2.5H2O | V = 2670.6 (2) Å3 |
Mr = 539.35 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 18.6703 (9) Å | µ = 0.72 mm−1 |
b = 14.0598 (4) Å | T = 293 K |
c = 12.0536 (7) Å | 0.47 × 0.35 × 0.34 mm |
β = 122.430 (7)° |
Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer | 3317 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2008) based on expressions derived by Clark & Reid (1995)] | 2499 reflections with I > 2σ(I) |
Tmin = 0.470, Tmax = 0.697 | Rint = 0.025 |
11860 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.150 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.72 e Å−3 |
3317 reflections | Δρmin = −0.31 e Å−3 |
155 parameters | Absolute structure: no |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mn | 0.5000 | 0.31073 (3) | 0.2500 | 0.03326 (18) | |
Cl1 | 0.56731 (3) | 0.43196 (4) | 0.42532 (6) | 0.0429 (2) | |
N1 | 0.42155 (12) | 0.19415 (12) | 0.0968 (2) | 0.0391 (4) | |
N2 | 0.38759 (11) | 0.27687 (13) | 0.26398 (18) | 0.0359 (4) | |
C1 | 0.37348 (15) | 0.32044 (16) | 0.3488 (2) | 0.0407 (5) | |
H1 | 0.4120 | 0.3667 | 0.4034 | 0.049* | |
C5 | 0.33239 (14) | 0.20969 (15) | 0.1835 (2) | 0.0368 (5) | |
C4 | 0.26252 (15) | 0.18577 (17) | 0.1891 (3) | 0.0466 (6) | |
H4 | 0.2249 | 0.1393 | 0.1334 | 0.056* | |
C2 | 0.30477 (16) | 0.30103 (17) | 0.3606 (3) | 0.0447 (6) | |
C3 | 0.24897 (16) | 0.2312 (2) | 0.2779 (3) | 0.0523 (7) | |
H3 | 0.2023 | 0.2150 | 0.2824 | 0.063* | |
C7 | 0.35069 (14) | 0.16493 (14) | 0.0903 (2) | 0.0386 (5) | |
C8 | 0.29693 (17) | 0.09802 (17) | −0.0022 (2) | 0.0511 (6) | |
H8 | 0.2475 | 0.0794 | −0.0072 | 0.061* | |
C11 | 0.43965 (16) | 0.15765 (17) | 0.0132 (2) | 0.0477 (6) | |
H11 | 0.4884 | 0.1792 | 0.0182 | 0.057* | |
C10 | 0.39085 (19) | 0.08913 (18) | −0.0818 (3) | 0.0552 (7) | |
C9 | 0.3180 (2) | 0.05955 (18) | −0.0865 (3) | 0.0580 (7) | |
H9 | 0.2833 | 0.0135 | −0.1470 | 0.070* | |
C6 | 0.2939 (2) | 0.3543 (2) | 0.4579 (3) | 0.0689 (9) | |
H6A | 0.3391 | 0.3995 | 0.5036 | 0.103* | |
H6B | 0.2950 | 0.3105 | 0.5199 | 0.103* | |
H6C | 0.2405 | 0.3872 | 0.4128 | 0.103* | |
C12 | 0.4172 (2) | 0.0531 (2) | −0.1719 (3) | 0.0782 (10) | |
H12A | 0.4692 | 0.0834 | −0.1506 | 0.117* | |
H12B | 0.3737 | 0.0673 | −0.2613 | 0.117* | |
H12C | 0.4257 | −0.0145 | −0.1614 | 0.117* | |
O1 | 0.5956 (2) | 0.4141 (2) | 0.7145 (3) | 0.1311 (14) | |
H1A | 0.5803 | 0.4187 | 0.6356 | 0.197* | |
H1B | 0.5699 | 0.4548 | 0.7272 | 0.197* | |
O2 | 0.5000 | 0.2629 (5) | 0.7500 | 0.112 (3) | 0.50 |
H2A | 0.5382 | 0.2904 | 0.7422 | 0.168* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn | 0.0241 (3) | 0.0282 (3) | 0.0388 (3) | 0.000 | 0.0111 (2) | 0.000 |
Cl1 | 0.0341 (3) | 0.0394 (3) | 0.0431 (3) | −0.0026 (2) | 0.0127 (3) | −0.0082 (2) |
N1 | 0.0330 (10) | 0.0304 (9) | 0.0398 (10) | 0.0005 (7) | 0.0101 (8) | −0.0025 (7) |
N2 | 0.0286 (9) | 0.0321 (9) | 0.0364 (9) | −0.0054 (7) | 0.0105 (8) | 0.0017 (7) |
C1 | 0.0339 (11) | 0.0390 (12) | 0.0416 (12) | −0.0089 (9) | 0.0153 (10) | −0.0011 (9) |
C5 | 0.0307 (11) | 0.0281 (10) | 0.0350 (11) | −0.0042 (8) | 0.0067 (9) | 0.0071 (8) |
C4 | 0.0370 (12) | 0.0404 (13) | 0.0477 (14) | −0.0143 (10) | 0.0130 (11) | 0.0020 (10) |
C2 | 0.0415 (13) | 0.0437 (13) | 0.0475 (14) | −0.0073 (10) | 0.0230 (11) | 0.0053 (10) |
C3 | 0.0403 (13) | 0.0560 (16) | 0.0563 (15) | −0.0153 (12) | 0.0231 (12) | 0.0050 (12) |
C7 | 0.0364 (11) | 0.0249 (9) | 0.0354 (11) | −0.0015 (9) | 0.0065 (9) | 0.0046 (8) |
C8 | 0.0501 (14) | 0.0383 (12) | 0.0428 (13) | −0.0147 (11) | 0.0102 (12) | −0.0001 (10) |
C11 | 0.0422 (13) | 0.0402 (12) | 0.0487 (14) | 0.0020 (10) | 0.0163 (11) | −0.0068 (11) |
C10 | 0.0615 (17) | 0.0373 (13) | 0.0454 (14) | 0.0039 (12) | 0.0146 (13) | −0.0061 (10) |
C9 | 0.0666 (18) | 0.0354 (13) | 0.0454 (15) | −0.0120 (12) | 0.0125 (13) | −0.0077 (10) |
C6 | 0.0645 (18) | 0.080 (2) | 0.079 (2) | −0.0247 (17) | 0.0493 (17) | −0.0175 (17) |
C12 | 0.092 (3) | 0.068 (2) | 0.060 (2) | 0.0055 (18) | 0.0315 (19) | −0.0192 (15) |
O1 | 0.166 (3) | 0.157 (3) | 0.110 (2) | 0.121 (3) | 0.101 (2) | 0.068 (2) |
O2 | 0.092 (5) | 0.047 (4) | 0.135 (7) | 0.000 | 0.020 (5) | 0.000 |
Mn—Cl1 | 2.4702 (6) | C7—C8 | 1.391 (3) |
Mn—N1 | 2.3111 (19) | C8—C9 | 1.382 (5) |
Mn—N2 | 2.245 (2) | C9—C10 | 1.394 (6) |
O1—H1B | 0.8100 | C10—C12 | 1.502 (6) |
O1—H1A | 0.8400 | C10—C11 | 1.397 (4) |
O2—H2A | 0.8600 | C1—H1 | 0.9300 |
O2—H2Ai | 0.8600 | C3—H3 | 0.9300 |
N1—C11 | 1.326 (4) | C4—H4 | 0.9300 |
N1—C7 | 1.347 (3) | C6—H6A | 0.9600 |
N2—C5 | 1.350 (2) | C6—H6B | 0.9600 |
N2—C1 | 1.334 (3) | C6—H6C | 0.9600 |
C1—C2 | 1.391 (5) | C8—H8 | 0.9300 |
C2—C3 | 1.389 (4) | C9—H9 | 0.9300 |
C2—C6 | 1.494 (5) | C11—H11 | 0.9300 |
C3—C4 | 1.381 (4) | C12—H12B | 0.9600 |
C4—C5 | 1.383 (4) | C12—H12C | 0.9600 |
C5—C7 | 1.480 (3) | C12—H12A | 0.9600 |
Cl1···C1 | 3.581 (3) | O1iv···C3ii | 3.257 (5) |
Cl1···O1 | 3.243 (3) | N1···N1ii | 3.259 (3) |
Cl1···Cl1ii | 3.5759 (9) | N1···N2ii | 3.233 (3) |
Cl1···N1ii | 3.3695 (18) | N1···N2 | 2.681 (3) |
Cl1···O1iii | 3.358 (4) | N2···C11ii | 3.337 (4) |
O1···O2 | 2.951 (6) | C3···O1v | 3.257 (5) |
O1···Cl1iii | 3.358 (4) | ||
Cl1—Mn—N1 | 170.62 (6) | N1—C7—C5 | 116.49 (19) |
Cl1—Mn—N2 | 98.59 (5) | C5—C7—C8 | 122.4 (3) |
Cl1—Mn—Cl1ii | 92.74 (2) | C7—C8—C9 | 119.1 (3) |
Cl1—Mn—N1ii | 89.55 (5) | C8—C9—C10 | 120.7 (3) |
Cl1—Mn—N2ii | 98.24 (5) | C9—C10—C12 | 124.2 (3) |
N1—Mn—N2 | 72.07 (8) | C11—C10—C12 | 120.2 (4) |
Cl1ii—Mn—N1 | 89.55 (5) | C9—C10—C11 | 115.6 (3) |
N1—Mn—N1ii | 89.65 (7) | N1—C11—C10 | 124.8 (3) |
N1—Mn—N2ii | 90.40 (8) | C2—C1—H1 | 118.00 |
Cl1ii—Mn—N2 | 98.24 (5) | N2—C1—H1 | 118.00 |
N1ii—Mn—N2 | 90.40 (8) | C4—C3—H3 | 120.00 |
N2—Mn—N2ii | 155.51 (7) | C2—C3—H3 | 120.00 |
Cl1ii—Mn—N1ii | 170.62 (6) | C5—C4—H4 | 120.00 |
Cl1ii—Mn—N2ii | 98.59 (5) | C3—C4—H4 | 120.00 |
N1ii—Mn—N2ii | 72.07 (8) | C2—C6—H6C | 109.00 |
H1A—O1—H1B | 107.00 | C2—C6—H6A | 110.00 |
H2A—O2—H2Ai | 127.00 | C2—C6—H6B | 110.00 |
Mn—N1—C11 | 124.8 (2) | H6B—C6—H6C | 109.00 |
Mn—N1—C7 | 116.40 (15) | H6A—C6—H6C | 109.00 |
C7—N1—C11 | 118.7 (2) | H6A—C6—H6B | 110.00 |
C1—N2—C5 | 118.9 (2) | C9—C8—H8 | 120.00 |
Mn—N2—C5 | 118.63 (17) | C7—C8—H8 | 120.00 |
Mn—N2—C1 | 122.49 (17) | C8—C9—H9 | 120.00 |
N2—C1—C2 | 124.1 (2) | C10—C9—H9 | 120.00 |
C3—C2—C6 | 123.5 (3) | N1—C11—H11 | 118.00 |
C1—C2—C3 | 116.3 (3) | C10—C11—H11 | 118.00 |
C1—C2—C6 | 120.2 (3) | C10—C12—H12B | 109.00 |
C2—C3—C4 | 120.3 (3) | C10—C12—H12C | 109.00 |
C3—C4—C5 | 119.6 (3) | H12A—C12—H12C | 110.00 |
N2—C5—C7 | 116.4 (2) | H12B—C12—H12C | 109.00 |
N2—C5—C4 | 120.8 (2) | H12A—C12—H12B | 110.00 |
C4—C5—C7 | 122.8 (2) | C10—C12—H12A | 109.00 |
N1—C7—C8 | 121.1 (2) | ||
N2—Mn—N1—C7 | 0.40 (15) | Mn—N2—C1—C2 | −179.72 (19) |
N2—Mn—N1—C11 | 177.7 (2) | C5—N2—C1—C2 | 0.1 (3) |
Cl1ii—Mn—N1—C7 | −98.41 (15) | Mn—N2—C5—C4 | 179.52 (18) |
Cl1ii—Mn—N1—C11 | 78.9 (2) | Mn—N2—C5—C7 | −1.1 (2) |
N1ii—Mn—N1—C7 | 90.94 (16) | C1—N2—C5—C4 | −0.3 (3) |
N1ii—Mn—N1—C11 | −91.8 (2) | C1—N2—C5—C7 | 179.10 (19) |
N2ii—Mn—N1—C7 | 163.01 (16) | N2—C1—C2—C3 | 0.4 (4) |
N2ii—Mn—N1—C11 | −19.7 (2) | N2—C1—C2—C6 | −179.4 (3) |
Cl1—Mn—N2—C1 | 1.11 (17) | C1—C2—C3—C4 | −0.7 (4) |
Cl1—Mn—N2—C5 | −178.73 (15) | C6—C2—C3—C4 | 179.1 (3) |
N1—Mn—N2—C1 | −179.78 (19) | C2—C3—C4—C5 | 0.5 (4) |
N1—Mn—N2—C5 | 0.38 (15) | C3—C4—C5—N2 | 0.0 (4) |
Cl1ii—Mn—N2—C1 | −92.95 (17) | C3—C4—C5—C7 | −179.4 (2) |
Cl1ii—Mn—N2—C5 | 87.21 (16) | N2—C5—C7—N1 | 1.4 (3) |
N1ii—Mn—N2—C1 | 90.71 (17) | N2—C5—C7—C8 | −176.9 (2) |
N1ii—Mn—N2—C5 | −89.13 (16) | C4—C5—C7—N1 | −179.2 (2) |
N2ii—Mn—N2—C1 | 134.05 (18) | C4—C5—C7—C8 | 2.5 (3) |
N2ii—Mn—N2—C5 | −45.8 (3) | N1—C7—C8—C9 | 1.5 (3) |
Mn—N1—C7—C5 | −1.1 (2) | C5—C7—C8—C9 | 179.7 (2) |
Mn—N1—C7—C8 | 177.24 (16) | C7—C8—C9—C10 | −1.8 (4) |
C11—N1—C7—C5 | −178.5 (2) | C8—C9—C10—C11 | 0.8 (4) |
C11—N1—C7—C8 | −0.2 (3) | C8—C9—C10—C12 | −178.3 (3) |
Mn—N1—C11—C10 | −178.1 (2) | C9—C10—C11—N1 | 0.6 (4) |
C7—N1—C11—C10 | −0.9 (4) | C12—C10—C11—N1 | 179.7 (3) |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1, y, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+3/2, −y+1/2, −z+1; (v) x−1/2, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1 | 0.84 | 2.42 | 3.243 (3) | 168 |
O1—H1B···Cl1iii | 0.81 | 2.73 | 3.358 (4) | 136 |
O2—H2A···O1 | 0.86 | 2.16 | 2.951 (6) | 153 |
C3—H3···O1v | 0.93 | 2.49 | 3.257 (5) | 140 |
C6—H6A···Cl1iii | 0.96 | 2.79 | 3.717 (4) | 162 |
Symmetry codes: (iii) −x+1, −y+1, −z+1; (v) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [MnCl2(C12H12N2)2]·2.5H2O |
Mr | 539.35 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 18.6703 (9), 14.0598 (4), 12.0536 (7) |
β (°) | 122.430 (7) |
V (Å3) | 2670.6 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.72 |
Crystal size (mm) | 0.47 × 0.35 × 0.34 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer |
Absorption correction | Analytical [CrysAlis PRO (Oxford Diffraction, 2008) based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.470, 0.697 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11860, 3317, 2499 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.692 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.150, 1.09 |
No. of reflections | 3317 |
No. of parameters | 155 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.72, −0.31 |
Absolute structure | No |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1 | 0.84 | 2.42 | 3.243 (3) | 168 |
O1—H1B···Cl1i | 0.81 | 2.73 | 3.358 (4) | 136 |
O2—H2A···O1 | 0.86 | 2.16 | 2.951 (6) | 153 |
C3—H3···O1ii | 0.93 | 2.49 | 3.257 (5) | 140 |
C6—H6A···Cl1i | 0.96 | 2.79 | 3.717 (4) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
The authors thank CNPq, CAPES and FAPEMIG (Brazilian agencies) for financial support, and LabCri (Federal University of Minas Gerais) for measuring the X-ray diffraction data.
References
Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Acta Cryst. E61, m1411–m1412. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bakir, M., Paulson, S., Goodson, P. & Sullivan, B. P. (1992). Inorg. Chem. 31, 1127–1129. CrossRef CAS Google Scholar
Calhorda, M. J. (2000). Chem. Commun. pp. 801–809. Web of Science CrossRef Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cordes, A. W., Durham, B., Swepston, P. N., Pennington, W. T., Condren, S. M., Jensen, R. & Walsh, J. L. (1982). J. Coord. Chem. 11, 251–260. CrossRef CAS Google Scholar
Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449. CrossRef CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hazell, A. (2004). Polyhedron, 23, 2081–2083. Web of Science CrossRef CAS Google Scholar
Hung-Low, F., Renz, A. & Klausmeyer, K. K. (2009). Polyhedron, 28, 407–415. Web of Science CSD CrossRef CAS Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marandi, F., Pantenburg, I. & Meyer, G. (2009). Z. Anorg. Allg. Chem. 635, 2558–2562. CrossRef CAS Google Scholar
Oxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Bipyridine and analogous ligands are commonly used in the formation of different complexes with a general variety of transition metals (Hazell, 2004; Bakir et al., 1992; Cordes et al.,1982; Hung-Low et al.,2009;). The ligand 5,5'-Dimethyl-2,2'-dipyridine (abbreviated as dmdpy) acts as a chelator and usually gives rise to monomeric compounds (Marandi et al., 2009). Only a limited number of X-ray crystal structures with the ligand dmdpy has been published (van Albada et al., 2005). In this study we used the ligand 5,5'-dimethyl-2,2'-dipyridine and manganese chloride tetrahydrate. This mixture resulted in the compound [Mn(C12H12N2)2Cl2] × 2.5 H2O (Scheme 1).
The molecular structure of the complex unit of the titlecompound [Mn(C12H12N2)2Cl2] × 2.5 H2O is shown in Figure 1. The metal site is coordinated by four nitrogen atoms N1, N2, N1i and N2i of the ligand dmdpy and two chlorides Cl1 and Cl1i adopting a distorted octahedral geometry as evidenced by the Mn—N1 distances (2.3111 (19) Å), Mn—N2 (2.245 (2) Å) and Mn—Cl1 (2.4702 (6) Å). The Mn atom is located in a special position, which in this case is a rotation axis of order 2.
The compound crystallizes in the monoclinic system and its unit cell is shown in Figure 2. The compound [Mn(C12H12N2)2Cl2] × 2.5 H2O is a complex that stretches along the crystallographic c axis with the molecular entities being interconnected by weak hydrogen bonds (Desiraju, 1996; Calhorda, 2000) shown in Figure 2. These hydrogen bonds are formed by the interaction between oxygen atoms of water molecules O1 and O2 and the chlorine atom Cl1 which is coordinated to the metal. The distances O1—O2 and O1—Cl1 charge 2.951 (6) Å and 3.243 (3) Å, respectively. π-π interactions between aromatic rings of the nitrogen ligand dmdpy are also shown in Figure 2. These interactions contribute substantially to the crystal packing (Janiak, 2000). In this compound the centroid-centroid distance is 3.70 (2) Å, and there was a substantial overlap between the aromatic rings of the ligand dmdpy, being centroid-plane distance of 3.45 (1)Å and the horizontal displacement of 1.37 (2) Å.