organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1823-o1824

Methyl 4-hy­dr­oxy-2-iso­propyl-1,1-dioxo-2H-1,2-benzo­thia­zine-3-carboxyl­ate

aX-ray Diffraction and Crystallography Laboratory, Department of Physics, School of Physical Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan, bMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, cApplied Chemistry Research Center, PCSIR Laboratories Complex, Ferozpur Road, Lahore 54600, Pakistan, and dDepartment of Chemistry, Georgetown University, 37th and Oth St NW, Washington DC 20057, USA
*Correspondence e-mail: mnachemist@hotmail.com

(Received 14 June 2011; accepted 22 June 2011; online 25 June 2011)

In the crystal structure of the title mol­ecule, C13H15NO5S, the S and N atoms of the thia­zine ring exihibit the maximum deviations from the least-squares plane of 0.3008 (6) and 0.3280 (7) Å, respectively. The ring therefore adopts a half chair conformation. The thia­zine ring is twisted by an angle of 13.29 (7)° with respect to the aromatic ring. The isopropyl substituent is oriented at a dihedral angle of 53.2 (12)° with respect to the thia­zine ring. An intra­molecular O—H⋯O hydrogen bond occurs. Inter­molecular hydrogen bonding is observed in the crystal structure.

Related literature

For the synthetic procedure, see: Arshad et al. (2011[Arshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011). Asian J. Chem. 23, 2801-2805.]). For the biological activity of related compounds, see: Lombardino et al. (1971[Lombardino, J. G., Wiseman, E. H. & McLamore, W. (1971). J. Med. Chem. 14, 1171-1175.]); Vidal et al. (2006[Vidal, A., Madelmont, J. C. & Mounetou, E. (2006). Synthesis, pp. 591-594.]); Turck et al. (1996)[Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79-84.]; Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & &Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]). For related structures, see: Arshad et al. (2008[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.], 2009[Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o3077.]). For graph-set analysis, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15NO5S

  • Mr = 297.32

  • Monoclinic, P 21 /n

  • a = 11.3896 (6) Å

  • b = 9.8421 (5) Å

  • c = 12.7680 (7) Å

  • β = 105.782 (1)°

  • V = 1377.31 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.43 × 0.27 × 0.27 mm

Data collection
  • Siemens SMART 1K diffractometer with a Bruker APEXII detector

  • Absorption correction: multi-scan (SADABS; Bruker 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.899, Tmax = 0.949

  • 16137 measured reflections

  • 3380 independent reflections

  • 2967 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.06

  • 3380 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.49 3.311 (2) 147
C3—H3⋯O2ii 0.93 2.46 3.370 (2) 165
C11—H11⋯O1iii 0.98 2.39 3.317 (2) 157
O3—H3O⋯O4 0.88 (2) 1.77 (2) 2.578 (2) 151 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Benzothiazine 1,1-dioxide derivatives are the constituents of various drugs including Piroxicam and Meloxicam which are being used as non-steroidal anti-inflammatory drugs (NSAIDs) (Lombardino et al., 1971; Turck et al., 1996). Besides other biological activities (Zia-ur-Rehman et al., 2006) these type of molecules have found their applications as intermediates (Vidal et al., 2006). Our research group already reported the synthesis, biological activities (Arshad et al., 2011) and crystal structures (Arshad et al., 2008; 2009) of benzothiazine derivatives, II and III.

The title compound, I, is varied in structure with respect to III only concerning the alkyl group attached to the nitrogen atom of the thiazine ring. The characteristic intramolecular O—H···O hydrogen bond is observed in the structure of I as for II and III forming a six membered S11(6) ring (C7/C8/C9/O4 H3O/O3) system (Bernstein, et al., 1995). The observed ring is inclined at dihedral angles of 18.9 (4)° and 16.1 (4)° with respect to the thiazine (C1/C6/C7/C8/N1/S1) and aromatic (C1/C2/C3/C4/C5/C6) rings. The isopropyl group is oriented at a dihedral angle of 53.2 (1)° relative to the thiazine ring. The dihedral angle between the thiazine and aromatic ring is 13.29 (7)°. Alongwith the O—H···O type hydrogen bonding interaction the molecule is connected to it's neighboring symmetry equivalents by additional weak C—H···O type interactions producing a three dimensional network (Fig. 2. Tab. 1).

Related literature top

For the synthetic procedure, see: Arshad et al. (2011); For the biological activity of related compounds, see: Lombardino et al. (1971); Vidal et al. (2006); Turck et al. (1996); Zia-ur-Rehman et al. (2006). For related structures, see: Arshad et al. (2008, 2009). For graph-set analysis, see Bernstein et al. (1995).

Experimental top

The synthesis of the titled compound has already been published (Arshad et al., 2011). Recrystallization from methanol under slow evaporation of the solvent leads to the formation of crystals suitable for structural analysis.

Refinement top

Carbon bound H atoms were positioned geometrically with C—H = 0.93 Å and 0.98Å for aromatic and C11 carbon atoms, respectively, and were refined using a riding model with Uiso(H) = 1.2 Ueq(C). Similarly, H atoms of methyl groups were positioned geometrically with C—H = 0.96 Å and were refined using a riding model with Uiso(H) = 1.5 Ueq(C). The H atom of the hydroxyl group was located from the difference map with O–H= 0.88 (2)Å and was refined with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Ortep diagram for (I), thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing for (I) showing hydrogen bonds as dashed lines. Hydrogen atoms not involved in hydrogen bonding interactions have been omitted.
Methyl 4-hydroxy-2-isopropyl-1,1-dioxo-2H-1,2-benzothiazine-3-carboxylate top
Crystal data top
C13H15NO5SF(000) = 624
Mr = 297.32Dx = 1.434 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7059 reflections
a = 11.3896 (6) Åθ = 2.7–28.4°
b = 9.8421 (5) ŵ = 0.25 mm1
c = 12.7680 (7) ÅT = 100 K
β = 105.782 (1)°Needle, colorless
V = 1377.31 (13) Å30.43 × 0.27 × 0.27 mm
Z = 4
Data collection top
Siemens SMART 1K
diffractometer with a Bruker APEXII detector
3380 independent reflections
Radiation source: fine-focus sealed tube2967 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker 2001)
h = 1515
Tmin = 0.899, Tmax = 0.949k = 1312
16137 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.6953P]
where P = (Fo2 + 2Fc2)/3
3380 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C13H15NO5SV = 1377.31 (13) Å3
Mr = 297.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.3896 (6) ŵ = 0.25 mm1
b = 9.8421 (5) ÅT = 100 K
c = 12.7680 (7) Å0.43 × 0.27 × 0.27 mm
β = 105.782 (1)°
Data collection top
Siemens SMART 1K
diffractometer with a Bruker APEXII detector
3380 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2001)
2967 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.949Rint = 0.024
16137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.43 e Å3
3380 reflectionsΔρmin = 0.40 e Å3
187 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45158 (3)0.80155 (3)0.24103 (3)0.01449 (10)
O10.41963 (9)0.73289 (10)0.32827 (8)0.0204 (2)
O20.46334 (9)0.72358 (10)0.14956 (8)0.0208 (2)
O40.32490 (9)1.14730 (11)0.03579 (8)0.0239 (2)
O50.19108 (9)1.00457 (10)0.00818 (8)0.0206 (2)
O30.54813 (10)1.14548 (11)0.08196 (9)0.0235 (2)
N10.35223 (10)0.92191 (11)0.19471 (9)0.0148 (2)
C10.58852 (11)0.89070 (13)0.29337 (10)0.0144 (2)
C20.67716 (12)0.84231 (14)0.38274 (11)0.0167 (3)
H20.66460.76260.41740.020*
C30.78531 (12)0.91527 (15)0.41972 (11)0.0194 (3)
H30.84630.88340.47880.023*
C40.80243 (13)1.03493 (15)0.36896 (12)0.0213 (3)
H40.87451.08350.39500.026*
C50.71319 (13)1.08340 (15)0.27951 (11)0.0207 (3)
H50.72581.16390.24590.025*
C60.60455 (12)1.01095 (14)0.24018 (11)0.0163 (3)
C70.50866 (12)1.05859 (14)0.14559 (11)0.0171 (3)
C80.39091 (12)1.01442 (13)0.12351 (11)0.0159 (3)
C90.30108 (12)1.06172 (14)0.02519 (11)0.0180 (3)
C100.09884 (14)1.05700 (17)0.08516 (12)0.0271 (3)
H10A0.08281.15050.07280.041*
H10B0.02521.00510.09540.041*
H10C0.12761.05000.14900.041*
C110.28252 (12)0.98889 (14)0.26547 (11)0.0181 (3)
H110.23541.06210.22140.022*
C130.36474 (14)1.05728 (17)0.36523 (12)0.0258 (3)
H13A0.40310.98940.41730.039*
H13B0.31701.11660.39700.039*
H13C0.42621.10910.34440.039*
C120.18920 (13)0.89440 (17)0.29256 (13)0.0263 (3)
H12A0.14520.84730.22800.039*
H12B0.13320.94660.32050.039*
H12C0.23030.82970.34640.039*
H3O0.482 (2)1.167 (2)0.0300 (17)0.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01430 (16)0.01178 (16)0.01607 (17)0.00005 (11)0.00187 (12)0.00036 (11)
O10.0185 (5)0.0178 (5)0.0237 (5)0.0013 (4)0.0035 (4)0.0067 (4)
O20.0194 (5)0.0180 (5)0.0225 (5)0.0020 (4)0.0015 (4)0.0060 (4)
O40.0277 (5)0.0229 (5)0.0188 (5)0.0008 (4)0.0023 (4)0.0069 (4)
O50.0186 (5)0.0226 (5)0.0176 (5)0.0017 (4)0.0002 (4)0.0023 (4)
O30.0259 (5)0.0252 (5)0.0178 (5)0.0055 (4)0.0033 (4)0.0078 (4)
N10.0158 (5)0.0139 (5)0.0145 (5)0.0027 (4)0.0041 (4)0.0021 (4)
C10.0147 (6)0.0149 (6)0.0138 (6)0.0013 (5)0.0043 (5)0.0027 (5)
C20.0189 (6)0.0158 (6)0.0157 (6)0.0011 (5)0.0055 (5)0.0003 (5)
C30.0172 (6)0.0237 (7)0.0157 (6)0.0019 (5)0.0020 (5)0.0018 (5)
C40.0175 (6)0.0252 (7)0.0205 (7)0.0058 (5)0.0042 (5)0.0036 (6)
C50.0225 (7)0.0209 (7)0.0190 (7)0.0056 (5)0.0063 (5)0.0019 (5)
C60.0179 (6)0.0180 (6)0.0134 (6)0.0011 (5)0.0048 (5)0.0003 (5)
C70.0228 (7)0.0153 (6)0.0137 (6)0.0013 (5)0.0054 (5)0.0003 (5)
C80.0199 (6)0.0142 (6)0.0133 (6)0.0006 (5)0.0037 (5)0.0007 (5)
C90.0214 (6)0.0160 (6)0.0161 (6)0.0020 (5)0.0040 (5)0.0008 (5)
C100.0232 (7)0.0304 (8)0.0220 (7)0.0037 (6)0.0036 (6)0.0038 (6)
C110.0191 (6)0.0181 (6)0.0182 (7)0.0042 (5)0.0072 (5)0.0004 (5)
C130.0286 (8)0.0290 (8)0.0211 (7)0.0014 (6)0.0091 (6)0.0053 (6)
C120.0212 (7)0.0291 (8)0.0314 (8)0.0017 (6)0.0117 (6)0.0037 (6)
Geometric parameters (Å, º) top
S1—O11.4319 (10)C4—H40.9300
S1—O21.4338 (10)C5—C61.3978 (19)
S1—N11.6338 (11)C5—H50.9300
S1—C11.7556 (13)C6—C71.4675 (18)
O4—C91.2264 (17)C7—C81.3644 (19)
O5—C91.3361 (17)C8—C91.4632 (18)
O5—C101.4524 (16)C10—H10A0.9600
O3—C71.3387 (16)C10—H10B0.9600
O3—H3O0.88 (2)C10—H10C0.9600
N1—C81.4378 (17)C11—C131.518 (2)
N1—C111.5072 (16)C11—C121.521 (2)
C1—C21.3862 (18)C11—H110.9800
C1—C61.4009 (18)C13—H13A0.9600
C2—C31.3926 (19)C13—H13B0.9600
C2—H20.9300C13—H13C0.9600
C3—C41.383 (2)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—C51.390 (2)C12—H12C0.9600
O1—S1—O2118.74 (6)C8—C7—C6122.54 (12)
O1—S1—N1109.04 (6)C7—C8—N1121.61 (12)
O2—S1—N1107.59 (6)C7—C8—C9119.64 (12)
O1—S1—C1109.10 (6)N1—C8—C9118.75 (11)
O2—S1—C1107.90 (6)O4—C9—O5123.06 (12)
N1—S1—C1103.39 (6)O4—C9—C8122.64 (13)
C9—O5—C10114.88 (11)O5—C9—C8114.29 (12)
C7—O3—H3O104.6 (14)O5—C10—H10A109.5
C8—N1—C11113.82 (10)O5—C10—H10B109.5
C8—N1—S1112.76 (9)H10A—C10—H10B109.5
C11—N1—S1121.74 (9)O5—C10—H10C109.5
C2—C1—C6121.84 (12)H10A—C10—H10C109.5
C2—C1—S1120.95 (10)H10B—C10—H10C109.5
C6—C1—S1117.20 (10)N1—C11—C13113.06 (11)
C1—C2—C3118.74 (13)N1—C11—C12112.55 (11)
C1—C2—H2120.6C13—C11—C12112.96 (12)
C3—C2—H2120.6N1—C11—H11105.8
C4—C3—C2120.30 (13)C13—C11—H11105.8
C4—C3—H3119.8C12—C11—H11105.8
C2—C3—H3119.8C11—C13—H13A109.5
C3—C4—C5120.81 (13)C11—C13—H13B109.5
C3—C4—H4119.6H13A—C13—H13B109.5
C5—C4—H4119.6C11—C13—H13C109.5
C4—C5—C6119.86 (13)H13A—C13—H13C109.5
C4—C5—H5120.1H13B—C13—H13C109.5
C6—C5—H5120.1C11—C12—H12A109.5
C5—C6—C1118.43 (12)C11—C12—H12B109.5
C5—C6—C7121.37 (12)H12A—C12—H12B109.5
C1—C6—C7120.19 (12)C11—C12—H12C109.5
O3—C7—C8123.48 (12)H12A—C12—H12C109.5
O3—C7—C6113.95 (12)H12B—C12—H12C109.5
O1—S1—N1—C8167.45 (9)C5—C6—C7—O320.73 (19)
O2—S1—N1—C862.53 (10)C1—C6—C7—O3159.37 (12)
C1—S1—N1—C851.48 (10)C5—C6—C7—C8161.14 (13)
O1—S1—N1—C1126.69 (11)C1—C6—C7—C818.8 (2)
O2—S1—N1—C11156.70 (10)O3—C7—C8—N1179.43 (12)
C1—S1—N1—C1189.28 (11)C6—C7—C8—N12.6 (2)
O1—S1—C1—C231.83 (13)O3—C7—C8—C90.6 (2)
O2—S1—C1—C298.46 (12)C6—C7—C8—C9177.37 (12)
N1—S1—C1—C2147.76 (11)C11—N1—C8—C7102.87 (14)
O1—S1—C1—C6149.00 (10)S1—N1—C8—C741.11 (16)
O2—S1—C1—C680.71 (11)C11—N1—C8—C977.14 (15)
N1—S1—C1—C633.07 (11)S1—N1—C8—C9138.88 (11)
C6—C1—C2—C30.5 (2)C10—O5—C9—O43.37 (19)
S1—C1—C2—C3178.64 (10)C10—O5—C9—C8176.14 (12)
C1—C2—C3—C41.1 (2)C7—C8—C9—O44.9 (2)
C2—C3—C4—C50.9 (2)N1—C8—C9—O4175.11 (12)
C3—C4—C5—C60.1 (2)C7—C8—C9—O5175.59 (12)
C4—C5—C6—C10.5 (2)N1—C8—C9—O54.40 (18)
C4—C5—C6—C7179.64 (13)C8—N1—C11—C1380.86 (14)
C2—C1—C6—C50.3 (2)S1—N1—C11—C1359.52 (15)
S1—C1—C6—C5179.45 (10)C8—N1—C11—C12149.66 (12)
C2—C1—C6—C7179.81 (12)S1—N1—C11—C1269.95 (14)
S1—C1—C6—C70.65 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.493.311 (2)147
C3—H3···O2ii0.932.463.370 (2)165
C11—H11···O1iii0.982.393.317 (2)157
O3—H3O···O40.88 (2)1.77 (2)2.578 (2)151 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H15NO5S
Mr297.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.3896 (6), 9.8421 (5), 12.7680 (7)
β (°) 105.782 (1)
V3)1377.31 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.43 × 0.27 × 0.27
Data collection
DiffractometerSiemens SMART 1K
diffractometer with a Bruker APEXII detector
Absorption correctionMulti-scan
(SADABS; Bruker 2001)
Tmin, Tmax0.899, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
16137, 3380, 2967
Rint0.024
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.06
No. of reflections3380
No. of parameters187
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.40

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.493.311 (2)147
C3—H3···O2ii0.932.463.370 (2)165
C11—H11···O1iii0.982.393.317 (2)157
O3—H3O···O40.88 (2)1.77 (2)2.578 (2)151 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Footnotes

Materials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan.

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing fellowships to MNA (PIN # 042-120607-Ps2-183 & PIN # IRSIP-10-PS-2).

References

First citationArshad, M. N., Khan, I. U., Zia-ur-Rehman, M. & Shafiq, M. (2011). Asian J. Chem. 23, 2801–2805.  CAS Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o3077.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & McLamore, W. (1971). J. Med. Chem. 14, 1171–1175.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79–84.  PubMed Web of Science Google Scholar
First citationVidal, A., Madelmont, J. C. & Mounetou, E. (2006). Synthesis, pp. 591–594.  CrossRef Google Scholar
First citationZia-ur-Rehman, M., Anwar, J., Ahmad, S. & &Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1823-o1824
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds