metal-organic compounds
Poly[aquabis[μ2-2-(pyridin-4-ylsulfanyl)acetato]zinc]
aCollege of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: xiaojun_zhao15@yahoo.com.cn
The 7H6NO2S)2(H2O)]n, consists of extended layers parallel to (001) with 2-(pyridin-4-ylsulfanyl)acetate ligands bridging the ZnII atoms. The ZnII atom shows a distorted pentagonal–bipyramidal coordination environment. The ZnII and one O atom are situated on a crystallographic twofold rotation axis. In the crystal, intralayer O—H⋯O hydrogen-bond interactions help to consolidate the coordination layer.
of the title complex, [Zn(CRelated literature
For metal complexes with polycarboxylate aromatic ligands and their applications, see: Yang et al. (2007, 2010); Yu et al. (2010). For solid-state structures of metal complexes with pyridine-4-sulfanyl-acetate ligands, see Wang et al. (2011); Kondo et al. (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2003); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811024512/im2292sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811024512/im2292Isup2.hkl
A methanolic solution of pyridine-4-sulfanyl-acetic acid (50.6 mg, 0.2 mmol) was carefully layered onto a buffer layer of ethyl acetate (2.0 ml) in a straight glass tube below which an aqueous solution containing Zn(NO3)2.6 H2O (44.6 mg, 0.15 mmol) was placed. The test tube was left in air at room temperature. Colorless block-shaped crystals were harvested within three weeks. Yield: 40% based on ZnII salt. Anal. Calcd. for C14H14ZnN2O5S2: C, 40.06; H, 3.36; N, 6.67%. Found: C, 40.12; H, 3.26; N, 6.73%.
H atoms could be located from difference Fourier maps, but were subsequently placed in calculated positions and treated as riding, with C–H = 0.93 (aromatic), 0.97 (methylene) and O–H = 0.82 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = 1.2 Ueq(C, O)].
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Zn(C7H6NO2S)2(H2O)] | F(000) = 856 |
Mr = 419.76 | Dx = 1.752 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 3018 reflections |
a = 16.057 (3) Å | θ = 2.6–27.8° |
b = 6.3709 (10) Å | µ = 1.83 mm−1 |
c = 15.630 (3) Å | T = 296 K |
β = 95.393 (4)° | Block, colourless |
V = 1591.8 (5) Å3 | 0.20 × 0.17 × 0.16 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 1403 independent reflections |
Radiation source: fine-focus sealed tube | 1308 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −18→8 |
Tmin = 0.711, Tmax = 0.758 | k = −7→7 |
3842 measured reflections | l = −17→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0333P)2 + 2.8608P] where P = (Fo2 + 2Fc2)/3 |
1403 reflections | (Δ/σ)max < 0.001 |
110 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[Zn(C7H6NO2S)2(H2O)] | V = 1591.8 (5) Å3 |
Mr = 419.76 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.057 (3) Å | µ = 1.83 mm−1 |
b = 6.3709 (10) Å | T = 296 K |
c = 15.630 (3) Å | 0.20 × 0.17 × 0.16 mm |
β = 95.393 (4)° |
Bruker APEXII CCD area-detector diffractometer | 1403 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1308 reflections with I > 2σ(I) |
Tmin = 0.711, Tmax = 0.758 | Rint = 0.016 |
3842 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.57 e Å−3 |
1403 reflections | Δρmin = −0.34 e Å−3 |
110 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.5000 | 0.96825 (6) | 0.2500 | 0.03315 (15) | |
S1 | 0.12091 (5) | 0.98792 (11) | 0.03086 (5) | 0.0547 (2) | |
N1 | 0.37305 (12) | 0.9762 (3) | 0.19086 (13) | 0.0350 (4) | |
O1 | 0.03140 (13) | 0.7681 (4) | 0.16602 (14) | 0.0766 (7) | |
O2 | 0.05159 (15) | 0.4525 (4) | 0.12413 (14) | 0.0710 (7) | |
O3 | 0.5000 | 0.6356 (4) | 0.2500 | 0.0511 (7) | |
H3' | 0.4845 | 0.5927 | 0.2954 | 0.077* | |
C1 | 0.21478 (15) | 0.9755 (4) | 0.09745 (16) | 0.0366 (5) | |
C2 | 0.24687 (15) | 0.7966 (4) | 0.13868 (17) | 0.0429 (6) | |
H2 | 0.2162 | 0.6726 | 0.1360 | 0.051* | |
C3 | 0.32493 (15) | 0.8043 (4) | 0.18384 (17) | 0.0445 (6) | |
H3 | 0.3454 | 0.6825 | 0.2111 | 0.053* | |
C4 | 0.34017 (16) | 1.1504 (4) | 0.15408 (17) | 0.0432 (6) | |
H4 | 0.3713 | 1.2735 | 0.1597 | 0.052* | |
C5 | 0.26277 (16) | 1.1574 (4) | 0.10832 (18) | 0.0458 (6) | |
H5 | 0.2425 | 1.2835 | 0.0846 | 0.055* | |
C6 | 0.08449 (15) | 0.7230 (4) | 0.02936 (15) | 0.0384 (5) | |
H6A | 0.0389 | 0.7099 | −0.0156 | 0.046* | |
H6B | 0.1294 | 0.6325 | 0.0142 | 0.046* | |
C7 | 0.05446 (15) | 0.6435 (5) | 0.11276 (16) | 0.0481 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0299 (2) | 0.0337 (2) | 0.0348 (2) | 0.000 | −0.00208 (15) | 0.000 |
S1 | 0.0409 (4) | 0.0454 (4) | 0.0725 (5) | −0.0058 (3) | −0.0227 (3) | 0.0140 (3) |
N1 | 0.0325 (10) | 0.0370 (11) | 0.0346 (10) | −0.0009 (8) | −0.0018 (8) | 0.0017 (8) |
O1 | 0.0574 (13) | 0.121 (2) | 0.0539 (12) | −0.0035 (13) | 0.0178 (10) | −0.0277 (13) |
O2 | 0.0762 (16) | 0.0738 (16) | 0.0580 (13) | −0.0330 (13) | −0.0205 (11) | 0.0193 (11) |
O3 | 0.0532 (16) | 0.0350 (13) | 0.0644 (17) | 0.000 | 0.0022 (13) | 0.000 |
C1 | 0.0305 (12) | 0.0402 (13) | 0.0383 (12) | −0.0005 (10) | −0.0013 (10) | 0.0013 (10) |
C2 | 0.0331 (13) | 0.0370 (14) | 0.0574 (15) | −0.0068 (10) | −0.0020 (11) | 0.0082 (12) |
C3 | 0.0362 (13) | 0.0403 (14) | 0.0554 (15) | −0.0010 (11) | −0.0040 (11) | 0.0138 (12) |
C4 | 0.0401 (13) | 0.0344 (13) | 0.0529 (15) | −0.0055 (11) | −0.0067 (11) | 0.0005 (11) |
C5 | 0.0428 (14) | 0.0321 (13) | 0.0598 (16) | 0.0004 (11) | −0.0101 (12) | 0.0059 (12) |
C6 | 0.0336 (12) | 0.0466 (14) | 0.0341 (12) | −0.0047 (11) | −0.0023 (9) | −0.0056 (10) |
C7 | 0.0284 (12) | 0.077 (2) | 0.0368 (13) | −0.0153 (13) | −0.0071 (10) | −0.0071 (14) |
Zn1—O3 | 2.119 (3) | O2—Zn1iv | 2.208 (3) |
Zn1—N1 | 2.158 (2) | O3—H3' | 0.8200 |
Zn1—N1i | 2.158 (2) | C1—C2 | 1.384 (3) |
Zn1—O2ii | 2.208 (3) | C1—C5 | 1.393 (3) |
Zn1—O2iii | 2.208 (3) | C2—C3 | 1.380 (3) |
Zn1—O1ii | 2.398 (3) | C2—H2 | 0.9300 |
Zn1—O1iii | 2.398 (3) | C3—H3 | 0.9300 |
S1—C1 | 1.751 (2) | C4—C5 | 1.375 (4) |
S1—C6 | 1.786 (3) | C4—H4 | 0.9300 |
N1—C4 | 1.336 (3) | C5—H5 | 0.9300 |
N1—C3 | 1.338 (3) | C6—C7 | 1.519 (4) |
O1—C7 | 1.232 (4) | C6—H6A | 0.9700 |
O1—Zn1iv | 2.398 (3) | C6—H6B | 0.9700 |
O2—C7 | 1.231 (4) | ||
O3—Zn1—N1 | 91.34 (5) | C7—O2—Zn1iv | 96.1 (2) |
O3—Zn1—N1i | 91.34 (5) | Zn1—O3—H3' | 109.5 |
N1—Zn1—N1i | 177.32 (10) | C2—C1—C5 | 116.8 (2) |
O3—Zn1—O2ii | 87.40 (6) | C2—C1—S1 | 125.16 (19) |
N1—Zn1—O2ii | 87.95 (8) | C5—C1—S1 | 118.04 (19) |
N1i—Zn1—O2ii | 92.17 (8) | C3—C2—C1 | 119.3 (2) |
O3—Zn1—O2iii | 87.40 (6) | C3—C2—H2 | 120.4 |
N1—Zn1—O2iii | 92.17 (8) | C1—C2—H2 | 120.4 |
N1i—Zn1—O2iii | 87.96 (8) | N1—C3—C2 | 124.1 (2) |
O2ii—Zn1—O2iii | 174.79 (13) | N1—C3—H3 | 118.0 |
O3—Zn1—O1ii | 142.81 (5) | C2—C3—H3 | 118.0 |
N1—Zn1—O1ii | 88.69 (8) | N1—C4—C5 | 123.5 (2) |
N1i—Zn1—O1ii | 89.18 (7) | N1—C4—H4 | 118.2 |
O2ii—Zn1—O1ii | 55.43 (8) | C5—C4—H4 | 118.2 |
O2iii—Zn1—O1ii | 129.77 (8) | C4—C5—C1 | 119.9 (2) |
O3—Zn1—O1iii | 142.81 (5) | C4—C5—H5 | 120.0 |
N1—Zn1—O1iii | 89.18 (7) | C1—C5—H5 | 120.0 |
N1i—Zn1—O1iii | 88.69 (8) | C7—C6—S1 | 115.73 (18) |
O2ii—Zn1—O1iii | 129.78 (8) | C7—C6—H6A | 108.3 |
O2iii—Zn1—O1iii | 55.43 (8) | S1—C6—H6A | 108.3 |
O1ii—Zn1—O1iii | 74.38 (11) | C7—C6—H6B | 108.3 |
C1—S1—C6 | 103.16 (11) | S1—C6—H6B | 108.3 |
C4—N1—C3 | 116.3 (2) | H6A—C6—H6B | 107.4 |
C4—N1—Zn1 | 121.53 (16) | O2—C7—O1 | 121.4 (3) |
C3—N1—Zn1 | 122.05 (16) | O2—C7—C6 | 118.2 (3) |
C7—O1—Zn1iv | 87.0 (2) | O1—C7—C6 | 120.3 (3) |
O3—Zn1—N1—C4 | −163.91 (19) | C4—N1—C3—C2 | 2.8 (4) |
N1i—Zn1—N1—C4 | 16.09 (19) | Zn1—N1—C3—C2 | −172.8 (2) |
O2ii—Zn1—N1—C4 | 108.7 (2) | C1—C2—C3—N1 | 0.0 (4) |
O2iii—Zn1—N1—C4 | −76.5 (2) | C3—N1—C4—C5 | −2.4 (4) |
O1ii—Zn1—N1—C4 | 53.3 (2) | Zn1—N1—C4—C5 | 173.3 (2) |
O1iii—Zn1—N1—C4 | −21.1 (2) | N1—C4—C5—C1 | −0.9 (4) |
O3—Zn1—N1—C3 | 11.5 (2) | C2—C1—C5—C4 | 3.7 (4) |
N1i—Zn1—N1—C3 | −168.5 (2) | S1—C1—C5—C4 | −174.5 (2) |
O2ii—Zn1—N1—C3 | −75.8 (2) | C1—S1—C6—C7 | 70.1 (2) |
O2iii—Zn1—N1—C3 | 99.0 (2) | Zn1iv—O2—C7—O1 | −0.1 (3) |
O1ii—Zn1—N1—C3 | −131.3 (2) | Zn1iv—O2—C7—C6 | −177.97 (17) |
O1iii—Zn1—N1—C3 | 154.3 (2) | Zn1iv—O1—C7—O2 | 0.1 (3) |
C6—S1—C1—C2 | −1.8 (3) | Zn1iv—O1—C7—C6 | 177.9 (2) |
C6—S1—C1—C5 | 176.2 (2) | S1—C6—C7—O2 | −159.5 (2) |
C5—C1—C2—C3 | −3.2 (4) | S1—C6—C7—O1 | 22.6 (3) |
S1—C1—C2—C3 | 174.8 (2) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x+1/2, y+1/2, z; (iv) x−1/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3′···O1v | 0.82 | 2.18 | 2.754 (3) | 128 |
Symmetry code: (v) −x+1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C7H6NO2S)2(H2O)] |
Mr | 419.76 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 16.057 (3), 6.3709 (10), 15.630 (3) |
β (°) | 95.393 (4) |
V (Å3) | 1591.8 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.83 |
Crystal size (mm) | 0.20 × 0.17 × 0.16 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.711, 0.758 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3842, 1403, 1308 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.072, 1.04 |
No. of reflections | 1403 |
No. of parameters | 110 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.57, −0.34 |
Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3'···O1i | 0.82 | 2.18 | 2.754 (3) | 128 |
Symmetry code: (i) −x+1/2, y−1/2, −z+1/2. |
Acknowledgements
The authors gratefully acknowledge financial support from Tianjin Normal University.
References
Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kondo, M., Miyazawa, M., Irie, Y., Shinagawa, R., Horiba, T., Nakamura, A., Naito, T., Maeda, K., Utsuno, S. & Uchida, F. (2002). Chem. Commun. pp. 2156–2157. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, J.-Y., Wang, X.-G. & Zhao, X.-J. (2011). Acta Cryst. E67, m795. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, E.-C., Liu, Z.-Y., Liu, Z.-Y., Zhao, L.-N. & Zhao, X.-J. (2010). Dalton Trans. pp. 8868–8871. CrossRef Google Scholar
Yang, E.-C., Zhao, H.-K., Ding, B., Wang, X.-G. & Zhao, X.-J. (2007). Cryst. Growth Des. 7, 2009–2015. Web of Science CSD CrossRef CAS Google Scholar
Yu, Q., Zeng, Y.-F., Zhao, J.-P., Yang, Q., Hu, B.-W., Chang, Z. & Bu, X.-H. (2010). Inorg. Chem. 49, 4301–4306. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, metal complexes constructed from aromatic polycarboxylate ligands and transition metal ions have received more and more interest due to their interesting architectures, amazing topologies and potentially technological applications in magnetism (Yang et al. 2010), luminesence (Yang et al. 2007) and gas storage (Yu et al. 2010). The anionic pyridine-4-sulfanyl-acetate ligand has three different potential binding sites upon coordination with metal ions and has exhibited various binding modes through the pyridyl N atom or carboxylate O donors. As a result, diverse complexes with discrete mononuclear (Wang et al. 2011), polymeric one-dimensional chains or two-dimensional layers (Kondo et al. 2002) have been obtained up to date. As a continuation of this research the crystal structure of a ZnII complex with pyridine-4-sulfanyl-acetate ligands, (I), is reported herein.
A cut-out of the polymeric structure of the title compound showing one ZnII atom in it's complete coordination environment is shown in Fig. 1. The ZnII atom exhibits a distorted pentagonal bipyramidal coordination environment involving two pyridyl N atoms from two separate pyridine-4-sulfanyl-acetate ligands in trans-position, four O atoms from a pair of chelating carboxylate groups of pyridine-4-sulfanyl-acetate ligands and one O atom of a terminal water molecule. Each anionic pyridine-4-sulfanyl-acetate ligand acts as a ditopic connector to bridge adjacent ZnII ions by a pyridyl N donor and a bidentate chelating carboxylate to generate a two-dimensional (4, 4) coordination layer with a Zn··· Zn distance of 6.3709 (10) Å. Additionally, O—H ···O hydrogen bonds between the coordinated water molecule and the deprotonated carboxylate (Table 1) help to consolidate the two-dimensional covalent layer (Fig. 2).