organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1651-o1652

A second triclinic polymorph of (1-ammonio-1-phosphono­eth­yl)phospho­nate

aInstitute of General and Inorganic Chemistry, National Academy of Science Ukraine, Prospekt Palladina 32/34, Kyiv 03680, Ukraine
*Correspondence e-mail: complex@ionc.kiev.ua

(Received 30 May 2011; accepted 8 June 2011; online 18 June 2011)

The asymmetric unit of the second polymorph of the title compound, C2H9NO6P2, contains one mol­ecule existing as a zwitterion. The N atom of the ammonio group is protonated and one of the phospho­nic acid groups is deprotonated. Bond lengths and angles are similar in both polymorphs. Besides the differences in cell parameters, the most significant structural difference between this structure and that of the first polymorph [Dudko, Bon, Kozachkova, Tsarik & Pekhno (2008[Dudko, A. V., Bon, V. V., Kozachkova, A. N., Tsarik, N. V. & Pekhno, V. I. (2008). Ukr. Khim. Zh., 74, 104-106.]), Ukr. Khim. Zh. 74, 104–106] is the presence of strong symmetric hydrogen bonds between neighbouring phospho­nate groups. H atoms involved in these hydrogen bonds are located at inversion centres and O⋯O distances are observed in the range 2.458 (5)–2.523 (5) Å. These bonds and additional O—H⋯O and N—H⋯O hydrogen bonds inter­link the mol­ecules, giving a three-dimensional supromolecular network.

Related literature

For the original polymorph, see: Dudko et al. (2008[Dudko, A. V., Bon, V. V., Kozachkova, A. N., Tsarik, N. V. & Pekhno, V. I. (2008). Ukr. Khim. Zh., 74, 104-106.]). For similar bis­phospho­nates, see: Fernández et al. (2003[Fernández, D., Vega, D. & Ellena, J. A. (2003). Acta Cryst. C59, o289-o292.]); Li et al. (2009[Li, M., Wen, W., Ha, W. & Chang, L. (2009). Acta Cryst. E65, o787.]). For general background on the usage of organic diphospho­nic acids as chelating agents in metal extraction and as drugs to prevent calcification and inhibit bone resorption, see: Matczak-Jon & Videnova-Adrabinska (2005[Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458-2488.]); Matkovskaya et al. (2001[Matkovskaya, T. A., Popov, K. I. & Yuryeva, E. A. (2001). Bisphosphonates. Properties, Structure and Application in Medicine, p. 223. Moscow: Khimiya.]). For examples of symmetrical O—H⋯O hydrogen bonds, see Catti & Ferraris (1976[Catti, M. & Ferraris, G. (1976). Acta Cryst. B32, 2754-2756.]); Meot-Ner (2005[Meot-Ner, M. (2005). Chem. Rev. 105, 213-284.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C2H9NO6P2

  • Mr = 205.04

  • Triclinic, [P \overline 1]

  • a = 5.5674 (11) Å

  • b = 5.9023 (12) Å

  • c = 11.385 (2) Å

  • α = 82.334 (10)°

  • β = 82.145 (9)°

  • γ = 78.148 (10)°

  • V = 360.56 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 296 K

  • 0.56 × 0.16 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.734, Tmax = 0.949

  • 4331 measured reflections

  • 1401 independent reflections

  • 861 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.122

  • S = 1.06

  • 1401 reflections

  • 116 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2i 0.81 (6) 1.70 (6) 2.507 (5) 170 (6)
O3—H3O⋯O4ii 0.85 (7) 1.63 (7) 2.475 (5) 175 (7)
O5—H5O⋯O5iii 1.23 (1) 1.23 (1) 2.458 (5) 180 (0)
O6—H6O⋯O6iv 1.26 (1) 1.26 (1) 2.523 (6) 180 (1)
N1—H1A⋯O2v 0.90 (6) 2.11 (6) 2.929 (6) 150 (5)
N1—H1B⋯O4v 0.86 (6) 2.06 (6) 2.896 (5) 165 (5)
N1—H1C⋯O6ii 0.82 (6) 2.50 (6) 3.196 (6) 145 (5)
Symmetry codes: (i) -x+1, -y, -z; (ii) x, y-1, z; (iii) -x+1, -y, -z+1; (iv) -x, -y+1, -z+1; (v) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Diphosphonic acids with the P–C–P fragment, commonly named bisphosphonates, are well known since the 19th century. Due to the specific geometry and mutual influence of phosphonate fragments, compounds of this class possess a number of unique properties compared to other derivatives of phosphonic acids. Diphosphonic acids are structural analogues of inorganic pyrophosphate, one of the major metabolites in the cells, involved as a product in more than sixty biochemical reactions. Drugs prepared on the basis of bisphosphonates are highly efficient as a regulator of calcium metabolism and the immune response, they are used as anti-neoplastic, anti-inflammatory and antiviral agents and drugs with analgesic effect and as a component of toothpastes biphosphonates prevent the formation of tartar (Matkovskaya et al., 2001).

However, it is still not clearly understood why small structural modifications of the bisphosphonates may lead to extensive alterations in their physicochemical, biological and toxicological characteristics (Matczak-Jon & Videnova-Adrabinska, 2005). As a consequence of that determination of the structure of the bisphosphonates is very important to understand the influence of structural modifications on complex-forming abilities and physiological activities and deriving structure properties relations in general. In the present work we report a second polymorph of the title compound which crystallizes in the space group (P1) whereas the previously described polymorph modification also crystallizes in the triclinic space group P1 but with different cell parameters and cell volume (Dudko et al., 2008). The asymmetric unit of the title compound (Fig. 1) contains one molecule in zwitterionic form with a proton transferred from one of the phosphonic groups to the amino group which is typical for all investigated 1-aminodiphosphonic acids (Fernández et al., 2003; Li et al., 2009). Bond lengths and angles are within normal ranges (Allen et al., 1987) and are comparable with the first polymorph modification of the compound. It is generally accepted that, for O—H—O interactions where O···O is about 2.50 Å, examples can be found of truly symmetric hydrogen bonds, most of which have crystallographic equivalence between donor–acceptor atoms (Meot-Ner, 2005; Catti & Ferraris, 1976). The title compound, displays such short and strong symmetric hydrogen bonds between neighboring phosphonate groups, with the H atoms located at inversion centres and O···O distances of 2.458 (5) and 2,523 (5) Å. Multiple N—H···O and O—H···O hydrogen bonds in the crystal structure form an intricate three-dimensional supramolecular network (Fig.2, Table 1).

Related literature top

For the original polymorph, see: Dudko et al. (2008). For similar bisphosphonates, see: Fernández et al. (2003); Li et al. (2009). For general background on the usage of organic diphosphonic acids as chelating agents in metal extraction and as drugs to prevent calcification and inhibit bone resorption, see: Matczak-Jon & Videnova-Adrabinska (2005); Matkovskaya et al. (2001). For examples of symmetrical O—H···O hydrogen bonds, see Catti & Ferraris (1976); Meot-Ner (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound C2H9NO6P2, was obtained by the reaction of acetonitrile which was brought into contact with the dry hydrogen chloride and phosphorus trichloride at 278 K followed by the dropwise addition of water. The obtained solution was treated by a mixture of acetone and diethyl ether, resulting in a white precipitate of the title compound. The resulting residue was dissolved in water and was stored in a dark place for slow evaporation. After 14 d of staying, suitable crystals for X-ray data collection were obtained.

Refinement top

H atoms bonded to O and N atoms were located in a difference Fourier map. Their positions were refined freely whereas thermal parameters were fixed to Uiso(H) = 1.5Ueq(N,O). Other H atoms which bonded to C were positioned geometrically and refined using a riding model with C—H = 0.96 Å for CH3 with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing of title compound, projection along b axis. Dashed pink lines indicate symmetrical hydrogen bonds while dashed yellow lines indicate ordinary hydrogen bonds.
(1-azaniumyl-1-phosphonoethyl)phosphonate top
Crystal data top
C2H9NO6P2Z = 2
Mr = 205.04F(000) = 212
Triclinic, P1Dx = 1.889 Mg m3
Hall symbol: -P 1Melting point: 551 K
a = 5.5674 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.9023 (12) ÅCell parameters from 1315 reflections
c = 11.385 (2) Åθ = 3.6–25.3°
α = 82.334 (10)°µ = 0.59 mm1
β = 82.145 (9)°T = 296 K
γ = 78.148 (10)°Needle, colourless
V = 360.56 (12) Å30.56 × 0.16 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
1401 independent reflections
Radiation source: fine-focus sealed tube861 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 66
Tmin = 0.734, Tmax = 0.949k = 77
4331 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.6717P]
where P = (Fo2 + 2Fc2)/3
1401 reflections(Δ/σ)max < 0.001
116 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C2H9NO6P2γ = 78.148 (10)°
Mr = 205.04V = 360.56 (12) Å3
Triclinic, P1Z = 2
a = 5.5674 (11) ÅMo Kα radiation
b = 5.9023 (12) ŵ = 0.59 mm1
c = 11.385 (2) ÅT = 296 K
α = 82.334 (10)°0.56 × 0.16 × 0.09 mm
β = 82.145 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
1401 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
861 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.949Rint = 0.058
4331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.45 e Å3
1401 reflectionsΔρmin = 0.43 e Å3
116 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.4512 (2)0.0726 (2)0.18108 (11)0.0243 (4)
P20.2798 (2)0.2733 (2)0.36756 (11)0.0266 (4)
O10.3269 (6)0.1949 (6)0.1024 (3)0.0327 (9)
H1O0.337 (11)0.133 (11)0.034 (5)0.049*
O20.6470 (5)0.0492 (6)0.1152 (3)0.0337 (9)
O30.5438 (7)0.2366 (6)0.2838 (4)0.0475 (11)
H3O0.531 (12)0.379 (12)0.301 (6)0.071*
O40.5260 (5)0.3445 (5)0.3268 (3)0.0236 (8)
O50.2923 (6)0.0865 (7)0.4724 (3)0.0344 (9)
H5O0.50000.00000.50000.052*
O60.0723 (6)0.4792 (7)0.3914 (3)0.0421 (10)
H6O0.00000.50000.50000.063*
N10.0104 (8)0.0192 (9)0.2928 (4)0.0287 (11)
H1A0.086 (10)0.025 (9)0.237 (5)0.043*
H1B0.151 (10)0.102 (10)0.316 (5)0.043*
H1C0.030 (10)0.091 (10)0.342 (5)0.043*
C10.1979 (8)0.1433 (8)0.2439 (4)0.0195 (10)
C20.1069 (9)0.3297 (8)0.1441 (4)0.0278 (12)
H2A0.08270.25560.07760.042*
H2B0.22760.42650.11910.042*
H2C0.04640.42350.17300.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0236 (7)0.0195 (7)0.0316 (7)0.0033 (5)0.0072 (6)0.0066 (6)
P20.0204 (7)0.0387 (9)0.0230 (7)0.0080 (6)0.0030 (5)0.0074 (6)
O10.038 (2)0.028 (2)0.037 (2)0.0124 (17)0.0077 (18)0.0095 (17)
O20.0203 (18)0.045 (2)0.042 (2)0.0155 (16)0.0069 (16)0.0208 (18)
O30.065 (3)0.016 (2)0.068 (3)0.0036 (19)0.042 (2)0.002 (2)
O40.0182 (16)0.0200 (18)0.0344 (19)0.0022 (13)0.0056 (14)0.0091 (15)
O50.0272 (19)0.055 (2)0.0241 (18)0.0172 (17)0.0077 (15)0.0035 (17)
O60.0231 (19)0.067 (3)0.034 (2)0.0124 (18)0.0057 (16)0.0270 (19)
N10.017 (2)0.036 (3)0.033 (3)0.009 (2)0.006 (2)0.005 (2)
C10.016 (2)0.022 (3)0.022 (2)0.0064 (19)0.0040 (19)0.000 (2)
C20.031 (3)0.023 (3)0.027 (3)0.000 (2)0.007 (2)0.001 (2)
Geometric parameters (Å, º) top
P1—O21.490 (3)O5—H5O1.229 (1)
P1—O31.493 (4)O6—H6O1.261 (1)
P1—O11.533 (4)N1—C11.502 (6)
P1—C11.831 (5)N1—H1A0.90 (6)
P2—O41.510 (3)N1—H1B0.86 (6)
P2—O51.512 (4)N1—H1C0.82 (6)
P2—O61.520 (3)C1—C21.534 (6)
P2—C11.840 (4)C2—H2A0.9600
O1—H1O0.81 (6)C2—H2B0.9600
O3—H3O0.85 (7)C2—H2C0.9600
O2—P1—O3111.7 (2)C1—N1—H1B118 (4)
O2—P1—O1114.3 (2)H1A—N1—H1B87 (4)
O3—P1—O1110.8 (2)C1—N1—H1C113 (4)
O2—P1—C1109.0 (2)H1A—N1—H1C110 (5)
O3—P1—C1106.5 (2)H1B—N1—H1C111 (6)
O1—P1—C1103.86 (19)N1—C1—C2107.8 (4)
O4—P2—O5112.46 (18)N1—C1—P1107.2 (3)
O4—P2—O6112.8 (2)C2—C1—P1109.4 (3)
O5—P2—O6111.7 (2)N1—C1—P2107.4 (3)
O4—P2—C1107.07 (18)C2—C1—P2111.7 (3)
O5—P2—C1106.2 (2)P1—C1—P2113.1 (2)
O6—P2—C1105.98 (19)C1—C2—H2A109.5
P1—O1—H1O110 (4)C1—C2—H2B109.5
P1—O3—H3O128 (4)H2A—C2—H2B109.5
P2—O5—H5O115.9 (1)C1—C2—H2C109.5
P2—O6—H6O115.1 (1)H2A—C2—H2C109.5
C1—N1—H1A115 (3)H2B—C2—H2C109.5
O2—P1—C1—N1171.5 (3)O4—P2—C1—N1166.1 (3)
O3—P1—C1—N167.9 (3)O5—P2—C1—N145.8 (3)
O1—P1—C1—N149.2 (3)O6—P2—C1—N173.2 (4)
O2—P1—C1—C254.9 (4)O4—P2—C1—C276.0 (3)
O3—P1—C1—C2175.5 (3)O5—P2—C1—C2163.7 (3)
O1—P1—C1—C267.4 (3)O6—P2—C1—C244.7 (4)
O2—P1—C1—P270.3 (3)O4—P2—C1—P148.0 (3)
O3—P1—C1—P250.3 (3)O5—P2—C1—P172.4 (3)
O1—P1—C1—P2167.4 (2)O6—P2—C1—P1168.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.81 (6)1.70 (6)2.507 (5)170 (6)
O3—H3O···O4ii0.85 (7)1.63 (7)2.475 (5)175 (7)
O5—H5O···O5iii1.23 (1)1.23 (1)2.458 (5)180 (0)
O6—H6O···O6iv1.26 (1)1.26 (1)2.523 (6)180 (1)
N1—H1A···O2v0.90 (6)2.11 (6)2.929 (6)150 (5)
N1—H1B···O4v0.86 (6)2.06 (6)2.896 (5)165 (5)
N1—H1C···O6ii0.82 (6)2.50 (6)3.196 (6)145 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y+1, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC2H9NO6P2
Mr205.04
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.5674 (11), 5.9023 (12), 11.385 (2)
α, β, γ (°)82.334 (10), 82.145 (9), 78.148 (10)
V3)360.56 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.56 × 0.16 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.734, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
4331, 1401, 861
Rint0.058
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.122, 1.06
No. of reflections1401
No. of parameters116
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.43

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O2i0.81 (6)1.70 (6)2.507 (5)170 (6)
O3—H3O···O4ii0.85 (7)1.63 (7)2.475 (5)175 (7)
O5—H5O···O5iii1.23 (0)1.23 (0)2.458 (5)180 (0)
O6—H6O···O6iv1.261 (0)1.261 (0)2.523 (6)180.(0)
N1—H1A···O2v0.90 (6)2.11 (6)2.929 (6)150 (5)
N1—H1B···O4v0.86 (6)2.06 (6)2.896 (5)165 (5)
N1—H1C···O6ii0.82 (6)2.50 (6)3.196 (6)145 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y+1, z+1; (v) x1, y, z.
 

Acknowledgements

The authors gratefully acknowledge Dr V. V. Bon for his help with the preparation of this article.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatti, M. & Ferraris, G. (1976). Acta Cryst. B32, 2754–2756.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDudko, A. V., Bon, V. V., Kozachkova, A. N., Tsarik, N. V. & Pekhno, V. I. (2008). Ukr. Khim. Zh., 74, 104–106.  CAS Google Scholar
First citationFernández, D., Vega, D. & Ellena, J. A. (2003). Acta Cryst. C59, o289–o292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, M., Wen, W., Ha, W. & Chang, L. (2009). Acta Cryst. E65, o787.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.  Web of Science CrossRef CAS Google Scholar
First citationMatkovskaya, T. A., Popov, K. I. & Yuryeva, E. A. (2001). Bisphosphonates. Properties, Structure and Application in Medicine, p. 223. Moscow: Khimiya.  Google Scholar
First citationMeot-Ner, M. (2005). Chem. Rev. 105, 213–284.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1651-o1652
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds