organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diiso­propyl­ammonium 4-meth­­oxy­benzoate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: seuwei@126.com

(Received 9 May 2011; accepted 17 June 2011; online 30 June 2011)

In the crystal structure of the title compound, C6H16N+·C8H7O3, inter­molecular N—H⋯O hydrogen bonds link the cations and anions into arrangements consisting of two cations and two anions each.

Related literature

For background to organic phase-transition materials, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Rheinstädter et al. (2002[Rheinstädter, M. C., Kityk, A. V., Klöpperpieper, A. & Knorr, K. (2002). Phys. Rev. B, 66, 064105.]); Wu et al. (2011[Wu, D.-H., Ge, J.-Z., Cai, H.-L., Weng, Z. & Xiong, R.-G. (2011). CrystEngComm, 13, 319-324.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N+·C8H7O3

  • Mr = 253.33

  • Triclinic, [P \overline 1]

  • a = 7.3265 (15) Å

  • b = 8.8808 (18) Å

  • c = 12.107 (2) Å

  • α = 87.83 (3)°

  • β = 77.83 (3)°

  • γ = 83.44 (3)°

  • V = 764.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.842, Tmax = 1.000

  • 7992 measured reflections

  • 3501 independent reflections

  • 1945 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.163

  • S = 1.04

  • 3501 reflections

  • 168 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O3i 0.90 1.84 2.720 (2) 166
N1—H1A⋯O2ii 0.90 1.83 2.721 (2) 169
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

One of our main research topics is the search for new dielectric-ferroelectric materials. Recent studies have revealed that organic salts might also have this kind of character (Fu et al., 2009; Rheinstädter et al., 2002; Wu et al., 2011). The dielectric constant of the title compound, diisopropylammonium 4-methoxy-benzoate, as a function of temperature indicates that the permittivity is basically temperature-independent. Below the melting point (438–440 K) of the title compound, we have found no dielectric disuniform from 80 K to 405 K. Herein we describe the crystal structure of this compound.

The asymmetric unit of the title compound consists of a diisopropylammonium cation and a 4-methoxybenzoate anion (Fig. 1). Intermolecular N—H···O hydrogen bonds (N1–H1A···O2 1.832 (2) Å, N1–H1B···O3 1.838 (2) Å) link the cations and anions into planar arrangements of two cations and anions each (Fig. 2 and Tab. 1).

Related literature top

For background to organic phase-transition materials, see: Fu et al. (2009); Rheinstädter et al. (2002); Wu et al. (2011).

Experimental top

The title compound was obtained by the addition of para-methoxybenzoic acid (1.52 g, 0.01 mol) to a solution of diisopropylamine (1.02 g, 0.01 mol) in methanol in a 1: 1 ratio. Good quality single crystals were obtained by slow evaporation of the solvent after two days (yield: 37%).

Refinement top

Positional parameters of all the H atoms bonded to C atom were calculated geometrically with C—H = 0.93 Å (CHar), 0.98 Å (CH), 0.96 Å (CH3), with Uiso(H) = 1.2 Ueq(CHar, CH) and Uiso(H) = 1.5 Ueq(CH3). Nitrogen bound H atoms were locatd in a difference Fourier map and refined freely

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
Diisopropylammonium 4-methoxybenzoate top
Crystal data top
C6H16N+·C8H7O3V = 764.9 (3) Å3
Mr = 253.33Z = 2
Triclinic, P1F(000) = 276
Hall symbol: -P 1Dx = 1.100 Mg m3
a = 7.3265 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8808 (18) Åθ = 6.2–55.3°
c = 12.107 (2) ŵ = 0.08 mm1
α = 87.83 (3)°T = 293 K
β = 77.83 (3)°Prism, colorless
γ = 83.44 (3)°0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3501 independent reflections
Radiation source: fine-focus sealed tube1945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.842, Tmax = 1.000l = 1515
7992 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.0936P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3501 reflectionsΔρmax = 0.14 e Å3
168 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXS97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0000
Crystal data top
C6H16N+·C8H7O3γ = 83.44 (3)°
Mr = 253.33V = 764.9 (3) Å3
Triclinic, P1Z = 2
a = 7.3265 (15) ÅMo Kα radiation
b = 8.8808 (18) ŵ = 0.08 mm1
c = 12.107 (2) ÅT = 293 K
α = 87.83 (3)°0.20 × 0.20 × 0.20 mm
β = 77.83 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
3501 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1945 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 1.000Rint = 0.027
7992 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
3501 reflectionsΔρmin = 0.20 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C50.3367 (2)0.7243 (2)0.69733 (13)0.0464 (4)
O20.4300 (2)0.49545 (18)0.78584 (12)0.0787 (5)
C20.2819 (3)0.8953 (2)0.50734 (15)0.0535 (5)
N10.2941 (2)0.64829 (17)0.11683 (11)0.0526 (4)
H1A0.39090.59440.14030.063*
H1B0.32330.65100.04080.063*
C30.3349 (3)0.7417 (2)0.49873 (15)0.0610 (5)
H30.35310.69510.42920.073*
C60.2841 (2)0.8778 (2)0.70400 (14)0.0533 (5)
H60.26590.92460.77350.064*
O10.2546 (2)0.96828 (17)0.40924 (11)0.0763 (5)
C80.3735 (3)0.6323 (3)0.79925 (16)0.0570 (5)
C70.2573 (3)0.9648 (2)0.60979 (16)0.0572 (5)
H70.22321.06880.61590.069*
O30.3476 (2)0.70132 (19)0.89014 (11)0.0877 (5)
C40.3609 (3)0.6570 (2)0.59302 (15)0.0541 (5)
H40.39510.55310.58660.065*
C120.2805 (3)0.8068 (2)0.15741 (17)0.0678 (6)
H120.24110.80610.24000.081*
C10.2132 (3)1.1280 (3)0.4104 (2)0.0807 (7)
H1C0.09561.15500.46150.121*
H1D0.20501.16450.33580.121*
H1E0.31101.17290.43470.121*
C90.1253 (3)0.5634 (3)0.15227 (18)0.0706 (6)
H90.01950.62040.12600.085*
C100.1664 (3)0.4115 (3)0.0961 (2)0.0842 (7)
H10A0.20120.42560.01570.126*
H10B0.05650.35850.11420.126*
H10C0.26770.35330.12270.126*
C130.1367 (4)0.9106 (3)0.1084 (2)0.1088 (10)
H13A0.17100.90920.02740.163*
H13B0.13341.01210.13400.163*
H13C0.01500.87600.13290.163*
C140.4734 (4)0.8603 (3)0.1257 (2)0.0937 (8)
H14A0.55910.79540.16100.141*
H14B0.46760.96230.15070.141*
H14C0.51620.85700.04510.141*
C110.0733 (4)0.5482 (4)0.2805 (2)0.1119 (10)
H11A0.18100.50400.30840.168*
H11B0.02620.48440.30130.168*
H11C0.03230.64660.31270.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0389 (9)0.0635 (12)0.0368 (9)0.0063 (8)0.0079 (7)0.0001 (8)
O20.1004 (12)0.0710 (10)0.0741 (10)0.0030 (9)0.0451 (9)0.0112 (8)
C20.0514 (11)0.0669 (13)0.0438 (10)0.0079 (9)0.0145 (8)0.0084 (9)
N10.0586 (9)0.0630 (10)0.0373 (7)0.0025 (8)0.0151 (7)0.0005 (6)
C30.0759 (14)0.0706 (14)0.0386 (10)0.0052 (11)0.0176 (9)0.0056 (9)
C60.0517 (11)0.0665 (13)0.0408 (10)0.0013 (9)0.0092 (8)0.0081 (8)
O10.0980 (11)0.0798 (10)0.0548 (8)0.0058 (8)0.0292 (8)0.0167 (7)
C80.0519 (11)0.0781 (15)0.0445 (10)0.0100 (10)0.0173 (8)0.0063 (9)
C70.0594 (12)0.0556 (11)0.0563 (11)0.0009 (9)0.0144 (9)0.0006 (9)
O30.1175 (13)0.1062 (12)0.0389 (8)0.0002 (10)0.0225 (8)0.0049 (8)
C40.0600 (11)0.0559 (11)0.0471 (10)0.0022 (9)0.0144 (8)0.0029 (8)
C120.0924 (16)0.0619 (13)0.0492 (11)0.0001 (12)0.0180 (11)0.0074 (9)
C10.0791 (16)0.0799 (16)0.0873 (16)0.0149 (13)0.0294 (12)0.0331 (12)
C90.0568 (12)0.0953 (17)0.0628 (13)0.0142 (12)0.0156 (10)0.0068 (11)
C100.0764 (16)0.0961 (18)0.0887 (17)0.0278 (13)0.0257 (13)0.0091 (14)
C130.124 (2)0.0868 (18)0.108 (2)0.0388 (17)0.0293 (18)0.0183 (15)
C140.116 (2)0.0678 (15)0.1050 (19)0.0272 (15)0.0328 (16)0.0033 (13)
C110.109 (2)0.157 (3)0.0698 (16)0.069 (2)0.0121 (14)0.0062 (16)
Geometric parameters (Å, º) top
C5—C61.374 (2)C12—C131.520 (3)
C5—C41.387 (2)C12—H120.9800
C5—C81.509 (2)C1—H1C0.9600
O2—C81.244 (2)C1—H1D0.9600
C2—O11.372 (2)C1—H1E0.9600
C2—C71.375 (3)C9—C101.505 (3)
C2—C31.376 (3)C9—C111.523 (3)
N1—C121.494 (2)C9—H90.9800
N1—C91.499 (2)C10—H10A0.9600
N1—H1A0.9000C10—H10B0.9600
N1—H1B0.9000C10—H10C0.9600
C3—C41.379 (2)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C6—C71.389 (3)C13—H13C0.9600
C6—H60.9300C14—H14A0.9600
O1—C11.417 (3)C14—H14B0.9600
C8—O31.249 (2)C14—H14C0.9600
C7—H70.9300C11—H11A0.9600
C4—H40.9300C11—H11B0.9600
C12—C141.511 (3)C11—H11C0.9600
C6—C5—C4117.94 (16)O1—C1—H1D109.5
C6—C5—C8121.22 (16)H1C—C1—H1D109.5
C4—C5—C8120.81 (17)O1—C1—H1E109.5
O1—C2—C7124.49 (18)H1C—C1—H1E109.5
O1—C2—C3115.47 (17)H1D—C1—H1E109.5
C7—C2—C3120.04 (17)N1—C9—C10108.59 (17)
C12—N1—C9117.80 (16)N1—C9—C11110.65 (17)
C12—N1—H1A107.9C10—C9—C11111.9 (2)
C9—N1—H1A107.9N1—C9—H9108.5
C12—N1—H1B107.9C10—C9—H9108.5
C9—N1—H1B107.9C11—C9—H9108.5
H1A—N1—H1B107.2C9—C10—H10A109.5
C2—C3—C4120.11 (17)C9—C10—H10B109.5
C2—C3—H3119.9H10A—C10—H10B109.5
C4—C3—H3119.9C9—C10—H10C109.5
C5—C6—C7121.78 (17)H10A—C10—H10C109.5
C5—C6—H6119.1H10B—C10—H10C109.5
C7—C6—H6119.1C12—C13—H13A109.5
C2—O1—C1118.28 (16)C12—C13—H13B109.5
O2—C8—O3125.35 (18)H13A—C13—H13B109.5
O2—C8—C5117.80 (17)C12—C13—H13C109.5
O3—C8—C5116.83 (19)H13A—C13—H13C109.5
C2—C7—C6119.14 (18)H13B—C13—H13C109.5
C2—C7—H7120.4C12—C14—H14A109.5
C6—C7—H7120.4C12—C14—H14B109.5
C3—C4—C5120.98 (18)H14A—C14—H14B109.5
C3—C4—H4119.5C12—C14—H14C109.5
C5—C4—H4119.5H14A—C14—H14C109.5
N1—C12—C14108.13 (18)H14B—C14—H14C109.5
N1—C12—C13111.18 (18)C9—C11—H11A109.5
C14—C12—C13111.6 (2)C9—C11—H11B109.5
N1—C12—H12108.6H11A—C11—H11B109.5
C14—C12—H12108.6C9—C11—H11C109.5
C13—C12—H12108.6H11A—C11—H11C109.5
O1—C1—H1C109.5H11B—C11—H11C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O3i0.901.842.720 (2)166
N1—H1A···O2ii0.901.832.721 (2)169
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H16N+·C8H7O3
Mr253.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3265 (15), 8.8808 (18), 12.107 (2)
α, β, γ (°)87.83 (3), 77.83 (3), 83.44 (3)
V3)764.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.842, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7992, 3501, 1945
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.163, 1.04
No. of reflections3501
No. of parameters168
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O3i0.901.842.720 (2)166
N1—H1A···O2ii0.901.832.721 (2)169
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRheinstädter, M. C., Kityk, A. V., Klöpperpieper, A. & Knorr, K. (2002). Phys. Rev. B, 66, 064105.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D.-H., Ge, J.-Z., Cai, H.-L., Weng, Z. & Xiong, R.-G. (2011). CrystEngComm, 13, 319–324.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds