metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua­bis­­[μ2-2-(pyridin-4-ylsulfan­yl)acetato]­zinc]

aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: xiaojun_zhao15@yahoo.com.cn

(Received 25 May 2011; accepted 22 June 2011; online 30 June 2011)

The crystal structure of the title complex, [Zn(C7H6NO2S)2(H2O)]n, consists of extended layers parallel to (001) with 2-(pyridin-4-ylsulfan­yl)acetate ligands bridging the ZnII atoms. The ZnII atom shows a distorted penta­gonal–bipyramidal coordination environment. The ZnII and one O atom are situated on a crystallographic twofold rotation axis. In the crystal, intra­layer O—H⋯O hydrogen-bond inter­actions help to consolidate the coordination layer.

Related literature

For metal complexes with polycarboxyl­ate aromatic ligands and their applications, see: Yang et al. (2007[Yang, E.-C., Zhao, H.-K., Ding, B., Wang, X.-G. & Zhao, X.-J. (2007). Cryst. Growth Des. 7, 2009-2015.], 2010[Yang, E.-C., Liu, Z.-Y., Liu, Z.-Y., Zhao, L.-N. & Zhao, X.-J. (2010). Dalton Trans. pp. 8868-8871.]); Yu et al. (2010[Yu, Q., Zeng, Y.-F., Zhao, J.-P., Yang, Q., Hu, B.-W., Chang, Z. & Bu, X.-H. (2010). Inorg. Chem. 49, 4301-4306.]). For solid-state structures of metal complexes with pyridine-4-sulfanyl-acetate ligands, see Wang et al. (2011[Wang, J.-Y., Wang, X.-G. & Zhao, X.-J. (2011). Acta Cryst. E67, m795.]); Kondo et al. (2002[Kondo, M., Miyazawa, M., Irie, Y., Shinagawa, R., Horiba, T., Nakamura, A., Naito, T., Maeda, K., Utsuno, S. & Uchida, F. (2002). Chem. Commun. pp. 2156-2157.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H6NO2S)2(H2O)]

  • Mr = 419.76

  • Monoclinic, C 2/c

  • a = 16.057 (3) Å

  • b = 6.3709 (10) Å

  • c = 15.630 (3) Å

  • β = 95.393 (4)°

  • V = 1591.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.83 mm−1

  • T = 296 K

  • 0.20 × 0.17 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.711, Tmax = 0.758

  • 3842 measured reflections

  • 1403 independent reflections

  • 1308 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.04

  • 1403 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3′⋯O1i 0.82 2.18 2.754 (3) 128
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, metal complexes constructed from aromatic polycarboxylate ligands and transition metal ions have received more and more interest due to their interesting architectures, amazing topologies and potentially technological applications in magnetism (Yang et al. 2010), luminesence (Yang et al. 2007) and gas storage (Yu et al. 2010). The anionic pyridine-4-sulfanyl-acetate ligand has three different potential binding sites upon coordination with metal ions and has exhibited various binding modes through the pyridyl N atom or carboxylate O donors. As a result, diverse complexes with discrete mononuclear (Wang et al. 2011), polymeric one-dimensional chains or two-dimensional layers (Kondo et al. 2002) have been obtained up to date. As a continuation of this research the crystal structure of a ZnII complex with pyridine-4-sulfanyl-acetate ligands, (I), is reported herein.

A cut-out of the polymeric structure of the title compound showing one ZnII atom in it's complete coordination environment is shown in Fig. 1. The ZnII atom exhibits a distorted pentagonal bipyramidal coordination environment involving two pyridyl N atoms from two separate pyridine-4-sulfanyl-acetate ligands in trans-position, four O atoms from a pair of chelating carboxylate groups of pyridine-4-sulfanyl-acetate ligands and one O atom of a terminal water molecule. Each anionic pyridine-4-sulfanyl-acetate ligand acts as a ditopic connector to bridge adjacent ZnII ions by a pyridyl N donor and a bidentate chelating carboxylate to generate a two-dimensional (4, 4) coordination layer with a Zn··· Zn distance of 6.3709 (10) Å. Additionally, O—H ···O hydrogen bonds between the coordinated water molecule and the deprotonated carboxylate (Table 1) help to consolidate the two-dimensional covalent layer (Fig. 2).

Related literature top

For metal complexes with polycarboxylate aromatic ligands and their applications, see: Yang et al. (2007, 2010); Yu et al. (2010). For solid-state structures of metal complexes with pyridine-4-sulfanyl-acetate ligands, see Wang et al. (2011); Kondo et al. (2002).

Experimental top

A methanolic solution of pyridine-4-sulfanyl-acetic acid (50.6 mg, 0.2 mmol) was carefully layered onto a buffer layer of ethyl acetate (2.0 ml) in a straight glass tube below which an aqueous solution containing Zn(NO3)2.6 H2O (44.6 mg, 0.15 mmol) was placed. The test tube was left in air at room temperature. Colorless block-shaped crystals were harvested within three weeks. Yield: 40% based on ZnII salt. Anal. Calcd. for C14H14ZnN2O5S2: C, 40.06; H, 3.36; N, 6.67%. Found: C, 40.12; H, 3.26; N, 6.73%.

Refinement top

H atoms could be located from difference Fourier maps, but were subsequently placed in calculated positions and treated as riding, with C–H = 0.93 (aromatic), 0.97 (methylene) and O–H = 0.82 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = 1.2 Ueq(C, O)].

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the two-dimensional structure of the title comlex. Displacement ellipsoids are drawn at the 30% probablity level. [Symmetry code: (A) 1 – x, y, 0.5 – z; (B) 1/2 + x, y, 0.5 – z; (C) 1/2 - x, 1/2 + y, 0.5 – z]
[Figure 2] Fig. 2. Part of the two-dimensional chain of (I), with hydrogen bonds shown as dashed lines.
Poly[aquabis[µ2-2-(pyridin-4-ylsulfanyl)acetato]zinc] top
Crystal data top
[Zn(C7H6NO2S)2(H2O)]F(000) = 856
Mr = 419.76Dx = 1.752 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3018 reflections
a = 16.057 (3) Åθ = 2.6–27.8°
b = 6.3709 (10) ŵ = 1.83 mm1
c = 15.630 (3) ÅT = 296 K
β = 95.393 (4)°Block, colourless
V = 1591.8 (5) Å30.20 × 0.17 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1403 independent reflections
Radiation source: fine-focus sealed tube1308 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 188
Tmin = 0.711, Tmax = 0.758k = 77
3842 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0333P)2 + 2.8608P]
where P = (Fo2 + 2Fc2)/3
1403 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Zn(C7H6NO2S)2(H2O)]V = 1591.8 (5) Å3
Mr = 419.76Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.057 (3) ŵ = 1.83 mm1
b = 6.3709 (10) ÅT = 296 K
c = 15.630 (3) Å0.20 × 0.17 × 0.16 mm
β = 95.393 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1403 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1308 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.758Rint = 0.016
3842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.04Δρmax = 0.57 e Å3
1403 reflectionsΔρmin = 0.34 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.96825 (6)0.25000.03315 (15)
S10.12091 (5)0.98792 (11)0.03086 (5)0.0547 (2)
N10.37305 (12)0.9762 (3)0.19086 (13)0.0350 (4)
O10.03140 (13)0.7681 (4)0.16602 (14)0.0766 (7)
O20.05159 (15)0.4525 (4)0.12413 (14)0.0710 (7)
O30.50000.6356 (4)0.25000.0511 (7)
H3'0.48450.59270.29540.077*
C10.21478 (15)0.9755 (4)0.09745 (16)0.0366 (5)
C20.24687 (15)0.7966 (4)0.13868 (17)0.0429 (6)
H20.21620.67260.13600.051*
C30.32493 (15)0.8043 (4)0.18384 (17)0.0445 (6)
H30.34540.68250.21110.053*
C40.34017 (16)1.1504 (4)0.15408 (17)0.0432 (6)
H40.37131.27350.15970.052*
C50.26277 (16)1.1574 (4)0.10832 (18)0.0458 (6)
H50.24251.28350.08460.055*
C60.08449 (15)0.7230 (4)0.02936 (15)0.0384 (5)
H6A0.03890.70990.01560.046*
H6B0.12940.63250.01420.046*
C70.05446 (15)0.6435 (5)0.11276 (16)0.0481 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0299 (2)0.0337 (2)0.0348 (2)0.0000.00208 (15)0.000
S10.0409 (4)0.0454 (4)0.0725 (5)0.0058 (3)0.0227 (3)0.0140 (3)
N10.0325 (10)0.0370 (11)0.0346 (10)0.0009 (8)0.0018 (8)0.0017 (8)
O10.0574 (13)0.121 (2)0.0539 (12)0.0035 (13)0.0178 (10)0.0277 (13)
O20.0762 (16)0.0738 (16)0.0580 (13)0.0330 (13)0.0205 (11)0.0193 (11)
O30.0532 (16)0.0350 (13)0.0644 (17)0.0000.0022 (13)0.000
C10.0305 (12)0.0402 (13)0.0383 (12)0.0005 (10)0.0013 (10)0.0013 (10)
C20.0331 (13)0.0370 (14)0.0574 (15)0.0068 (10)0.0020 (11)0.0082 (12)
C30.0362 (13)0.0403 (14)0.0554 (15)0.0010 (11)0.0040 (11)0.0138 (12)
C40.0401 (13)0.0344 (13)0.0529 (15)0.0055 (11)0.0067 (11)0.0005 (11)
C50.0428 (14)0.0321 (13)0.0598 (16)0.0004 (11)0.0101 (12)0.0059 (12)
C60.0336 (12)0.0466 (14)0.0341 (12)0.0047 (11)0.0023 (9)0.0056 (10)
C70.0284 (12)0.077 (2)0.0368 (13)0.0153 (13)0.0071 (10)0.0071 (14)
Geometric parameters (Å, º) top
Zn1—O32.119 (3)O2—Zn1iv2.208 (3)
Zn1—N12.158 (2)O3—H3'0.8200
Zn1—N1i2.158 (2)C1—C21.384 (3)
Zn1—O2ii2.208 (3)C1—C51.393 (3)
Zn1—O2iii2.208 (3)C2—C31.380 (3)
Zn1—O1ii2.398 (3)C2—H20.9300
Zn1—O1iii2.398 (3)C3—H30.9300
S1—C11.751 (2)C4—C51.375 (4)
S1—C61.786 (3)C4—H40.9300
N1—C41.336 (3)C5—H50.9300
N1—C31.338 (3)C6—C71.519 (4)
O1—C71.232 (4)C6—H6A0.9700
O1—Zn1iv2.398 (3)C6—H6B0.9700
O2—C71.231 (4)
O3—Zn1—N191.34 (5)C7—O2—Zn1iv96.1 (2)
O3—Zn1—N1i91.34 (5)Zn1—O3—H3'109.5
N1—Zn1—N1i177.32 (10)C2—C1—C5116.8 (2)
O3—Zn1—O2ii87.40 (6)C2—C1—S1125.16 (19)
N1—Zn1—O2ii87.95 (8)C5—C1—S1118.04 (19)
N1i—Zn1—O2ii92.17 (8)C3—C2—C1119.3 (2)
O3—Zn1—O2iii87.40 (6)C3—C2—H2120.4
N1—Zn1—O2iii92.17 (8)C1—C2—H2120.4
N1i—Zn1—O2iii87.96 (8)N1—C3—C2124.1 (2)
O2ii—Zn1—O2iii174.79 (13)N1—C3—H3118.0
O3—Zn1—O1ii142.81 (5)C2—C3—H3118.0
N1—Zn1—O1ii88.69 (8)N1—C4—C5123.5 (2)
N1i—Zn1—O1ii89.18 (7)N1—C4—H4118.2
O2ii—Zn1—O1ii55.43 (8)C5—C4—H4118.2
O2iii—Zn1—O1ii129.77 (8)C4—C5—C1119.9 (2)
O3—Zn1—O1iii142.81 (5)C4—C5—H5120.0
N1—Zn1—O1iii89.18 (7)C1—C5—H5120.0
N1i—Zn1—O1iii88.69 (8)C7—C6—S1115.73 (18)
O2ii—Zn1—O1iii129.78 (8)C7—C6—H6A108.3
O2iii—Zn1—O1iii55.43 (8)S1—C6—H6A108.3
O1ii—Zn1—O1iii74.38 (11)C7—C6—H6B108.3
C1—S1—C6103.16 (11)S1—C6—H6B108.3
C4—N1—C3116.3 (2)H6A—C6—H6B107.4
C4—N1—Zn1121.53 (16)O2—C7—O1121.4 (3)
C3—N1—Zn1122.05 (16)O2—C7—C6118.2 (3)
C7—O1—Zn1iv87.0 (2)O1—C7—C6120.3 (3)
O3—Zn1—N1—C4163.91 (19)C4—N1—C3—C22.8 (4)
N1i—Zn1—N1—C416.09 (19)Zn1—N1—C3—C2172.8 (2)
O2ii—Zn1—N1—C4108.7 (2)C1—C2—C3—N10.0 (4)
O2iii—Zn1—N1—C476.5 (2)C3—N1—C4—C52.4 (4)
O1ii—Zn1—N1—C453.3 (2)Zn1—N1—C4—C5173.3 (2)
O1iii—Zn1—N1—C421.1 (2)N1—C4—C5—C10.9 (4)
O3—Zn1—N1—C311.5 (2)C2—C1—C5—C43.7 (4)
N1i—Zn1—N1—C3168.5 (2)S1—C1—C5—C4174.5 (2)
O2ii—Zn1—N1—C375.8 (2)C1—S1—C6—C770.1 (2)
O2iii—Zn1—N1—C399.0 (2)Zn1iv—O2—C7—O10.1 (3)
O1ii—Zn1—N1—C3131.3 (2)Zn1iv—O2—C7—C6177.97 (17)
O1iii—Zn1—N1—C3154.3 (2)Zn1iv—O1—C7—O20.1 (3)
C6—S1—C1—C21.8 (3)Zn1iv—O1—C7—C6177.9 (2)
C6—S1—C1—C5176.2 (2)S1—C6—C7—O2159.5 (2)
C5—C1—C2—C33.2 (4)S1—C6—C7—O122.6 (3)
S1—C1—C2—C3174.8 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1v0.822.182.754 (3)128
Symmetry code: (v) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C7H6NO2S)2(H2O)]
Mr419.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)16.057 (3), 6.3709 (10), 15.630 (3)
β (°) 95.393 (4)
V3)1591.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.20 × 0.17 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.711, 0.758
No. of measured, independent and
observed [I > 2σ(I)] reflections
3842, 1403, 1308
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.04
No. of reflections1403
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.34

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3'···O1i0.822.182.754 (3)128
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from Tianjin Normal University.

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKondo, M., Miyazawa, M., Irie, Y., Shinagawa, R., Horiba, T., Nakamura, A., Naito, T., Maeda, K., Utsuno, S. & Uchida, F. (2002). Chem. Commun. pp. 2156–2157.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-Y., Wang, X.-G. & Zhao, X.-J. (2011). Acta Cryst. E67, m795.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, E.-C., Liu, Z.-Y., Liu, Z.-Y., Zhao, L.-N. & Zhao, X.-J. (2010). Dalton Trans. pp. 8868–8871.  CrossRef Google Scholar
First citationYang, E.-C., Zhao, H.-K., Ding, B., Wang, X.-G. & Zhao, X.-J. (2007). Cryst. Growth Des. 7, 2009–2015.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, Q., Zeng, Y.-F., Zhao, J.-P., Yang, Q., Hu, B.-W., Chang, Z. & Bu, X.-H. (2010). Inorg. Chem. 49, 4301–4306.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds