organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(4-Nitro­phen­yl)hydrazinyl­­idene]-1,3-di­phenyl­propane-1,3-dione

aInstituto de Ciencias Químicas, Universidad Austral de Chile, Avenida Los Robles s/n, Campus Isla Teja, Casilla 567, Valdivia, Chile, bDepartamento de Ciencias Físicas, Universidad Andres Bello, Avenida República 220, Santiago de Chile, Chile, and cLaboratorio de Cristalografía, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago de Chile, Chile
*Correspondence e-mail: lalvarez@unab.cl

(Received 19 May 2011; accepted 1 June 2011; online 4 June 2011)

In the mol­ecular structure of the title compound, C21H15N3O4, the inter­planar angle between the benzoyl units is 89.7 (1)°. The corresponding angles between the phenyl­hydrazono and the benzoyl groups are 31.4 (3) and 60.8 (2)°, respectively. In the crystal, a strong resonance-assisted intra­molecular hydrogen bond (N—H⋯O) and a weak intra­molecular hydrogen bond (C—H⋯N) strongly affect the observed conformation of the mol­ecule. The crystal packing is determined by a strong inter­molecular hydrogen bond (N—H⋯O), giving rise to a helical chain along the a axis. In addition, two weak inter­molecular contacts (C—H⋯O) are observed.

Related literature

For details of the synthesis, see: Bustos et al. (2007[Bustos, C., Sánchez, C., Martínez, R., Ugarte, R., Schott, E., Carey, D. M. L., Garland, M. T. & Espinoza, L. (2007). Dyes Pigments, 74, 615-621.], 2009[Bustos, C., Schott, E., Ríos, M., Sánchez, C. & Cárcamo, J. G. (2009). J. Chil. Chem. Soc. 54, 267-268.]); Yao (1964[Yao, H. C. (1964). J. Org. Chem. 29, 2959-2962.]). For resonance-assisted hydrogen bonds and related structures, see: Bertolasi et al. (1993[Bertolasi, V., Ferretti, V., Gilli, P., Gilli, G., Issa, Y. M. & Sherif, O. E. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2223-2228.], 1994[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1994). Acta Cryst. B50, 617-625.]); Bustos et al. (2011[Bustos, C., Alvarez-Thon, L., Cárcamo, J.-G., Garland, M. T. & Sánchez, C. (2011). Acta Cryst. E67, o1426.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15N3O4

  • Mr = 373.36

  • Orthorhombic, P 21 21 21

  • a = 8.2994 (7) Å

  • b = 8.6250 (7) Å

  • c = 25.018 (2) Å

  • V = 1790.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.30 × 0.28 × 0.12 mm

Data collection
  • Bruker D8 Discover with SMART CCD area-detector diffractometer

  • 13939 measured reflections

  • 2114 independent reflections

  • 1826 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.00

  • 2114 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O2 0.96 (3) 2.25 (3) 2.793 (2) 115.3 (19)
N2—H1⋯O1i 0.96 (3) 2.15 (2) 2.956 (2) 142 (2)
C5—H5⋯O3ii 0.95 2.60 3.419 (3) 145
C15—H15⋯N1 0.95 2.42 2.849 (3) 107
C20—H20⋯O2iii 0.95 2.44 3.352 (2) 161
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

The crystal structure of 2-[(4-nitro-phenyl)-hydrazono]-1,3-diphenyl-propane-1,3-dione is reported. This compound belongs to a family that contain a six-membered π–conjugated ring closed via strong intramolecular resonance assisted hydrogen bonds, N–H···O, RAHB (Resonance Assisted Hydrogen Bond) which, inter alia, could have remarkable importance as bistate in molecular switches (Bertolasi et al., 1993; Bertolasi et al., 1994; Bustos et al., 2011). On the other hand, it is well known that the phenyl diazonium salts are capable of coupling with a series of β-diketonate anions to give β-diketohydrazones containing N–H···O moieties (Yao, 1964; Bustos et al., 2007; Bustos et al., 2009). Using this reaction (Yao, 1964) we have prepared the title compound.

The molecular structure of the title compound, C21H15N3O4, exhibits a strong intramolecular hydrogen bond (N2–H1···O2) and a weak intramolecular hydrogen bond (C15–H15···N1) (Fig. 1 and Tab. 1). In the crystal structure, strong intermolecular hydrogen bonds (N2–H1···O1i) link the molecules into helical chains along the a axis, which may be the reason why the title compound crystallizes in the chiral space group P212121 (see Fig. 2 and Tab. 1), [symmetry code: (i) x + 1/2, -y + 3/2, -z]. On the other hand, weak intermolecular contacts of the type C5–H5···O3ii and C20–H20···O2iii, further stabilize the crystal packing to construct the entire three-dimensional network, see Fig. 3 and Tab. 1, [symmetry codes: (ii) -x + 3/2, -y + 1, -1/2 + z; (iii) x + 1/2, -y + 1/2, -z]. The interplanar angle between the benzoyl moieties is 89.7 (1)°. The corresponding angles between the phenyl-hydrazono and the benzoyl groups, are 31.4 (3)° and 60.8 (2)°, respectively.

Related literature top

For details of the synthesis, see: Bustos et al. (2007, 2009); Yao (1964). For resonance-assisted hydrogen bonds and related structures, see: Bertolasi et al. (1993, 1994); Bustos et al. (2011).

Experimental top

In a 500 ml flask, 2.24 g (0.01 mole) of 1,3-diphenylpropane-1,3-dione were dissolved in 100 ml of a ethanolic solution that contained 0.4 g (0.01 mole) of sodium hydroxide and 3.65 g (0.045 mole) of sodium acetate. The resulting β-diketonate solution was diluted with water to a final volume of about 220 ml, stirred and cooled at 268 K. In another 50 ml beaker a diazonium ion solution was prepared adding 1.39 g (0.01 mole) of 4-nitroaniline (99%) in 8 ml of hydrochloric acid (5 mol/L), cooling at 268 K, and adding a saturated aqueous solution containing 0.69 g (0.01 mole) of sodium nitrite. The diazonium salt solution was then added dropwise with vigorous stirring at 268 K into the β-diketonate solution. During the addition a yellow solid precipitate of the title compound was formed which was filtered by suction, washed with an abundant quantity of water and dried in the vacuum at 313 K (Yield: 91% of crude product). Single crystals suitable for X-ray studies were obtained by recrystallization from ethanol.

Refinement top

All hydrogen atoms were found in difference Fourier maps. The hydrogen attached to N2 was refined freely against the diffraction data, but all other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous dispersion effects Friedel pairs were also merged.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. The strong intramolecular hydrogen bond (N2–H1···O2) is depicted with dashed lines.
[Figure 2] Fig. 2. Perspective view along the b axis showing the formation of a zigzag chain, along the a axis, linked by strong intermolecular hydrogen bonds, N2–H1···O1i (dashed lines), [symmetry code: (i) x + 1/2, -y + 3/2, -z].
[Figure 3] Fig. 3. Perspective view along the b axis showing the formation of a chain, along the c axis, linked by weak intermolecular contacts (C5–H5···O3ii and C20–H20···O2iii), [symmetry codes: (ii) -x + 3/2, -y + 1, -1/2 + z; (iii) x + 1/2, -y + 1/2, -z].
2-[2-(4-Nitrophenyl)hydrazinylidene]-1,3-diphenylpropane-1,3-dione top
Crystal data top
C21H15N3O4F(000) = 776
Mr = 373.36Dx = 1.385 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 999 reflections
a = 8.2994 (7) Åθ = 1.6–26.4°
b = 8.6250 (7) ŵ = 0.10 mm1
c = 25.018 (2) ÅT = 150 K
V = 1790.9 (3) Å3Polyhedron, yellow
Z = 40.30 × 0.28 × 0.12 mm
Data collection top
Bruker D8 Discover with SMART CCD area-detector
diffractometer
1826 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 26.4°, θmin = 1.6°
ϕ and ω scansh = 1010
13939 measured reflectionsk = 1010
2114 independent reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0526P)2]
where P = (Fo2 + 2Fc2)/3
2114 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C21H15N3O4V = 1790.9 (3) Å3
Mr = 373.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2994 (7) ŵ = 0.10 mm1
b = 8.6250 (7) ÅT = 150 K
c = 25.018 (2) Å0.30 × 0.28 × 0.12 mm
Data collection top
Bruker D8 Discover with SMART CCD area-detector
diffractometer
1826 reflections with I > 2σ(I)
13939 measured reflectionsRint = 0.034
2114 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.19 e Å3
2114 reflectionsΔρmin = 0.16 e Å3
257 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44608 (18)0.97963 (18)0.03744 (5)0.0389 (5)
O20.5740 (2)0.61910 (18)0.03732 (6)0.0466 (6)
O31.0083 (2)0.13731 (18)0.24696 (6)0.0465 (5)
O41.04378 (19)0.02554 (17)0.18195 (6)0.0388 (5)
N10.6619 (2)0.65447 (19)0.07404 (7)0.0296 (5)
N20.7292 (2)0.5252 (2)0.05629 (7)0.0334 (6)
N30.9963 (2)0.1000 (2)0.19940 (7)0.0337 (6)
C10.6762 (2)0.8692 (2)0.05394 (8)0.0276 (6)
C20.7655 (2)0.9941 (3)0.03441 (8)0.0316 (6)
C30.8288 (3)1.1021 (3)0.06939 (9)0.0386 (7)
C40.8022 (3)1.0870 (3)0.12373 (9)0.0398 (8)
C50.7127 (3)0.9651 (3)0.14324 (8)0.0399 (7)
C60.6502 (3)0.8551 (3)0.10873 (8)0.0339 (7)
C70.6156 (3)0.7439 (2)0.01897 (8)0.0302 (6)
C80.6125 (2)0.7616 (2)0.04127 (7)0.0289 (6)
C90.5292 (2)0.8954 (2)0.06604 (7)0.0282 (6)
C100.5405 (2)0.9243 (2)0.12510 (7)0.0272 (6)
C110.4112 (3)0.9999 (3)0.14872 (8)0.0353 (7)
C120.4119 (3)1.0314 (3)0.20280 (8)0.0436 (8)
C130.5415 (3)0.9878 (3)0.23385 (8)0.0404 (7)
C140.6709 (3)0.9125 (3)0.21065 (8)0.0348 (7)
C150.6721 (3)0.8826 (2)0.15632 (8)0.0303 (6)
C160.7912 (3)0.4192 (2)0.09311 (8)0.0300 (6)
C170.7726 (3)0.4409 (2)0.14817 (8)0.0331 (7)
C180.8404 (3)0.3353 (2)0.18280 (8)0.0331 (6)
C190.9223 (2)0.2091 (2)0.16230 (8)0.0289 (6)
C200.9391 (3)0.1843 (2)0.10811 (8)0.0336 (7)
C210.8739 (3)0.2911 (2)0.07362 (8)0.0340 (7)
H10.752 (3)0.511 (3)0.0191 (10)0.052 (7)*
H20.782701.004800.002900.0380*
H30.890401.186600.056100.0460*
H40.846001.161200.147700.0480*
H50.693800.956400.180600.0480*
H60.589800.770200.122300.0410*
H110.321601.030100.127500.0420*
H120.322901.083200.218700.0520*
H130.541901.009400.271100.0480*
H140.759500.881100.232100.0420*
H150.762700.833700.140400.0360*
H170.714000.527200.161500.0400*
H180.830900.349000.220300.0400*
H200.994300.095600.095000.0400*
H210.885500.277200.036100.0410*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0424 (8)0.0457 (9)0.0285 (8)0.0103 (8)0.0056 (7)0.0023 (7)
O20.0727 (12)0.0396 (9)0.0274 (8)0.0174 (9)0.0043 (8)0.0027 (7)
O30.0627 (11)0.0466 (9)0.0301 (8)0.0086 (9)0.0044 (7)0.0013 (8)
O40.0404 (8)0.0306 (8)0.0454 (9)0.0061 (7)0.0028 (7)0.0011 (7)
N10.0347 (10)0.0272 (9)0.0269 (9)0.0012 (8)0.0029 (8)0.0008 (8)
N20.0467 (11)0.0303 (10)0.0233 (9)0.0025 (9)0.0042 (8)0.0018 (8)
N30.0341 (10)0.0334 (10)0.0337 (10)0.0014 (8)0.0013 (8)0.0006 (8)
C10.0298 (11)0.0284 (11)0.0245 (10)0.0024 (9)0.0007 (8)0.0015 (9)
C20.0380 (11)0.0327 (11)0.0241 (10)0.0008 (10)0.0010 (9)0.0020 (10)
C30.0443 (13)0.0333 (12)0.0382 (12)0.0054 (11)0.0038 (11)0.0016 (10)
C40.0497 (14)0.0363 (13)0.0333 (12)0.0016 (11)0.0087 (11)0.0063 (10)
C50.0500 (14)0.0477 (14)0.0221 (10)0.0011 (12)0.0013 (10)0.0009 (10)
C60.0390 (12)0.0362 (12)0.0264 (10)0.0011 (11)0.0004 (9)0.0039 (9)
C70.0324 (11)0.0323 (11)0.0259 (11)0.0023 (10)0.0030 (9)0.0023 (10)
C80.0325 (11)0.0302 (11)0.0240 (10)0.0036 (9)0.0001 (9)0.0007 (9)
C90.0273 (10)0.0313 (11)0.0259 (10)0.0028 (9)0.0010 (8)0.0017 (9)
C100.0298 (10)0.0256 (10)0.0262 (10)0.0028 (9)0.0012 (9)0.0013 (9)
C110.0324 (11)0.0431 (13)0.0304 (11)0.0050 (11)0.0039 (9)0.0004 (10)
C120.0352 (12)0.0642 (16)0.0315 (11)0.0047 (12)0.0038 (10)0.0072 (12)
C130.0428 (13)0.0565 (14)0.0218 (10)0.0043 (12)0.0000 (9)0.0029 (10)
C140.0349 (12)0.0398 (12)0.0296 (11)0.0040 (10)0.0066 (9)0.0035 (10)
C150.0322 (11)0.0285 (11)0.0302 (11)0.0016 (9)0.0013 (9)0.0015 (9)
C160.0377 (12)0.0256 (11)0.0268 (10)0.0048 (9)0.0039 (9)0.0014 (9)
C170.0433 (13)0.0286 (11)0.0275 (10)0.0024 (10)0.0073 (9)0.0012 (9)
C180.0451 (12)0.0300 (11)0.0241 (10)0.0003 (10)0.0056 (10)0.0012 (9)
C190.0337 (11)0.0242 (10)0.0288 (10)0.0039 (9)0.0021 (9)0.0014 (9)
C200.0420 (12)0.0271 (11)0.0318 (11)0.0001 (10)0.0055 (10)0.0035 (9)
C210.0470 (13)0.0309 (11)0.0242 (10)0.0020 (11)0.0059 (10)0.0056 (9)
Geometric parameters (Å, º) top
O1—C91.231 (2)C13—C141.383 (3)
O2—C71.220 (2)C14—C151.384 (3)
O3—N31.237 (2)C16—C211.389 (3)
O4—N31.232 (2)C16—C171.399 (3)
N1—N21.324 (2)C17—C181.377 (3)
N1—C81.302 (2)C18—C191.382 (3)
N2—C161.396 (3)C19—C201.380 (3)
N3—C191.457 (3)C20—C211.373 (3)
N2—H10.96 (3)C2—H20.9500
C1—C61.393 (3)C3—H30.9500
C1—C71.479 (3)C4—H40.9500
C1—C21.396 (3)C5—H50.9500
C2—C31.382 (3)C6—H60.9500
C3—C41.383 (3)C11—H110.9500
C4—C51.377 (4)C12—H120.9500
C5—C61.384 (3)C13—H130.9500
C7—C81.515 (3)C14—H140.9500
C8—C91.481 (2)C15—H150.9500
C9—C101.501 (2)C17—H170.9500
C10—C111.388 (3)C18—H180.9500
C10—C151.390 (3)C20—H200.9500
C11—C121.380 (3)C21—H210.9500
C12—C131.379 (3)
O1···C13.128 (2)C15···C19xi3.502 (3)
O1···C23.205 (2)C15···O4xi3.249 (3)
O1···C7i3.384 (3)C15···N12.849 (3)
O1···O2i3.203 (2)C16···C6iii3.580 (3)
O1···N2i2.956 (2)C18···O3xii3.384 (2)
O2···N22.793 (2)C19···C15vi3.502 (3)
O2···C2i3.276 (2)C19···C14vi3.516 (3)
O2···C20ii3.352 (2)C20···O2viii3.352 (2)
O2···N12.896 (2)C3···H21xi3.0800
O2···O1iii3.203 (2)C4···H13xiii3.0500
O3···C18iv3.384 (2)C5···H13xiii2.9600
O3···C5v3.419 (3)C7···H12.50 (3)
O4···C15vi3.249 (3)C8···H152.8400
O4···C11vii3.168 (3)C8···H22.7000
O4···C12vii3.138 (3)C9···H22.7900
O4···C14vi3.222 (3)C11···H4xiv2.9700
O1···H1i2.15 (2)C12···H4xiv3.0400
O1···H21i2.8300C15···H173.0900
O1···H112.5200H1···O22.25 (3)
O2···H2i2.7800H1···C72.50 (3)
O2···H20ii2.4400H1···H212.3400
O2···H12.25 (3)H1···O1iii2.15 (2)
O2···H62.5000H2···C82.7000
O3···H14iv2.9000H2···C92.7900
O3···H12vii2.7400H2···O2iii2.7800
O3···H182.4400H3···H21xi2.4400
O3···H5v2.6000H4···C11xv2.9700
O4···H11vii2.7200H4···C12xv3.0400
O4···H12vii2.6600H5···O3ix2.6000
O4···H14vi2.7900H5···H13xiii2.5200
O4···H15vi2.8300H6···O22.5000
O4···H202.4500H6···O4ii2.6100
O4···H6viii2.6100H11···O12.5200
O4···H18iv2.8700H11···O4x2.7200
N1···O22.896 (2)H12···O3x2.7400
N1···C152.849 (3)H12···O4x2.6600
N2···O1iii2.956 (2)H12···N3x2.7600
N2···O22.793 (2)H13···C4xvi3.0500
N3···C14vi3.160 (3)H13···C5xvi2.9600
N1···H152.4200H13···H5xvi2.5200
N1···H172.4900H14···O4xi2.7900
N3···H12vii2.7600H14···N3xi2.8500
N3···H14vi2.8500H14···O3xii2.9000
C1···O13.128 (2)H15···O4xi2.8300
C2···O13.205 (2)H15···N12.4200
C2···C93.299 (3)H15···C82.8400
C2···O2iii3.276 (2)H17···N12.4900
C5···O3ix3.419 (3)H17···C153.0900
C6···C16i3.580 (3)H18···O32.4400
C7···O1iii3.384 (3)H18···O4xii2.8700
C9···C23.299 (3)H20···O42.4500
C11···O4x3.168 (3)H20···O2viii2.4400
C12···O4x3.138 (3)H21···C3vi3.0800
C14···O4xi3.222 (3)H21···H12.3400
C14···N3xi3.160 (3)H21···H3vi2.4400
C14···C19xi3.516 (3)H21···O1iii2.8300
N2—N1—C8121.30 (17)C16—C17—C18119.07 (18)
N1—N2—C16119.06 (17)C17—C18—C19119.23 (18)
O3—N3—O4122.94 (17)N3—C19—C20118.89 (16)
O3—N3—C19118.60 (16)N3—C19—C18118.65 (18)
O4—N3—C19118.46 (16)C18—C19—C20122.45 (18)
N1—N2—H1121.1 (16)C19—C20—C21118.27 (18)
C16—N2—H1119.0 (15)C16—C21—C20120.51 (19)
C2—C1—C6119.61 (19)C1—C2—H2120.00
C2—C1—C7122.52 (18)C3—C2—H2120.00
C6—C1—C7117.76 (18)C2—C3—H3120.00
C1—C2—C3120.03 (19)C4—C3—H3120.00
C2—C3—C4119.9 (2)C3—C4—H4120.00
C3—C4—C5120.4 (2)C5—C4—H4120.00
C4—C5—C6120.3 (2)C4—C5—H5120.00
C1—C6—C5119.7 (2)C6—C5—H5120.00
O2—C7—C8117.28 (17)C1—C6—H6120.00
O2—C7—C1121.23 (18)C5—C6—H6120.00
C1—C7—C8121.38 (16)C10—C11—H11120.00
N1—C8—C9115.89 (16)C12—C11—H11120.00
N1—C8—C7123.35 (16)C11—C12—H12120.00
C7—C8—C9120.18 (15)C13—C12—H12120.00
O1—C9—C10120.60 (16)C12—C13—H13120.00
C8—C9—C10120.79 (15)C14—C13—H13120.00
O1—C9—C8118.57 (16)C13—C14—H14120.00
C11—C10—C15119.33 (17)C15—C14—H14120.00
C9—C10—C11116.66 (16)C10—C15—H15120.00
C9—C10—C15123.99 (16)C14—C15—H15120.00
C10—C11—C12120.5 (2)C16—C17—H17120.00
C11—C12—C13120.1 (2)C18—C17—H17120.00
C12—C13—C14119.83 (19)C17—C18—H18120.00
C13—C14—C15120.4 (2)C19—C18—H18120.00
C10—C15—C14119.9 (2)C19—C20—H20121.00
C17—C16—C21120.44 (18)C21—C20—H20121.00
N2—C16—C17121.43 (18)C16—C21—H21120.00
N2—C16—C21118.12 (18)C20—C21—H21120.00
C8—N1—N2—C16175.19 (18)N1—C8—C9—C1015.3 (2)
N2—N1—C8—C74.7 (3)C7—C8—C9—O19.2 (3)
N2—N1—C8—C9175.89 (16)C7—C8—C9—C10173.16 (16)
N1—N2—C16—C175.0 (3)O1—C9—C10—C1126.0 (3)
N1—N2—C16—C21174.39 (19)O1—C9—C10—C15152.83 (18)
O3—N3—C19—C1812.6 (3)C8—C9—C10—C11151.62 (18)
O3—N3—C19—C20166.19 (18)C8—C9—C10—C1529.6 (3)
O4—N3—C19—C18167.23 (18)C9—C10—C11—C12179.9 (2)
O4—N3—C19—C2014.0 (3)C15—C10—C11—C121.0 (3)
C6—C1—C2—C30.6 (3)C9—C10—C15—C14179.29 (19)
C7—C1—C2—C3175.4 (2)C11—C10—C15—C141.9 (3)
C2—C1—C6—C50.2 (3)C10—C11—C12—C130.0 (4)
C7—C1—C6—C5176.4 (2)C11—C12—C13—C140.1 (4)
C2—C1—C7—O2161.6 (2)C12—C13—C14—C150.9 (4)
C2—C1—C7—C814.5 (3)C13—C14—C15—C101.9 (3)
C6—C1—C7—O214.5 (3)N2—C16—C17—C18178.0 (2)
C6—C1—C7—C8169.39 (19)C21—C16—C17—C181.4 (3)
C1—C2—C3—C40.6 (3)N2—C16—C21—C20179.2 (2)
C2—C3—C4—C50.1 (4)C17—C16—C21—C200.3 (4)
C3—C4—C5—C60.9 (4)C16—C17—C18—C191.3 (3)
C4—C5—C6—C10.9 (4)C17—C18—C19—N3178.75 (19)
O2—C7—C8—N142.0 (3)C17—C18—C19—C200.0 (3)
O2—C7—C8—C9128.9 (2)N3—C19—C20—C21177.62 (19)
C1—C7—C8—N1134.3 (2)C18—C19—C20—C211.1 (3)
C1—C7—C8—C954.9 (3)C19—C20—C21—C161.0 (3)
N1—C8—C9—O1162.31 (17)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+3/2, z; (iv) x+2, y1/2, z+1/2; (v) x+3/2, y+1, z+1/2; (vi) x, y1, z; (vii) x+1, y1, z; (viii) x+1/2, y+1/2, z; (ix) x+3/2, y+1, z1/2; (x) x1, y+1, z; (xi) x, y+1, z; (xii) x+2, y+1/2, z+1/2; (xiii) x+3/2, y+2, z1/2; (xiv) x1/2, y+5/2, z; (xv) x+1/2, y+5/2, z; (xvi) x+3/2, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O20.96 (3)2.25 (3)2.793 (2)115.3 (19)
N2—H1···O1iii0.96 (3)2.15 (2)2.956 (2)142 (2)
C5—H5···O3ix0.952.603.419 (3)145
C15—H15···N10.952.422.849 (3)107
C20—H20···O2viii0.952.443.352 (2)161
Symmetry codes: (iii) x+1/2, y+3/2, z; (viii) x+1/2, y+1/2, z; (ix) x+3/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC21H15N3O4
Mr373.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)8.2994 (7), 8.6250 (7), 25.018 (2)
V3)1790.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.28 × 0.12
Data collection
DiffractometerBruker D8 Discover with SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13939, 2114, 1826
Rint0.034
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.00
No. of reflections2114
No. of parameters257
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL/PC (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···O20.96 (3)2.25 (3)2.793 (2)115.3 (19)
N2—H1···O1i0.96 (3)2.15 (2)2.956 (2)142 (2)
C5—H5···O3ii0.952.603.419 (3)145
C15—H15···N10.952.422.849 (3)107
C20—H20···O2iii0.952.443.352 (2)161
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+3/2, y+1, z1/2; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT; grant Nos. 11100446 and 1080269) and the Universidad Andrés Bello (grant No. DI-06-10-R) for financial assistance.

References

First citationBertolasi, V., Ferretti, V., Gilli, P., Gilli, G., Issa, Y. M. & Sherif, O. E. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2223–2228.  CSD CrossRef Web of Science Google Scholar
First citationBertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1994). Acta Cryst. B50, 617–625.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBustos, C., Alvarez-Thon, L., Cárcamo, J.-G., Garland, M. T. & Sánchez, C. (2011). Acta Cryst. E67, o1426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBustos, C., Sánchez, C., Martínez, R., Ugarte, R., Schott, E., Carey, D. M. L., Garland, M. T. & Espinoza, L. (2007). Dyes Pigments, 74, 615–621.  CSD CrossRef CAS Google Scholar
First citationBustos, C., Schott, E., Ríos, M., Sánchez, C. & Cárcamo, J. G. (2009). J. Chil. Chem. Soc. 54, 267–268.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, H. C. (1964). J. Org. Chem. 29, 2959–2962.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds