metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(2-{[3-(morpholin-4-ium-4-yl)prop­yl]imino­meth­yl}phenolate)zinc

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 12 April 2011; accepted 7 June 2011; online 18 June 2011)

In the zwitterionic zinc title complex, [ZnCl2(C14H20N2O2)], the ZnII ion is four-coordinated in a distorted tetra­hedral geometry. The Schiff base ligand employs its phenolate O and imine N atoms to coordinate the metal atom in a bidentate mode. Two Cl atoms complete the tetra­hedral coordination environment. In the crystal, a pair of N—H⋯O hydrogen bonds connect the mol­ecules into a centrosymmetric dimer. C—H⋯O, C—H⋯Cl and C—H⋯π inter­actions are also observed.

Related literature

For related structures of similar zwitterionic ZnCl2 complexes, see: Qiu (2006[Qiu, X.-Y. (2006). Acta Cryst. E62, m2173-m2174.]); Ye & You (2008[Ye, L.-J. & You, Z. (2008). Acta Cryst. E64, m869.]); Zhu (2008[Zhu, X.-W. (2008). Acta Cryst. E64, m1456-m1457.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C14H20N2O2)]

  • Mr = 384.59

  • Monoclinic, P 21 /c

  • a = 8.11276 (10) Å

  • b = 11.21021 (13) Å

  • c = 18.4097 (2) Å

  • β = 92.0168 (6)°

  • V = 1673.24 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.79 mm−1

  • T = 100 K

  • 0.37 × 0.32 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.557, Tmax = 0.663

  • 14420 measured reflections

  • 3824 independent reflections

  • 3557 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.051

  • S = 1.07

  • 3824 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.90 (1) 1.81 (1) 2.6954 (14) 170 (2)
C5—H5⋯O2ii 0.95 2.39 3.2161 (16) 146
C9—H9A⋯Cl1iii 0.99 2.83 3.6732 (13) 144
C10—H10A⋯Cl1i 0.99 2.82 3.6905 (13) 147
C14—H14A⋯Cl2iii 0.99 2.69 3.5486 (13) 146
C14—H14B⋯Cl2iv 0.99 2.78 3.6890 (14) 153
C12—H12BCg1v 0.99 2.57 3.4366 (2) 146
Symmetry codes: (i) -x, -y, -z+2; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+2; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was obtained via the complexation of ZnCl2 with the in situ prepared Schiff base. The Schiff base ligand coordinates the metal ion via its phenolate oxygen and imine nitrogen atoms. The morpholine ring N atom stays away from the coordination and is protonated, implying the zwitterionic nature of the molecule. The tetrahedral geometry around the zinc(II) ion is completed by two Cl atoms. The coordination bond lengths in the complex are comparable to the corresponding values in similar structures (Qiu, 2006; Ye & You, 2008; Zhu, 2008). In the crystal, N—H···O hydrogen bonding connects pairs of the molecules into centrosymmetric dimers. The dimers are linked through C—H···O, C—H···Cl and C—H···π interactions into a three-dimensional network.

Related literature top

For related structures of similar zwitterionic ZnCl2 complexes, see: Qiu (2006); Ye & You (2008); Zhu (2008).

Experimental top

A mixture of salicylaldehyde (0.20 g, 1.64 mmol) and N-(3-aminopropyl)morpholine (0.24 g, 1.64 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of zinc(II) chloride (0.22 g, 1.64 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min, then the solvent was removed under reduced pressure. The impure product was recrystallized from methanol to give the yellow crystals of the title compound.

Refinement top

The C-bound H atoms were placed at calculated positions at distances C—H = 0.95 and 0.99 Å for aryl and methylene type H-atoms, respectively. The N-bound H atom was placed in a difference Fourier map, and was refined with a distance restraint of N—H 0.91 (2) Å. For all hydrogen atoms Uiso(H) were set to 1.2 times Ueq(carrier atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Dichlorido(2-{[3-(morpholin-4-ium-4-yl)propyl]iminomethyl}phenolate)zinc top
Crystal data top
[ZnCl2(C14H20N2O2)]F(000) = 792
Mr = 384.59Dx = 1.527 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9373 reflections
a = 8.11276 (10) Åθ = 2.2–30.4°
b = 11.21021 (13) ŵ = 1.79 mm1
c = 18.4097 (2) ÅT = 100 K
β = 92.0168 (6)°Block, yellow
V = 1673.24 (4) Å30.37 × 0.32 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3824 independent reflections
Radiation source: fine-focus sealed tube3557 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.557, Tmax = 0.663k = 1414
14420 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0237P)2 + 0.6991P]
where P = (Fo2 + 2Fc2)/3
3824 reflections(Δ/σ)max = 0.003
193 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.33 e Å3
Crystal data top
[ZnCl2(C14H20N2O2)]V = 1673.24 (4) Å3
Mr = 384.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.11276 (10) ŵ = 1.79 mm1
b = 11.21021 (13) ÅT = 100 K
c = 18.4097 (2) Å0.37 × 0.32 × 0.25 mm
β = 92.0168 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
3824 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3557 reflections with I > 2σ(I)
Tmin = 0.557, Tmax = 0.663Rint = 0.017
14420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0201 restraint
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.34 e Å3
3824 reflectionsΔρmin = 0.33 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.187917 (17)0.093296 (13)1.107214 (8)0.01475 (5)
Cl10.22466 (4)0.09919 (3)1.084342 (19)0.02075 (8)
Cl20.33968 (4)0.15593 (3)1.205005 (18)0.01907 (7)
O10.04186 (11)0.13291 (8)1.12739 (5)0.01608 (18)
O20.13093 (14)0.02283 (10)0.65039 (5)0.0276 (2)
N10.20412 (13)0.20247 (10)1.02150 (6)0.0159 (2)
N20.16476 (13)0.05293 (10)0.79901 (6)0.0135 (2)
H2N0.1344 (19)0.0140 (12)0.8218 (8)0.016*
C10.12380 (15)0.22475 (11)1.09867 (7)0.0137 (2)
C20.28113 (16)0.25169 (12)1.12420 (7)0.0163 (2)
H20.32530.20321.16110.020*
C30.37327 (16)0.34666 (12)1.09714 (7)0.0186 (3)
H30.47870.36271.11580.022*
C40.31222 (17)0.41883 (12)1.04277 (8)0.0196 (3)
H40.37430.48491.02470.024*
C50.16034 (17)0.39287 (12)1.01564 (7)0.0173 (3)
H50.12030.44050.97740.021*
C60.06264 (15)0.29814 (11)1.04276 (7)0.0142 (2)
C70.09231 (16)0.28065 (11)1.00702 (7)0.0159 (2)
H70.11340.33360.96820.019*
C80.34713 (16)0.19638 (13)0.97446 (7)0.0194 (3)
H8A0.44730.17691.00440.023*
H8B0.36410.27530.95180.023*
C90.32253 (16)0.10212 (12)0.91483 (7)0.0170 (3)
H9A0.42960.08470.89290.020*
H9B0.28120.02740.93630.020*
C100.20034 (15)0.14566 (11)0.85628 (7)0.0152 (2)
H10A0.09600.16820.87900.018*
H10B0.24520.21780.83310.018*
C110.02330 (16)0.09176 (11)0.74944 (7)0.0171 (3)
H11A0.05090.16790.72550.020*
H11B0.07630.10450.77800.020*
C120.01012 (18)0.00338 (13)0.69264 (7)0.0224 (3)
H12A0.04050.07870.71680.027*
H12B0.10420.02140.66040.027*
C130.26442 (19)0.06439 (14)0.69587 (8)0.0253 (3)
H13A0.36100.08010.66590.030*
H13B0.23280.14030.71900.030*
C140.31118 (16)0.02596 (12)0.75431 (7)0.0180 (3)
H14A0.40180.00620.78600.022*
H14B0.35050.10020.73150.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01268 (8)0.01573 (8)0.01592 (9)0.00041 (5)0.00142 (6)0.00096 (5)
Cl10.01746 (15)0.01744 (15)0.02752 (17)0.00001 (11)0.00307 (13)0.00615 (12)
Cl20.01577 (14)0.02111 (16)0.02017 (16)0.00145 (11)0.00147 (11)0.00506 (12)
O10.0137 (4)0.0163 (4)0.0184 (5)0.0015 (3)0.0024 (3)0.0039 (4)
O20.0390 (6)0.0322 (6)0.0117 (5)0.0108 (5)0.0007 (4)0.0017 (4)
N10.0148 (5)0.0191 (5)0.0140 (5)0.0042 (4)0.0023 (4)0.0036 (4)
N20.0153 (5)0.0139 (5)0.0114 (5)0.0016 (4)0.0022 (4)0.0009 (4)
C10.0147 (6)0.0137 (6)0.0127 (6)0.0014 (4)0.0014 (4)0.0014 (4)
C20.0153 (6)0.0170 (6)0.0165 (6)0.0005 (5)0.0010 (5)0.0012 (5)
C30.0137 (6)0.0202 (6)0.0219 (7)0.0011 (5)0.0010 (5)0.0014 (5)
C40.0192 (6)0.0171 (6)0.0220 (7)0.0014 (5)0.0066 (5)0.0019 (5)
C50.0219 (6)0.0165 (6)0.0134 (6)0.0039 (5)0.0035 (5)0.0008 (5)
C60.0164 (6)0.0139 (6)0.0121 (6)0.0019 (4)0.0007 (5)0.0016 (4)
C70.0205 (6)0.0157 (6)0.0117 (6)0.0056 (5)0.0011 (5)0.0013 (5)
C80.0141 (6)0.0269 (7)0.0173 (6)0.0057 (5)0.0035 (5)0.0040 (5)
C90.0135 (6)0.0222 (7)0.0154 (6)0.0004 (5)0.0008 (5)0.0025 (5)
C100.0165 (6)0.0150 (6)0.0142 (6)0.0001 (5)0.0018 (5)0.0019 (5)
C110.0183 (6)0.0189 (6)0.0138 (6)0.0042 (5)0.0017 (5)0.0014 (5)
C120.0284 (7)0.0240 (7)0.0143 (6)0.0020 (6)0.0042 (5)0.0000 (5)
C130.0333 (8)0.0257 (7)0.0169 (7)0.0105 (6)0.0037 (6)0.0020 (5)
C140.0199 (6)0.0194 (6)0.0153 (6)0.0055 (5)0.0065 (5)0.0020 (5)
Geometric parameters (Å, º) top
Zn1—O11.9644 (9)C5—H50.9500
Zn1—N12.0049 (11)C6—C71.4526 (18)
Zn1—Cl12.2206 (3)C7—H70.9500
Zn1—Cl22.2570 (3)C8—C91.5318 (18)
O1—C11.3254 (15)C8—H8A0.9900
O2—C121.4230 (17)C8—H8B0.9900
O2—C131.4238 (18)C9—C101.5190 (18)
N1—C71.2825 (17)C9—H9A0.9900
N1—C81.4736 (16)C9—H9B0.9900
N2—C141.4995 (16)C10—H10A0.9900
N2—C101.5012 (16)C10—H10B0.9900
N2—C111.5052 (16)C11—C121.5114 (18)
N2—H2N0.898 (13)C11—H11A0.9900
C1—C21.4084 (17)C11—H11B0.9900
C1—C61.4206 (17)C12—H12A0.9900
C2—C31.3836 (18)C12—H12B0.9900
C2—H20.9500C13—C141.516 (2)
C3—C41.392 (2)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C51.377 (2)C14—H14A0.9900
C4—H40.9500C14—H14B0.9900
C5—C61.4062 (18)
O1—Zn1—N195.72 (4)C9—C8—H8A109.3
O1—Zn1—Cl1112.96 (3)N1—C8—H8B109.3
N1—Zn1—Cl1115.53 (3)C9—C8—H8B109.3
O1—Zn1—Cl2105.87 (3)H8A—C8—H8B108.0
N1—Zn1—Cl2112.88 (3)C10—C9—C8110.63 (11)
Cl1—Zn1—Cl2112.363 (13)C10—C9—H9A109.5
C1—O1—Zn1124.48 (8)C8—C9—H9A109.5
C12—O2—C13109.77 (10)C10—C9—H9B109.5
C7—N1—C8118.38 (11)C8—C9—H9B109.5
C7—N1—Zn1121.01 (9)H9A—C9—H9B108.1
C8—N1—Zn1120.60 (9)N2—C10—C9112.36 (10)
C14—N2—C10112.86 (10)N2—C10—H10A109.1
C14—N2—C11109.11 (10)C9—C10—H10A109.1
C10—N2—C11110.44 (10)N2—C10—H10B109.1
C14—N2—H2N108.8 (10)C9—C10—H10B109.1
C10—N2—H2N107.5 (10)H10A—C10—H10B107.9
C11—N2—H2N108.0 (10)N2—C11—C12109.25 (10)
O1—C1—C2118.76 (11)N2—C11—H11A109.8
O1—C1—C6123.77 (11)C12—C11—H11A109.8
C2—C1—C6117.47 (11)N2—C11—H11B109.8
C3—C2—C1121.96 (12)C12—C11—H11B109.8
C3—C2—H2119.0H11A—C11—H11B108.3
C1—C2—H2119.0O2—C12—C11110.99 (12)
C2—C3—C4120.32 (13)O2—C12—H12A109.4
C2—C3—H3119.8C11—C12—H12A109.4
C4—C3—H3119.8O2—C12—H12B109.4
C5—C4—C3118.93 (12)C11—C12—H12B109.4
C5—C4—H4120.5H12A—C12—H12B108.0
C3—C4—H4120.5O2—C13—C14111.40 (11)
C4—C5—C6122.09 (12)O2—C13—H13A109.3
C4—C5—H5119.0C14—C13—H13A109.3
C6—C5—H5119.0O2—C13—H13B109.3
C5—C6—C1119.19 (12)C14—C13—H13B109.3
C5—C6—C7115.28 (12)H13A—C13—H13B108.0
C1—C6—C7125.44 (12)N2—C14—C13109.93 (11)
N1—C7—C6127.96 (12)N2—C14—H14A109.7
N1—C7—H7116.0C13—C14—H14A109.7
C6—C7—H7116.0N2—C14—H14B109.7
N1—C8—C9111.57 (10)C13—C14—H14B109.7
N1—C8—H8A109.3H14A—C14—H14B108.2
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.90 (1)1.81 (1)2.6954 (14)170 (2)
C5—H5···O2ii0.952.393.2161 (16)146
C9—H9A···Cl1iii0.992.833.6732 (13)144
C10—H10A···Cl1i0.992.823.6905 (13)147
C14—H14A···Cl2iii0.992.693.5486 (13)146
C14—H14B···Cl2iv0.992.783.6890 (14)153
C12—H12B···Cg1v0.992.573.4366 (2)146
Symmetry codes: (i) x, y, z+2; (ii) x, y+1/2, z+3/2; (iii) x+1, y, z+2; (iv) x, y+1/2, z1/2; (v) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C14H20N2O2)]
Mr384.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.11276 (10), 11.21021 (13), 18.4097 (2)
β (°) 92.0168 (6)
V3)1673.24 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.37 × 0.32 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.557, 0.663
No. of measured, independent and
observed [I > 2σ(I)] reflections
14420, 3824, 3557
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.051, 1.07
No. of reflections3824
No. of parameters193
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.33

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.898 (13)1.807 (13)2.6954 (14)169.6 (15)
C5—H5···O2ii0.952.393.2161 (16)146
C9—H9A···Cl1iii0.992.833.6732 (13)144
C10—H10A···Cl1i0.992.823.6905 (13)147
C14—H14A···Cl2iii0.992.693.5486 (13)146
C14—H14B···Cl2iv0.992.783.6890 (14)153
C12—H12B···Cg1v0.992.573.43663 (15)146
Symmetry codes: (i) x, y, z+2; (ii) x, y+1/2, z+3/2; (iii) x+1, y, z+2; (iv) x, y+1/2, z1/2; (v) x, y1/2, z3/2.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP004/2010B).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQiu, X.-Y. (2006). Acta Cryst. E62, m2173–m2174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, L.-J. & You, Z. (2008). Acta Cryst. E64, m869.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, X.-W. (2008). Acta Cryst. E64, m1456–m1457.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds