metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N,N-Di­methyl-N′-[1-(2-pyrid­yl)ethyl­­idene]ethane-1,2-di­amine-κ3N,N′,N′′}bis­­(thio­cyanato-κN)copper(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 20 May 2011; accepted 7 June 2011; online 18 June 2011)

The asymmetric unit of the title compound, [Cu(NCS)2(C11H17N3)], consists of two crystallographically independent mol­ecules. In each mol­ecule, the CuII ion is five-coordinated in a distorted square-pyramidal geometry wherein the basal plane is defined by the N,N′,N"-tridentate Schiff base and one N-bound thio­cyanate ligand. The second N-donor thio­cyanate group, located at the apical site, completes the coordination environment. In the crystal, inter­molecular C—H⋯S and C—H⋯N hydrogen bonds link adjacent mol­ecules into infinite layers parallel to the ac plane. Intra­molecular C—H⋯N inter­actions are also observed.

Related literature

For the structures of similar copper(II) isothio­cyanate complexes, see: Xue et al. (2010[Xue, L.-W., Zhao, G.-Q., Han, Y.-J., Chen, L.-H. & Peng, Q.-L. (2010). Acta Cryst. E66, m1274.]); Yue et al. (2005[Yue, G.-R., Xu, X.-J., Shi, Y.-Z. & Feng, L. (2005). Acta Cryst. E61, m693-m694.]). For the structure of the polymeric cadmium thio­cyanate complex of the same Schiff base, see: Suleiman Gwaram et al. (2011[Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m480.]). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NCS)2(C11H17N3)]

  • Mr = 370.98

  • Triclinic, [P \overline 1]

  • a = 10.9895 (4) Å

  • b = 11.2172 (4) Å

  • c = 13.7549 (5) Å

  • α = 81.222 (2)°

  • β = 87.121 (2)°

  • γ = 79.702 (2)°

  • V = 1648.27 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 100 K

  • 0.44 × 0.31 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). University of Göttingen, Germany.]) Tmin = 0.544, Tmax = 0.821

  • 14403 measured reflections

  • 7159 independent reflections

  • 5182 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.00

  • 7159 reflections

  • 385 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N5i 0.95 2.58 3.429 (5) 149
C8—H8B⋯S4ii 0.99 2.82 3.788 (4) 167
C9—H9A⋯S4iii 0.99 2.84 3.735 (4) 150
C22—H22A⋯S2iii 0.99 2.81 3.749 (4) 159
C11—H11B⋯N5 0.98 2.60 3.156 (5) 116
C21—H21A⋯S1 0.99 2.84 3.727 (4) 150
C21—H21B⋯S2 0.99 2.82 3.793 (4) 167
C24—H24B⋯N10 0.98 2.60 3.193 (5) 119
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z-1; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was obtained upon the reaction of the Schiff base, N,N-dimethyl-N'-[methyl(2-pyridyl)methylene]ethane-1,2-diamine, with CuII ion in the presence of thiocyanate anion. There are two geometrically slightly different molecules in crystal structure. The weighted r.m.s. fit for the superposition of the non-H atoms in both molecules is 0.296 Å. Each metal ion is five-coordinated by the three N atoms from the Schiff base and two N-donor thiocyanate ligands. Similar arrangements are observed in the structures of related mixed-ligand copper(II) complexes (Xue et al., 2010; Yue et al., 2005). Different from those, in the cadmium(II) thiocyanate complex of the same Schiff base (Suleiman Gwaram et al., 2011), N:S bridging thiocyanates connect the metal ions into an octahedral polymeric structure. The Addison τ values (Addison et al., 1984) of 0.13 for Cu1 complex and 0.14 for Cu2 complex (τ = 0 for an ideal square pyramid and τ = 1 for an ideal trigonal bipyramid) imply distorted square-pyramidal geometries of the molecules. In the crystal, the adjacent molecules are bonded via C—H···S and C—H···N interactions (Table 1) into layers parallel to the ac plane. Moreover, intramolecular C—H···N hydrogen bonding occurs (Table 1).

Related literature top

For the structures of similar copper(II) isothiocyanate complexes, see: Xue et al. (2010); Yue et al. (2005). For the structure of the polymeric cadmium(II) thiocyanate complex of the same Schiff base, see: Suleiman Gwaram et al. (2011). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984).

Experimental top

A mixture of 2-acetylpyridine (0.2 g, 1.65 mmol) and N,N-dimethylethyldiamine (0.15 g, 1.65 mmol) in ethanol (20 ml) was refluxed. After 2 hr a solution of copper(II) chloride dihydrate (0.28 g, 1.65 mmol) and sodium thiocyanate (0.27 g, 3.3 mmol) in a minimum amount of water was added. The resulting solution was refluxed for an hour, then left at room temperature. The green crystals of the title compound were obtained in a few days.

Refinement top

The hydrogen atoms were placed at calculated positions and refined as riding atoms with C—H distances of 0.95 (aryl), 0.98 (methyl) and 0.99 (methylene) Å, and withUiso(H) set to 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (50% probability ellipsoids). Hydrogen atoms are drawn as spheres of arbitrary radius.
{N,N-Dimethyl-N''-[1-(2-pyridyl)ethylidene]ethane- 1,2-diamine-κ3N,N',N''}bis(thiocyanato- κN)copper(II) top
Crystal data top
[Cu(NCS)2(C11H17N3)]Z = 4
Mr = 370.98F(000) = 764
Triclinic, P1Dx = 1.495 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9895 (4) ÅCell parameters from 3803 reflections
b = 11.2172 (4) Åθ = 2.4–27.5°
c = 13.7549 (5) ŵ = 1.58 mm1
α = 81.222 (2)°T = 100 K
β = 87.121 (2)°Block, green
γ = 79.702 (2)°0.44 × 0.31 × 0.13 mm
V = 1648.27 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
7159 independent reflections
Radiation source: fine-focus sealed tube5182 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.544, Tmax = 0.821k = 1414
14403 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0704P)2 + 0.4086P]
where P = (Fo2 + 2Fc2)/3
7159 reflections(Δ/σ)max = 0.001
385 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Cu(NCS)2(C11H17N3)]γ = 79.702 (2)°
Mr = 370.98V = 1648.27 (10) Å3
Triclinic, P1Z = 4
a = 10.9895 (4) ÅMo Kα radiation
b = 11.2172 (4) ŵ = 1.58 mm1
c = 13.7549 (5) ÅT = 100 K
α = 81.222 (2)°0.44 × 0.31 × 0.13 mm
β = 87.121 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
7159 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5182 reflections with I > 2σ(I)
Tmin = 0.544, Tmax = 0.821Rint = 0.036
14403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.00Δρmax = 1.04 e Å3
7159 reflectionsΔρmin = 0.81 e Å3
385 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.55642 (4)0.79503 (4)0.08656 (3)0.02048 (12)
S10.38800 (9)1.07075 (9)0.30413 (7)0.0312 (2)
S20.51073 (9)0.51728 (9)0.37652 (7)0.0290 (2)
N10.4089 (3)0.7396 (2)0.0358 (2)0.0205 (6)
N20.6288 (3)0.7362 (3)0.0344 (2)0.0222 (6)
N30.7243 (3)0.8449 (3)0.0977 (2)0.0226 (6)
N40.4644 (3)0.9151 (3)0.1652 (2)0.0281 (7)
N50.5861 (3)0.6353 (3)0.1947 (2)0.0290 (7)
C10.2960 (3)0.7478 (3)0.0763 (3)0.0256 (8)
H10.27640.79270.13000.031*
C20.2057 (4)0.6931 (3)0.0429 (3)0.0300 (9)
H20.12520.70110.07260.036*
C30.2350 (4)0.6270 (3)0.0341 (3)0.0313 (9)
H30.17500.58790.05780.038*
C40.3526 (4)0.6180 (3)0.0771 (3)0.0273 (8)
H40.37430.57270.13020.033*
C50.4380 (3)0.6765 (3)0.0408 (2)0.0215 (7)
C60.5665 (3)0.6775 (3)0.0811 (2)0.0227 (8)
C70.6097 (4)0.6144 (3)0.1675 (3)0.0291 (9)
H7A0.56760.66010.22640.044*
H7B0.59070.53130.15590.044*
H7C0.69920.61050.17700.044*
C80.7556 (3)0.7571 (3)0.0580 (3)0.0264 (8)
H8A0.75520.83400.10430.032*
H8B0.80370.68850.08860.032*
C90.8114 (3)0.7658 (3)0.0381 (3)0.0277 (8)
H9A0.83280.68280.07590.033*
H9B0.88860.80000.02460.033*
C100.7179 (3)0.9758 (3)0.0576 (3)0.0252 (8)
H10A0.65681.02570.09580.038*
H10B0.69360.98960.01130.038*
H10C0.79920.99880.06180.038*
C110.7663 (4)0.8237 (3)0.2004 (3)0.0298 (9)
H11A0.84780.84740.20190.045*
H11B0.77210.73670.22690.045*
H11C0.70700.87290.24040.045*
C120.4320 (3)0.9790 (3)0.2235 (3)0.0229 (7)
C130.5539 (3)0.5866 (3)0.2700 (3)0.0230 (8)
Cu20.08751 (4)0.80111 (4)0.59197 (3)0.02222 (13)
S30.06785 (10)1.01400 (10)0.84292 (8)0.0375 (3)
S40.01284 (9)0.51398 (8)0.83703 (7)0.0290 (2)
N60.0442 (3)0.7242 (3)0.5384 (2)0.0230 (6)
N70.1704 (3)0.7564 (3)0.4703 (2)0.0253 (7)
N80.2403 (3)0.8784 (3)0.6043 (2)0.0253 (7)
N90.0218 (3)0.9089 (3)0.6712 (2)0.0321 (8)
N100.1343 (3)0.6425 (3)0.7029 (2)0.0320 (8)
C140.1518 (3)0.7069 (3)0.5813 (3)0.0289 (8)
H140.17590.73870.64090.035*
C150.2304 (4)0.6438 (3)0.5414 (3)0.0332 (9)
H150.30640.63120.57380.040*
C160.1958 (4)0.5994 (3)0.4535 (3)0.0327 (9)
H160.24860.55730.42410.039*
C170.0834 (4)0.6172 (3)0.4092 (3)0.0275 (8)
H170.05780.58690.34930.033*
C180.0083 (3)0.6801 (3)0.4532 (3)0.0244 (8)
C190.1145 (3)0.7029 (3)0.4143 (3)0.0237 (8)
C200.1644 (4)0.6699 (4)0.3174 (3)0.0353 (9)
H20A0.13400.73660.26500.053*
H20B0.13700.59470.30610.053*
H20C0.25500.65670.31720.053*
C210.2912 (4)0.7928 (4)0.4488 (3)0.0332 (9)
H21A0.28320.87050.40260.040*
H21B0.34830.72880.41890.040*
C220.3390 (4)0.8088 (4)0.5468 (3)0.0322 (9)
H22A0.36850.72740.58500.039*
H22B0.40990.85310.53510.039*
C230.2171 (4)1.0098 (3)0.5624 (3)0.0301 (9)
H23A0.15071.05360.60050.045*
H23B0.19261.01880.49380.045*
H23C0.29271.04400.56520.045*
C240.2786 (4)0.8646 (4)0.7075 (3)0.0330 (9)
H24A0.35510.89750.70970.049*
H24B0.29280.77760.73550.049*
H24C0.21330.90950.74590.049*
C250.0419 (3)0.9524 (3)0.7423 (3)0.0269 (8)
C260.0736 (3)0.5899 (3)0.7593 (3)0.0247 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0231 (2)0.0194 (2)0.0209 (2)0.00395 (17)0.00033 (17)0.00881 (17)
S10.0327 (6)0.0299 (5)0.0359 (5)0.0084 (4)0.0083 (4)0.0195 (4)
S20.0289 (5)0.0300 (5)0.0285 (5)0.0090 (4)0.0006 (4)0.0010 (4)
N10.0239 (16)0.0159 (14)0.0224 (15)0.0039 (12)0.0005 (12)0.0040 (11)
N20.0239 (16)0.0212 (15)0.0217 (15)0.0031 (12)0.0031 (12)0.0061 (12)
N30.0253 (17)0.0181 (14)0.0245 (15)0.0017 (12)0.0061 (13)0.0039 (12)
N40.0280 (18)0.0284 (16)0.0307 (17)0.0039 (13)0.0008 (14)0.0143 (14)
N50.038 (2)0.0242 (16)0.0263 (17)0.0086 (14)0.0016 (14)0.0047 (14)
C10.028 (2)0.0251 (18)0.0262 (19)0.0065 (15)0.0023 (16)0.0093 (15)
C20.026 (2)0.032 (2)0.033 (2)0.0090 (16)0.0027 (17)0.0048 (17)
C30.031 (2)0.033 (2)0.033 (2)0.0126 (17)0.0093 (17)0.0023 (17)
C40.035 (2)0.0240 (18)0.0250 (19)0.0076 (16)0.0027 (16)0.0057 (15)
C50.027 (2)0.0144 (16)0.0219 (17)0.0003 (14)0.0017 (15)0.0033 (13)
C60.030 (2)0.0175 (16)0.0209 (17)0.0021 (14)0.0004 (15)0.0060 (14)
C70.038 (2)0.0267 (19)0.0265 (19)0.0081 (17)0.0019 (17)0.0148 (16)
C80.023 (2)0.0262 (19)0.031 (2)0.0033 (15)0.0059 (16)0.0122 (16)
C90.021 (2)0.0233 (18)0.039 (2)0.0006 (15)0.0036 (16)0.0082 (16)
C100.030 (2)0.0203 (17)0.0271 (19)0.0082 (15)0.0000 (16)0.0041 (15)
C110.034 (2)0.030 (2)0.027 (2)0.0109 (17)0.0107 (17)0.0016 (16)
C120.0179 (18)0.0253 (18)0.0273 (19)0.0066 (14)0.0010 (15)0.0062 (15)
C130.0209 (19)0.0193 (17)0.032 (2)0.0038 (14)0.0049 (16)0.0121 (15)
Cu20.0214 (2)0.0216 (2)0.0258 (2)0.00454 (17)0.00123 (18)0.01010 (18)
S30.0373 (6)0.0411 (6)0.0403 (6)0.0126 (5)0.0130 (5)0.0238 (5)
S40.0276 (5)0.0255 (5)0.0349 (5)0.0060 (4)0.0034 (4)0.0071 (4)
N60.0242 (17)0.0197 (15)0.0254 (15)0.0028 (12)0.0001 (13)0.0057 (12)
N70.0256 (17)0.0216 (15)0.0307 (17)0.0072 (12)0.0040 (13)0.0086 (13)
N80.0261 (17)0.0199 (15)0.0310 (17)0.0048 (12)0.0012 (13)0.0070 (13)
N90.0260 (19)0.0334 (18)0.0396 (19)0.0033 (14)0.0020 (15)0.0169 (16)
N100.038 (2)0.0290 (17)0.0307 (17)0.0113 (15)0.0009 (15)0.0046 (14)
C140.023 (2)0.029 (2)0.035 (2)0.0029 (15)0.0008 (16)0.0079 (16)
C150.023 (2)0.030 (2)0.048 (2)0.0080 (16)0.0035 (18)0.0027 (18)
C160.032 (2)0.029 (2)0.040 (2)0.0062 (17)0.0134 (18)0.0096 (18)
C170.031 (2)0.0226 (18)0.0296 (19)0.0025 (15)0.0069 (16)0.0080 (15)
C180.028 (2)0.0191 (17)0.0248 (18)0.0014 (15)0.0027 (15)0.0015 (14)
C190.025 (2)0.0192 (17)0.0254 (18)0.0023 (14)0.0012 (15)0.0068 (14)
C200.044 (3)0.035 (2)0.029 (2)0.0064 (18)0.0054 (18)0.0130 (18)
C210.030 (2)0.028 (2)0.046 (2)0.0113 (17)0.0136 (19)0.0180 (18)
C220.022 (2)0.029 (2)0.049 (2)0.0079 (16)0.0079 (18)0.0161 (18)
C230.039 (2)0.0213 (18)0.031 (2)0.0071 (16)0.0014 (17)0.0085 (16)
C240.032 (2)0.035 (2)0.032 (2)0.0082 (17)0.0069 (17)0.0029 (18)
C250.0207 (19)0.0242 (18)0.038 (2)0.0046 (15)0.0060 (16)0.0126 (17)
C260.028 (2)0.0231 (18)0.0246 (19)0.0012 (15)0.0080 (16)0.0095 (15)
Geometric parameters (Å, º) top
Cu1—N21.963 (3)Cu2—N71.955 (3)
Cu1—N41.963 (3)Cu2—N91.961 (3)
Cu1—N12.027 (3)Cu2—N62.033 (3)
Cu1—N32.040 (3)Cu2—N82.048 (3)
Cu1—N52.134 (3)Cu2—N102.164 (3)
S1—C121.625 (4)S3—C251.630 (4)
S2—C131.640 (4)S4—C261.637 (4)
N1—C11.328 (5)N6—C141.327 (5)
N1—C51.351 (4)N6—C181.354 (4)
N2—C61.284 (4)N7—C191.284 (5)
N2—C81.466 (4)N7—C211.461 (5)
N3—C101.478 (4)N8—C241.479 (5)
N3—C111.480 (4)N8—C231.480 (4)
N3—C91.489 (5)N8—C221.487 (5)
N4—C121.157 (4)N9—C251.153 (5)
N5—C131.165 (5)N10—C261.159 (5)
C1—C21.386 (5)C14—C151.390 (5)
C1—H10.9500C14—H140.9500
C2—C31.377 (5)C15—C161.387 (6)
C2—H20.9500C15—H150.9500
C3—C41.387 (5)C16—C171.383 (5)
C3—H30.9500C16—H160.9500
C4—C51.388 (5)C17—C181.391 (5)
C4—H40.9500C17—H170.9500
C5—C61.493 (5)C18—C191.477 (5)
C6—C71.489 (5)C19—C201.490 (5)
C7—H7A0.9800C20—H20A0.9800
C7—H7B0.9800C20—H20B0.9800
C7—H7C0.9800C20—H20C0.9800
C8—C91.508 (5)C21—C221.518 (6)
C8—H8A0.9900C21—H21A0.9900
C8—H8B0.9900C21—H21B0.9900
C9—H9A0.9900C22—H22A0.9900
C9—H9B0.9900C22—H22B0.9900
C10—H10A0.9800C23—H23A0.9800
C10—H10B0.9800C23—H23B0.9800
C10—H10C0.9800C23—H23C0.9800
C11—H11A0.9800C24—H24A0.9800
C11—H11B0.9800C24—H24B0.9800
C11—H11C0.9800C24—H24C0.9800
N2—Cu1—N4155.48 (13)N7—Cu2—N9154.58 (14)
N2—Cu1—N179.56 (12)N7—Cu2—N679.81 (12)
N4—Cu1—N197.64 (12)N9—Cu2—N697.93 (13)
N2—Cu1—N384.28 (12)N7—Cu2—N883.79 (12)
N4—Cu1—N395.54 (12)N9—Cu2—N895.01 (13)
N1—Cu1—N3163.43 (12)N6—Cu2—N8163.03 (12)
N2—Cu1—N5103.65 (12)N7—Cu2—N10105.98 (12)
N4—Cu1—N5100.73 (13)N9—Cu2—N1099.36 (13)
N1—Cu1—N590.70 (12)N6—Cu2—N1091.09 (12)
N3—Cu1—N596.68 (12)N8—Cu2—N1097.61 (12)
C1—N1—C5119.6 (3)C14—N6—C18120.1 (3)
C1—N1—Cu1126.8 (2)C14—N6—Cu2126.9 (3)
C5—N1—Cu1113.1 (2)C18—N6—Cu2112.8 (2)
C6—N2—C8126.4 (3)C19—N7—C21125.3 (3)
C6—N2—Cu1118.7 (2)C19—N7—Cu2119.0 (3)
C8—N2—Cu1114.8 (2)C21—N7—Cu2115.7 (2)
C10—N3—C11109.2 (3)C24—N8—C23109.6 (3)
C10—N3—C9110.9 (3)C24—N8—C22109.2 (3)
C11—N3—C9109.4 (3)C23—N8—C22110.8 (3)
C10—N3—Cu1109.8 (2)C24—N8—Cu2112.1 (2)
C11—N3—Cu1112.5 (2)C23—N8—Cu2110.6 (2)
C9—N3—Cu1105.0 (2)C22—N8—Cu2104.5 (2)
C12—N4—Cu1165.6 (3)C25—N9—Cu2150.1 (3)
C13—N5—Cu1146.3 (3)C26—N10—Cu2131.7 (3)
N1—C1—C2122.2 (3)N6—C14—C15121.8 (4)
N1—C1—H1118.9N6—C14—H14119.1
C2—C1—H1118.9C15—C14—H14119.1
C3—C2—C1118.6 (4)C16—C15—C14118.9 (4)
C3—C2—H2120.7C16—C15—H15120.6
C1—C2—H2120.7C14—C15—H15120.6
C2—C3—C4119.6 (3)C17—C16—C15119.1 (3)
C2—C3—H3120.2C17—C16—H16120.5
C4—C3—H3120.2C15—C16—H16120.5
C3—C4—C5118.7 (3)C16—C17—C18119.3 (4)
C3—C4—H4120.7C16—C17—H17120.3
C5—C4—H4120.7C18—C17—H17120.3
N1—C5—C4121.2 (3)N6—C18—C17120.8 (3)
N1—C5—C6114.1 (3)N6—C18—C19114.7 (3)
C4—C5—C6124.6 (3)C17—C18—C19124.5 (3)
N2—C6—C7126.9 (3)N7—C19—C18113.6 (3)
N2—C6—C5113.3 (3)N7—C19—C20124.3 (3)
C7—C6—C5119.8 (3)C18—C19—C20122.0 (3)
C6—C7—H7A109.5C19—C20—H20A109.5
C6—C7—H7B109.5C19—C20—H20B109.5
H7A—C7—H7B109.5H20A—C20—H20B109.5
C6—C7—H7C109.5C19—C20—H20C109.5
H7A—C7—H7C109.5H20A—C20—H20C109.5
H7B—C7—H7C109.5H20B—C20—H20C109.5
N2—C8—C9106.4 (3)N7—C21—C22106.0 (3)
N2—C8—H8A110.4N7—C21—H21A110.5
C9—C8—H8A110.4C22—C21—H21A110.5
N2—C8—H8B110.4N7—C21—H21B110.5
C9—C8—H8B110.4C22—C21—H21B110.5
H8A—C8—H8B108.6H21A—C21—H21B108.7
N3—C9—C8111.3 (3)N8—C22—C21110.9 (3)
N3—C9—H9A109.4N8—C22—H22A109.5
C8—C9—H9A109.4C21—C22—H22A109.5
N3—C9—H9B109.4N8—C22—H22B109.5
C8—C9—H9B109.4C21—C22—H22B109.5
H9A—C9—H9B108.0H22A—C22—H22B108.1
N3—C10—H10A109.5N8—C23—H23A109.5
N3—C10—H10B109.5N8—C23—H23B109.5
H10A—C10—H10B109.5H23A—C23—H23B109.5
N3—C10—H10C109.5N8—C23—H23C109.5
H10A—C10—H10C109.5H23A—C23—H23C109.5
H10B—C10—H10C109.5H23B—C23—H23C109.5
N3—C11—H11A109.5N8—C24—H24A109.5
N3—C11—H11B109.5N8—C24—H24B109.5
H11A—C11—H11B109.5H24A—C24—H24B109.5
N3—C11—H11C109.5N8—C24—H24C109.5
H11A—C11—H11C109.5H24A—C24—H24C109.5
H11B—C11—H11C109.5H24B—C24—H24C109.5
N4—C12—S1178.8 (3)N9—C25—S3179.1 (4)
N5—C13—S2179.1 (4)N10—C26—S4178.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N5i0.952.583.429 (5)149
C8—H8B···S4ii0.992.823.788 (4)167
C9—H9A···S4iii0.992.843.735 (4)150
C22—H22A···S2iii0.992.813.749 (4)159
C11—H11B···N50.982.603.156 (5)116
C21—H21A···S10.992.843.727 (4)150
C21—H21B···S20.992.823.793 (4)167
C24—H24B···N100.982.603.193 (5)119
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(NCS)2(C11H17N3)]
Mr370.98
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.9895 (4), 11.2172 (4), 13.7549 (5)
α, β, γ (°)81.222 (2), 87.121 (2), 79.702 (2)
V3)1648.27 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.44 × 0.31 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.544, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
14403, 7159, 5182
Rint0.036
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.00
No. of reflections7159
No. of parameters385
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.81

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N5i0.952.583.429 (5)149
C8—H8B···S4ii0.992.823.788 (4)167
C9—H9A···S4iii0.992.843.735 (4)150
C22—H22A···S2iii0.992.813.749 (4)159
C11—H11B···N50.982.603.156 (5)116
C21—H21A···S10.992.843.727 (4)150
C21—H21B···S20.992.823.793 (4)167
C24—H24B···N100.982.603.193 (5)119
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP004/2010B).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, L.-W., Zhao, G.-Q., Han, Y.-J., Chen, L.-H. & Peng, Q.-L. (2010). Acta Cryst. E66, m1274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYue, G.-R., Xu, X.-J., Shi, Y.-Z. & Feng, L. (2005). Acta Cryst. E61, m693–m694.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds