metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m834-m835

trans-Di­aqua­bis­­[2,5-bis­­(pyridin-2-yl)-1,3,4-thia­diazole]cobalt(II) bis­­(tetra­fluoridoborate)

aLaboratoire de Chimie de Coordination et d'Analytique (LCCA), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), CNRS UMR 8181, ENSCL, BP 90108, F-59652 Villeneuve d'Ascq Cedex, France, cUniversité Lille Nord de France, F-59000 Lille, France, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: f_bentiss@yahoo.fr

(Received 18 May 2011; accepted 26 May 2011; online 4 June 2011)

The bidentate 1,3,4-thia­diazole ligand substituted by two 2-pyridyl rings (denoted L) has been found to produce the new monomeric title complex, [Co(C12H8N4S)2(H2O)2](BF4)2. The thia­diazole and pyridyl rings surrounding the Co atom are almost coplanar [dihedral angle = 4.35 (7)°]. The mean plane defined by these heterocyclic moieties makes a dihedral angle of 18.72 (6)° with the non-coordinated pyridyl ring. The Co2+ cation, located at a crystallographic center of symmetry, is bonded to two ligands and two water mol­ecules in a trans configuration in an octa­hedral environment. The tetra­fluorido­­borate ions can be regarded as free anions in the crystal lattice. Nevertheless, they are involved in an infinite two-dimensional network along the [010] and [101] directions of O—H⋯F hydrogen bonds.

Related literature

For background to compounds with the same ligand, see: Bentiss et al. (2002[Bentiss, F., Lagrenée, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403—408.], 2004[Bentiss, F., Lagrenée, M., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Polyhedron, 23, 1903—1907.]); Zheng et al. (2006[Zheng, X.-F., Wan, X.-S., Liu, W., Niu, C.-Y. & Kou, C.-H. (2006). Z. Kristallogr. 221, 543-544.]). For an improved synthesis of the ligand, see: Lebrini et al. (2005[Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991-994.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H8N4S)2(H2O)2](BF4)2

  • Mr = 749.15

  • Monoclinic, P 21 /n

  • a = 10.8319 (2) Å

  • b = 11.0623 (2) Å

  • c = 13.2120 (3) Å

  • β = 101.114 (1)°

  • V = 1553.45 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 100 K

  • 0.39 × 0.30 × 0.19 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.757, Tmax = 0.863

  • 32328 measured reflections

  • 3055 independent reflections

  • 2877 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.064

  • S = 1.04

  • 3055 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯F1i 0.86 1.88 2.7014 (16) 161
O1—H2W⋯F4 0.86 1.94 2.7927 (16) 172
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2,5-bis(2-pyridyl)-1,3,4-thiadiazole can be used to produce molecular architectures with transition metals in association with anionic co-ligands. In the resulting di- and mononuclear complexes, a variety of coordination modes have been observed, of which the dinuclear (N`N``, N2, N``) bridging, the dinuclear (N`N``, N2, N``)2 double bridging and the monoclear (N`,N`)2 coordination mode are the most common and the most important ones (Scheme 1). In the latter case, the trans-configuration is exclusively observed for octahedral complexes.

The structures of monomeric complexes of the neutral 2,5-bis(2-pyridyl)-1,3, 4-thiadiazole derivative with divalent Zn (tetrachloride and perchlorate), Co (nitrate and perchlorate), Ni (perchlorate) and Cu (nitrate and perchlorate) have been previously reported (Bentiss et al.,2002, 2004; Zheng et al. 2006). We report here the synthesis and the single-crystal structure of the new monomeric cobalt complex formed by 2,5-bis(2-pyridyl)-1,3, 4-thiadiazole with tetrafluoroborates as counter ions.

The complex cation shows an almost regular octahedral environment of cobalt cation which is located at a crystallographic center of symmetry. Cobalt therefore is linked to two ligands and two water molecules as shown in Fig.1. As a matter of fact, the cobalt coordination sphere is achieved by interaction with the nitrogen atom of a single pyridyl ring and with the adjacent nitrogen of the azine group with Co—N distances in the range of 2.082 (2)— 2.173 (2) Å. Moreover, the water molecules are found in axial positions at distances of Co—O 2.128 (2) Å and all N—Co—O angles being close to 90 °.

The dihedral angle between thiadiazole and the coordinating pyridyl ring is 4.35 (7)°. The mean plane defined by the two preceding heterocyclic moieties forms a dihedral angle with the non-coordinating pyridine ring (N4-C8-C9-C10-C11-C12) of 18.72 (6)°. The counter ion, BF4-, is involved in an infinite two-dimensional network of hydrogen bonds (Table 1).

Related literature top

For background to compounds with the same ligand, see: Bentiss et al. (2002, 2004); Zheng et al. (2006). For an improved synthesis of the ligand, see: Lebrini et al. (2005).

Experimental top

2,5-Bis(2-pyridyl)-1,3,4-thiadiazole ligand (noted L) was synthesized as described previously by Lebrini et al., 2005. Co(BF4)2 × 6 H2O (1.5 mmol, 0.51 g) in 8 ml of water was added to (0.42 mmol, 0.1 g) of L (bptd ligand) dissolved in 8 ml of ethanol. The solution was filtered and after 24 h, the orange compound crystallized at room temperature. Crystals were washed with water and dried under vacuum. Yield: 54%. Anal. Calc. for C12H10BCo0.5F4N4OS: C, 38.44; H, 2.67; N, 14.95; S, 8.56; F, 20.29%. Found: C, 38.56; H, 2.72; N, 14.88; S, 8.51; F, 20.36%.

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.95 Å for the aromatic CH, with Uiso(H) = 1.2 Ueq (aromatic). The O-bound H atom is initially located in a difference map and refined with O—H distance restraints of 0.86 (1). In a the last cycle there is refined in the riding model approximation with Uiso(H) set to 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure showing the cationic cobalt complex and the counter ions. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles. Hydrogen bonds are depicted as dashed lines.
trans-Diaquabis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole]cobalt(II) bis(tetrafluoridoborate) top
Crystal data top
[Co(C12H8N4S)2(H2O)2](BF4)2F(000) = 754
Mr = 749.15Dx = 1.602 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3055 reflections
a = 10.8319 (2) Åθ = 2.5–26.0°
b = 11.0623 (2) ŵ = 0.77 mm1
c = 13.2120 (3) ÅT = 100 K
β = 101.114 (1)°Prism, pink
V = 1553.45 (5) Å30.39 × 0.30 × 0.19 mm
Z = 2
Data collection top
Bruker X8 APEXII
diffractometer
3055 independent reflections
Radiation source: fine-focus sealed tube2877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.757, Tmax = 0.863k = 1313
32328 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.028P)2 + 1.2095P]
where P = (Fo2 + 2Fc2)/3
3055 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Co(C12H8N4S)2(H2O)2](BF4)2V = 1553.45 (5) Å3
Mr = 749.15Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.8319 (2) ŵ = 0.77 mm1
b = 11.0623 (2) ÅT = 100 K
c = 13.2120 (3) Å0.39 × 0.30 × 0.19 mm
β = 101.114 (1)°
Data collection top
Bruker X8 APEXII
diffractometer
3055 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2877 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.863Rint = 0.023
32328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.04Δρmax = 0.54 e Å3
3055 reflectionsΔρmin = 0.36 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.57309 (16)0.64485 (16)0.25732 (14)0.0216 (3)
F10.67597 (12)0.59356 (14)0.32121 (9)0.0571 (4)
F20.58207 (9)0.62506 (10)0.15136 (7)0.0332 (2)
F30.46504 (11)0.59451 (11)0.27939 (11)0.0506 (3)
F40.57202 (12)0.76967 (9)0.27725 (9)0.0446 (3)
C10.40758 (13)0.75359 (13)0.02371 (11)0.0182 (3)
C20.47872 (13)1.25525 (13)0.07062 (11)0.0183 (3)
C30.43647 (14)1.36225 (14)0.10807 (12)0.0217 (3)
H30.48181.43540.10610.026*
C40.32601 (15)1.36036 (14)0.14872 (12)0.0247 (3)
H40.29481.43230.17400.030*
C50.26323 (15)1.25161 (14)0.15134 (12)0.0245 (3)
H50.18821.24760.17840.029*
C60.31236 (14)1.14767 (14)0.11331 (12)0.0224 (3)
H60.26951.07320.11610.027*
C70.22011 (13)0.74718 (13)0.04650 (11)0.0196 (3)
C80.10139 (14)0.71559 (14)0.07978 (11)0.0206 (3)
C90.01592 (15)0.80486 (16)0.09485 (13)0.0278 (3)
H90.03260.88800.08540.033*
C100.09485 (16)0.76752 (18)0.12427 (14)0.0327 (4)
H100.15600.82530.13490.039*
C110.11496 (16)0.64530 (17)0.13791 (13)0.0317 (4)
H110.18990.61800.15780.038*
C120.02334 (16)0.56355 (16)0.12188 (13)0.0295 (4)
H120.03720.48000.13220.035*
Co10.50001.00000.00000.01779 (9)
N10.41821 (12)1.14819 (11)0.07273 (10)0.0196 (3)
N20.37922 (11)0.85730 (11)0.01641 (10)0.0195 (3)
N30.27082 (12)0.85445 (11)0.05733 (10)0.0210 (3)
N40.08401 (12)0.59657 (12)0.09253 (10)0.0243 (3)
O10.61489 (10)0.95481 (10)0.14452 (9)0.0267 (2)
H1W0.68330.99250.16970.032*
H2W0.60790.90000.18920.032*
S10.30230 (3)0.64074 (3)0.01342 (3)0.01990 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0179 (8)0.0198 (8)0.0261 (9)0.0022 (6)0.0013 (7)0.0020 (7)
F10.0467 (7)0.0832 (10)0.0362 (6)0.0401 (7)0.0049 (5)0.0013 (6)
F20.0322 (5)0.0381 (6)0.0277 (5)0.0042 (4)0.0018 (4)0.0023 (4)
F30.0409 (6)0.0405 (7)0.0801 (9)0.0129 (5)0.0361 (6)0.0168 (6)
F40.0673 (8)0.0217 (5)0.0455 (6)0.0078 (5)0.0126 (6)0.0022 (5)
C10.0168 (7)0.0148 (7)0.0213 (7)0.0023 (5)0.0009 (5)0.0027 (5)
C20.0170 (7)0.0176 (7)0.0185 (7)0.0009 (5)0.0012 (5)0.0018 (5)
C30.0230 (8)0.0164 (7)0.0250 (8)0.0022 (6)0.0024 (6)0.0006 (6)
C40.0273 (8)0.0204 (8)0.0270 (8)0.0026 (6)0.0070 (6)0.0017 (6)
C50.0224 (7)0.0252 (8)0.0268 (8)0.0006 (6)0.0074 (6)0.0007 (6)
C60.0213 (7)0.0198 (7)0.0266 (8)0.0046 (6)0.0061 (6)0.0006 (6)
C70.0178 (7)0.0185 (7)0.0212 (7)0.0003 (6)0.0006 (6)0.0010 (6)
C80.0177 (7)0.0232 (8)0.0201 (7)0.0033 (6)0.0018 (5)0.0013 (6)
C90.0220 (8)0.0259 (8)0.0348 (9)0.0002 (6)0.0032 (7)0.0001 (7)
C100.0219 (8)0.0428 (10)0.0341 (9)0.0051 (7)0.0074 (7)0.0038 (8)
C110.0226 (8)0.0463 (11)0.0284 (9)0.0080 (7)0.0103 (7)0.0017 (8)
C120.0305 (9)0.0300 (9)0.0302 (8)0.0106 (7)0.0114 (7)0.0016 (7)
Co10.01571 (14)0.01254 (14)0.02481 (16)0.00254 (10)0.00315 (11)0.00077 (10)
N10.0184 (6)0.0159 (6)0.0235 (6)0.0018 (5)0.0017 (5)0.0012 (5)
N20.0166 (6)0.0164 (6)0.0253 (6)0.0018 (5)0.0033 (5)0.0002 (5)
N30.0173 (6)0.0194 (6)0.0264 (7)0.0028 (5)0.0043 (5)0.0004 (5)
N40.0239 (7)0.0229 (7)0.0275 (7)0.0059 (5)0.0083 (5)0.0016 (5)
O10.0244 (6)0.0220 (6)0.0306 (6)0.0050 (4)0.0027 (5)0.0039 (5)
S10.01719 (18)0.01395 (17)0.0284 (2)0.00295 (13)0.00399 (14)0.00011 (14)
Geometric parameters (Å, º) top
B1—F31.377 (2)C7—S11.7543 (15)
B1—F11.383 (2)C8—N41.345 (2)
B1—F41.406 (2)C8—C91.394 (2)
B1—F21.439 (2)C9—C101.393 (2)
C1—N21.3245 (19)C9—H90.9500
C1—C2i1.485 (2)C10—C111.387 (3)
C1—S11.7138 (14)C10—H100.9500
C2—N11.3565 (19)C11—C121.389 (3)
C2—C31.394 (2)C11—H110.9500
C2—C1i1.485 (2)C12—N41.345 (2)
C3—C41.403 (2)C12—H120.9500
C3—H30.9500Co1—N22.0880 (12)
C4—C51.386 (2)Co1—N2i2.0880 (12)
C4—H40.9500Co1—O1i2.1280 (11)
C5—C61.400 (2)Co1—O12.1280 (11)
C5—H50.9500Co1—N1i2.1734 (13)
C6—N11.356 (2)Co1—N12.1734 (13)
C6—H60.9500N2—N31.3845 (17)
C7—N31.3039 (19)O1—H1W0.8597
C7—C81.479 (2)O1—H2W0.8597
F3—B1—F1108.81 (15)C9—C10—H10120.3
F3—B1—F4108.63 (14)C10—C11—C12118.70 (15)
F1—B1—F4108.86 (14)C10—C11—H11120.6
F3—B1—F2111.36 (14)C12—C11—H11120.6
F1—B1—F2109.49 (13)N4—C12—C11123.37 (16)
F4—B1—F2109.65 (13)N4—C12—H12118.3
N2—C1—C2i119.94 (13)C11—C12—H12118.3
N2—C1—S1112.95 (11)N2—Co1—N2i180.0
C2i—C1—S1127.10 (11)N2—Co1—O1i90.06 (5)
N1—C2—C3122.76 (13)N2i—Co1—O1i89.94 (5)
N1—C2—C1i113.20 (13)N2—Co1—O189.94 (5)
C3—C2—C1i124.03 (13)N2i—Co1—O190.06 (5)
C2—C3—C4119.07 (14)O1i—Co1—O1180.0
C2—C3—H3120.5N2—Co1—N1i78.03 (5)
C4—C3—H3120.5N2i—Co1—N1i101.97 (5)
C5—C4—C3118.77 (14)O1i—Co1—N1i89.90 (5)
C5—C4—H4120.6O1—Co1—N1i90.10 (5)
C3—C4—H4120.6N2—Co1—N1101.97 (5)
C4—C5—C6118.80 (14)N2i—Co1—N178.03 (5)
C4—C5—H5120.6O1i—Co1—N190.10 (5)
C6—C5—H5120.6O1—Co1—N189.90 (5)
N1—C6—C5123.17 (14)N1i—Co1—N1180.0
N1—C6—H6118.4C6—N1—C2117.42 (13)
C5—C6—H6118.4C6—N1—Co1128.27 (10)
N3—C7—C8123.68 (14)C2—N1—Co1114.19 (10)
N3—C7—S1114.88 (11)C1—N2—N3114.59 (12)
C8—C7—S1121.44 (11)C1—N2—Co1114.52 (10)
N4—C8—C9124.24 (14)N3—N2—Co1130.79 (9)
N4—C8—C7114.78 (13)C7—N3—N2110.42 (12)
C9—C8—C7120.97 (14)C8—N4—C12116.84 (14)
C10—C9—C8117.47 (16)Co1—O1—H1W123.1
C10—C9—H9121.3Co1—O1—H2W131.9
C8—C9—H9121.3H1W—O1—H2W105.0
C11—C10—C9119.38 (16)C1—S1—C787.15 (7)
C11—C10—H10120.3
N1—C2—C3—C40.8 (2)O1—Co1—N1—C291.44 (10)
C1i—C2—C3—C4178.56 (14)N1i—Co1—N1—C27.1 (4)
C2—C3—C4—C50.7 (2)C2i—C1—N2—N3179.69 (12)
C3—C4—C5—C60.0 (2)S1—C1—N2—N30.59 (16)
C4—C5—C6—N10.7 (2)C2i—C1—N2—Co12.91 (17)
N3—C7—C8—N4160.18 (14)S1—C1—N2—Co1177.38 (6)
S1—C7—C8—N420.91 (18)N2i—Co1—N2—C1137 (5)
N3—C7—C8—C920.5 (2)O1i—Co1—N2—C189.03 (11)
S1—C7—C8—C9158.44 (12)O1—Co1—N2—C190.97 (11)
N4—C8—C9—C100.5 (2)N1i—Co1—N2—C10.85 (10)
C7—C8—C9—C10178.78 (14)N1—Co1—N2—C1179.15 (10)
C8—C9—C10—C110.5 (2)N2i—Co1—N2—N347 (5)
C9—C10—C11—C120.1 (3)O1i—Co1—N2—N387.11 (12)
C10—C11—C12—N40.8 (3)O1—Co1—N2—N392.89 (12)
C5—C6—N1—C20.7 (2)N1i—Co1—N2—N3176.99 (13)
C5—C6—N1—Co1174.93 (11)N1—Co1—N2—N33.01 (13)
C3—C2—N1—C60.0 (2)C8—C7—N3—N2178.29 (13)
C1i—C2—N1—C6179.34 (12)S1—C7—N3—N20.69 (16)
C3—C2—N1—Co1176.30 (11)C1—N2—N3—C70.07 (18)
C1i—C2—N1—Co13.08 (15)Co1—N2—N3—C7176.07 (10)
N2—Co1—N1—C62.87 (14)C9—C8—N4—C120.1 (2)
N2i—Co1—N1—C6177.13 (14)C7—C8—N4—C12179.41 (14)
O1i—Co1—N1—C687.21 (13)C11—C12—N4—C80.7 (2)
O1—Co1—N1—C692.79 (13)N2—C1—S1—C70.78 (11)
N1i—Co1—N1—C6177.1 (5)C2i—C1—S1—C7179.52 (13)
N2—Co1—N1—C2178.64 (10)N3—C7—S1—C10.86 (12)
N2i—Co1—N1—C21.36 (10)C8—C7—S1—C1178.15 (13)
O1i—Co1—N1—C288.56 (10)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···F1ii0.861.882.7014 (16)161
O1—H2W···F40.861.942.7927 (16)172
Symmetry code: (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C12H8N4S)2(H2O)2](BF4)2
Mr749.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.8319 (2), 11.0623 (2), 13.2120 (3)
β (°) 101.114 (1)
V3)1553.45 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.39 × 0.30 × 0.19
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.757, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
32328, 3055, 2877
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 1.04
No. of reflections3055
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.36

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···F1i0.861.882.7014 (16)161
O1—H2W···F40.861.942.7927 (16)172
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

References

First citationBentiss, F., Lagrenée, M., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Polyhedron, 23, 1903—1907.  Web of Science CSD CrossRef Google Scholar
First citationBentiss, F., Lagrenée, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403—408.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, X.-F., Wan, X.-S., Liu, W., Niu, C.-Y. & Kou, C.-H. (2006). Z. Kristallogr. 221, 543–544.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m834-m835
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds