metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[3,3-di­methyl-2-(2-oxo­ethyl­­idene)indolinyl-κ2N,O]palladium(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bDepartment of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA.
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 20 May 2011; accepted 7 June 2011; online 18 June 2011)

The asymmetric unit of the title compound, [Pd(C12H12NO)2], consists of three crystallographically independent half-mol­ecules. Each PdII atom lies on a center of inversion and is four-coordinated by two monoanionic forms of the amino­acryl­aldehyde in a square-planar geometry. In the crystal, adjacent mol­ecules are connected through C—H⋯π and C—H⋯O inter­actions into a three-dimensional polymeric structure.

Related literature

For the structures of related compounds, see: Khaledi et al. (2011[Khaledi, H., Mohd Ali, H. & Olmstead, M. M. (2011). Eur. J. Inorg. Chem. pp. 2394-2404.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C12H12NO)2]

  • Mr = 478.85

  • Triclinic, [P \overline 1]

  • a = 10.453 (2) Å

  • b = 12.669 (3) Å

  • c = 13.056 (3) Å

  • α = 87.750 (3)°

  • β = 73.271 (3)°

  • γ = 70.565 (3)°

  • V = 1558.5 (6) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 100 K

  • 0.18 × 0.09 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.853, Tmax = 0.947

  • 13381 measured reflections

  • 6083 independent reflections

  • 4905 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.03

  • 6083 reflections

  • 403 parameters

  • H-atom parameters constrained

  • Δρmax = 1.35 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the benzene C27–C32 and C3–C8 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.40 3.353 (5) 177
C7—H7⋯O1ii 0.95 2.34 2.965 (4) 123
C19—H19⋯O2i 0.95 2.27 2.860 (5) 120
C31—H31⋯O3iii 0.95 2.25 2.861 (5) 121
C9—H9⋯Cg1iv 0.95 2.85 3.794 (5) 170
C33—H33⋯Cg2i 0.95 2.76 3.630 (4) 153
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z; (iii) -x+1, -y+2, -z+1; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem, 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have recently reported the reaction of 2-(diformylmethylidene)-3,3-dimethylindole, I, (Fig. 2), with palladium(II) ion to produce the complex II (Khaledi et al., 2011). As was reported, further recrystallization of the obtained N2O2-coordinated PdII complex from a mixture of DMF and pyridine led to the formation of acyl-palladium complexes III & IV. We were surprised to discover that leaving the recrystallization solution at room temperature for a longer time gave rise to slow disappearance of crystals of III & IV and formation of the orange crystals of the title compound. Herein, we report the crystal structure of the obtained PdII complex.

The crystal structure is composed of three square planar centrosymmetric complexes. In each molecule, two monoanionic ligands chelate the PdII ion in an N,O-mode to form two six-membered rings with the metal atom. The O—Pd—N bite angles are 90.38 (11), 90.13 (11) and 91.08 (11)° for the complexes of Pd1, Pd2 and Pd3, respectively. The three complexes have little difference in their geometries, but differ more in their intermolecular interactions. The Pd1 and Pd3 complexes are connected through C—H···π interactions (Table 1), forming infinite layers parallel to the ac plane. The layers are further linked into a three dimensional network via C—H···O hydrogen bonds (Table 1) formed between Pd1 and Pd2 molecules. Intramolecular C—H···O hydrogen bonding occurs in all three complexes.

Related literature top

For the structures of the related compounds, see: Khaledi et al. (2011).

Experimental top

A solution of palladium(II) complex II (Fig. 2) in a mixture of DMF and pyridine yielded the yellowish green crystals of III and IV in two weeks. Upon standing of the solution in a closed vial at room temperature for a month, the orange crystals of the title compound appeared while the former crystals began to disappear slowly and finally disappeared completely after two months.

Refinement top

Hydrogen atoms were placed at calculated positions and refined as riding atoms with distances of H—C(sp2) = 0.95 and H—C(methyl) = 0.98 Å and with Uiso(H) set to 1.2 (1.5 for methyl)Ueq(C). The most disagreeable reflections with delta(F2)/e.s.d. >10 were omitted (13 reflections). The maximum and minimum residual electron density peaks of 1.35 Å and -0.75 e Å-3, respectively, were located 1.44 Å and 0.85 Å from the H16 and Pd2 atoms, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (50% probability ellipsoids). Hydrogen atoms have been omitted for clarity. Symmetry codes: ' = -x, -y, -z; '' = -x, -y+1, -z+1; ''' = -x+1, -y+2, -z+1.
[Figure 2] Fig. 2. Reaction scheme.
Bis[3,3-dimethyl-2-(2-oxoethylidene)indolinyl- κ2N,O]palladium(II) top
Crystal data top
[Pd(C12H12NO)2]Z = 3
Mr = 478.85F(000) = 732
Triclinic, P1Dx = 1.531 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.453 (2) ÅCell parameters from 2716 reflections
b = 12.669 (3) Åθ = 2.3–24.8°
c = 13.056 (3) ŵ = 0.92 mm1
α = 87.750 (3)°T = 100 K
β = 73.271 (3)°Rod, orange
γ = 70.565 (3)°0.18 × 0.09 × 0.06 mm
V = 1558.5 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6083 independent reflections
Radiation source: fine-focus sealed tube4905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.853, Tmax = 0.947k = 1515
13381 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.042P)2]
where P = (Fo2 + 2Fc2)/3
6083 reflections(Δ/σ)max < 0.001
403 parametersΔρmax = 1.35 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Pd(C12H12NO)2]γ = 70.565 (3)°
Mr = 478.85V = 1558.5 (6) Å3
Triclinic, P1Z = 3
a = 10.453 (2) ÅMo Kα radiation
b = 12.669 (3) ŵ = 0.92 mm1
c = 13.056 (3) ÅT = 100 K
α = 87.750 (3)°0.18 × 0.09 × 0.06 mm
β = 73.271 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
6083 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4905 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.947Rint = 0.042
13381 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 1.35 e Å3
6083 reflectionsΔρmin = 0.75 e Å3
403 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.00000.00000.00000.01805 (11)
O10.2061 (3)0.0799 (2)0.0656 (2)0.0239 (6)
N10.0435 (3)0.0856 (2)0.1068 (2)0.0179 (7)
C10.1611 (4)0.0445 (3)0.1357 (3)0.0202 (8)
C20.1613 (4)0.1157 (3)0.2271 (3)0.0190 (8)
C30.0286 (4)0.2125 (3)0.2365 (3)0.0190 (8)
C40.0276 (4)0.3108 (3)0.2998 (3)0.0212 (9)
H40.01720.32350.34970.025*
C50.1499 (4)0.3907 (3)0.2897 (3)0.0229 (9)
H50.19000.45890.33290.027*
C60.2146 (4)0.3718 (3)0.2166 (3)0.0214 (9)
H60.29770.42800.20920.026*
C70.1596 (4)0.2716 (3)0.1537 (3)0.0185 (8)
H70.20500.25850.10450.022*
C80.0379 (4)0.1920 (3)0.1645 (3)0.0156 (8)
C90.2790 (4)0.0489 (3)0.0843 (3)0.0261 (9)
H90.35030.08010.11910.031*
C100.2965 (4)0.0971 (3)0.0124 (3)0.0272 (10)
H100.38740.15040.04480.033*
C110.2927 (4)0.1515 (3)0.2003 (4)0.0285 (10)
H11A0.29870.19240.13480.043*
H11B0.37780.08480.18930.043*
H11C0.28590.20010.25960.043*
C120.1514 (5)0.0497 (4)0.3293 (3)0.0293 (10)
H12A0.14490.09720.38930.044*
H12B0.23620.01730.31760.044*
H12C0.06690.02720.34570.044*
Pd20.00000.50000.50000.01294 (11)
O20.1393 (3)0.6550 (2)0.52634 (19)0.0188 (6)
N20.0867 (3)0.5334 (3)0.3486 (2)0.0159 (7)
C130.0131 (4)0.6108 (3)0.2965 (3)0.0193 (8)
C140.0925 (4)0.6054 (3)0.1789 (3)0.0235 (9)
C150.2302 (4)0.5152 (3)0.1742 (3)0.0230 (9)
C160.3528 (5)0.4708 (4)0.0914 (3)0.0310 (11)
H160.35860.49570.02110.037*
C170.4673 (5)0.3894 (4)0.1122 (4)0.0350 (11)
H170.55130.35640.05520.042*
C180.4609 (4)0.3559 (3)0.2136 (4)0.0301 (10)
H180.54170.30140.22640.036*
C190.3392 (4)0.3996 (3)0.2981 (3)0.0214 (9)
H190.33570.37680.36880.026*
C200.2232 (4)0.4774 (3)0.2763 (3)0.0188 (8)
C210.1195 (4)0.6926 (3)0.3431 (3)0.0253 (9)
H210.17020.73590.29730.030*
C220.1785 (4)0.7127 (3)0.4509 (3)0.0248 (9)
H220.25960.77830.47340.030*
C230.1133 (5)0.7192 (4)0.1471 (3)0.0328 (11)
H23A0.15680.74200.19570.049*
H23B0.02100.77620.15210.049*
H23C0.17520.71120.07340.049*
C240.0148 (5)0.5727 (4)0.1081 (3)0.0373 (12)
H24A0.07010.56740.03260.056*
H24B0.07890.63000.11890.056*
H24C0.00370.50020.12770.056*
Pd30.50001.00000.50000.01505 (11)
O30.3211 (3)1.0191 (2)0.6163 (2)0.0218 (6)
N30.4648 (3)0.8844 (2)0.4194 (2)0.0171 (7)
C250.3843 (4)0.8253 (3)0.4695 (3)0.0170 (8)
C260.3941 (4)0.7294 (3)0.3976 (3)0.0210 (9)
C270.4854 (4)0.7514 (3)0.2935 (3)0.0205 (9)
C280.5324 (5)0.6965 (3)0.1924 (3)0.0267 (10)
H280.50750.63310.18160.032*
C290.6159 (5)0.7355 (4)0.1080 (3)0.0310 (10)
H290.65060.69780.03900.037*
C300.6491 (4)0.8297 (4)0.1241 (3)0.0277 (10)
H300.70440.85680.06500.033*
C310.6035 (4)0.8854 (3)0.2245 (3)0.0218 (9)
H310.62640.95000.23460.026*
C320.5235 (4)0.8437 (3)0.3091 (3)0.0181 (8)
C330.2959 (4)0.8471 (3)0.5760 (3)0.0228 (9)
H330.25490.79240.60670.027*
C340.2652 (4)0.9417 (3)0.6379 (3)0.0253 (9)
H340.19430.95130.70480.030*
C350.2477 (4)0.7321 (4)0.3930 (3)0.0271 (10)
H35A0.19880.80470.36910.041*
H35B0.19140.72160.46440.041*
H35C0.25950.67190.34260.041*
C360.4685 (5)0.6181 (3)0.4390 (3)0.0288 (10)
H36A0.48210.55610.39000.043*
H36B0.41020.60960.51040.043*
H36C0.56090.61730.44320.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0179 (2)0.0176 (2)0.0192 (2)0.00839 (18)0.00271 (18)0.00333 (17)
O10.0185 (14)0.0241 (15)0.0265 (15)0.0085 (12)0.0006 (12)0.0092 (12)
N10.0220 (17)0.0140 (16)0.0178 (16)0.0082 (14)0.0034 (14)0.0003 (13)
C10.022 (2)0.016 (2)0.027 (2)0.0102 (17)0.0078 (18)0.0025 (17)
C20.021 (2)0.020 (2)0.021 (2)0.0119 (17)0.0078 (17)0.0004 (16)
C30.019 (2)0.0149 (19)0.024 (2)0.0069 (16)0.0056 (17)0.0017 (16)
C40.024 (2)0.022 (2)0.021 (2)0.0137 (18)0.0065 (17)0.0036 (17)
C50.030 (2)0.018 (2)0.022 (2)0.0134 (18)0.0019 (18)0.0021 (17)
C60.023 (2)0.0128 (19)0.027 (2)0.0051 (17)0.0063 (18)0.0028 (17)
C70.023 (2)0.020 (2)0.0153 (19)0.0124 (17)0.0038 (16)0.0035 (16)
C80.020 (2)0.0148 (19)0.0134 (18)0.0104 (16)0.0004 (16)0.0002 (15)
C90.023 (2)0.021 (2)0.039 (3)0.0107 (18)0.013 (2)0.0015 (19)
C100.017 (2)0.020 (2)0.044 (3)0.0069 (18)0.005 (2)0.0080 (19)
C110.021 (2)0.028 (2)0.042 (3)0.0128 (19)0.012 (2)0.000 (2)
C120.033 (2)0.029 (2)0.030 (2)0.010 (2)0.018 (2)0.0124 (19)
Pd20.0149 (2)0.0131 (2)0.0107 (2)0.00434 (17)0.00404 (16)0.00026 (15)
O20.0198 (14)0.0162 (14)0.0180 (14)0.0028 (11)0.0060 (11)0.0018 (11)
N20.0183 (17)0.0186 (17)0.0125 (15)0.0080 (14)0.0049 (13)0.0009 (13)
C130.024 (2)0.026 (2)0.0143 (19)0.0140 (18)0.0089 (17)0.0046 (16)
C140.033 (2)0.036 (2)0.0104 (18)0.023 (2)0.0078 (17)0.0071 (17)
C150.030 (2)0.026 (2)0.019 (2)0.0220 (19)0.0021 (18)0.0027 (17)
C160.045 (3)0.035 (3)0.016 (2)0.029 (2)0.007 (2)0.0068 (19)
C170.031 (3)0.024 (2)0.042 (3)0.016 (2)0.013 (2)0.010 (2)
C180.023 (2)0.023 (2)0.043 (3)0.0139 (19)0.000 (2)0.002 (2)
C190.021 (2)0.018 (2)0.027 (2)0.0114 (17)0.0031 (18)0.0005 (17)
C200.022 (2)0.021 (2)0.0172 (19)0.0156 (18)0.0006 (16)0.0042 (16)
C210.027 (2)0.025 (2)0.025 (2)0.0058 (19)0.0139 (19)0.0110 (18)
C220.020 (2)0.017 (2)0.031 (2)0.0026 (17)0.0089 (19)0.0024 (18)
C230.049 (3)0.036 (3)0.023 (2)0.026 (2)0.013 (2)0.014 (2)
C240.052 (3)0.059 (3)0.021 (2)0.037 (3)0.021 (2)0.013 (2)
Pd30.0166 (2)0.0113 (2)0.0193 (2)0.00579 (17)0.00698 (17)0.00068 (16)
O30.0213 (15)0.0200 (15)0.0245 (15)0.0110 (12)0.0020 (12)0.0023 (12)
N30.0196 (17)0.0142 (16)0.0197 (16)0.0063 (14)0.0083 (14)0.0016 (13)
C250.020 (2)0.0133 (19)0.021 (2)0.0072 (16)0.0090 (17)0.0022 (16)
C260.029 (2)0.014 (2)0.024 (2)0.0088 (17)0.0106 (18)0.0022 (16)
C270.027 (2)0.0103 (19)0.025 (2)0.0031 (17)0.0137 (18)0.0014 (16)
C280.037 (3)0.017 (2)0.030 (2)0.0087 (19)0.015 (2)0.0028 (18)
C290.043 (3)0.030 (2)0.024 (2)0.012 (2)0.015 (2)0.0016 (19)
C300.028 (2)0.032 (2)0.021 (2)0.007 (2)0.0073 (19)0.0017 (19)
C310.025 (2)0.017 (2)0.026 (2)0.0091 (18)0.0093 (18)0.0017 (17)
C320.020 (2)0.017 (2)0.020 (2)0.0031 (16)0.0123 (17)0.0001 (16)
C330.028 (2)0.018 (2)0.027 (2)0.0143 (18)0.0076 (18)0.0064 (17)
C340.023 (2)0.029 (2)0.022 (2)0.0137 (19)0.0017 (18)0.0004 (18)
C350.030 (2)0.029 (2)0.033 (2)0.019 (2)0.015 (2)0.0028 (19)
C360.040 (3)0.013 (2)0.035 (2)0.0062 (19)0.017 (2)0.0040 (18)
Geometric parameters (Å, º) top
Pd1—O1i1.989 (3)C17—C181.364 (6)
Pd1—O11.989 (3)C17—H170.9500
Pd1—N1i2.035 (3)C18—C191.384 (5)
Pd1—N12.035 (3)C18—H180.9500
O1—C101.285 (5)C19—C201.381 (5)
N1—C11.323 (5)C19—H190.9500
N1—C81.434 (4)C21—C221.359 (5)
C1—C91.410 (5)C21—H210.9500
C1—C21.524 (5)C22—H220.9500
C2—C31.491 (5)C23—H23A0.9800
C2—C111.530 (5)C23—H23B0.9800
C2—C121.543 (5)C23—H23C0.9800
C3—C41.377 (5)C24—H24A0.9800
C3—C81.397 (5)C24—H24B0.9800
C4—C51.379 (5)C24—H24C0.9800
C4—H40.9500Pd3—O3iii1.988 (3)
C5—C61.387 (5)Pd3—O31.988 (3)
C5—H50.9500Pd3—N32.022 (3)
C6—C71.393 (5)Pd3—N3iii2.022 (3)
C6—H60.9500O3—C341.284 (4)
C7—C81.375 (5)N3—C251.327 (5)
C7—H70.9500N3—C321.433 (5)
C9—C101.361 (5)C25—C331.408 (5)
C9—H90.9500C25—C261.524 (5)
C10—H100.9500C26—C271.495 (5)
C11—H11A0.9800C26—C361.529 (5)
C11—H11B0.9800C26—C351.537 (5)
C11—H11C0.9800C27—C281.392 (5)
C12—H12A0.9800C27—C321.395 (5)
C12—H12B0.9800C28—C291.382 (6)
C12—H12C0.9800C28—H280.9500
Pd2—O2ii1.989 (2)C29—C301.387 (6)
Pd2—O21.989 (2)C29—H290.9500
Pd2—N2ii2.016 (3)C30—C311.390 (5)
Pd2—N22.016 (3)C30—H300.9500
O2—C221.285 (4)C31—C321.383 (5)
N2—C131.328 (5)C31—H310.9500
N2—C201.426 (5)C33—C341.365 (5)
C13—C211.405 (5)C33—H330.9500
C13—C141.512 (5)C34—H340.9500
C14—C151.497 (6)C35—H35A0.9800
C14—C241.540 (5)C35—H35B0.9800
C14—C231.552 (5)C35—H35C0.9800
C15—C161.378 (5)C36—H36A0.9800
C15—C201.388 (5)C36—H36B0.9800
C16—C171.384 (6)C36—H36C0.9800
C16—H160.9500
O1i—Pd1—O1180.00 (10)C17—C18—C19121.4 (4)
O1i—Pd1—N1i90.38 (11)C17—C18—H18119.3
O1—Pd1—N1i89.62 (11)C19—C18—H18119.3
O1i—Pd1—N189.62 (11)C20—C19—C18117.7 (4)
O1—Pd1—N190.38 (11)C20—C19—H19121.1
N1i—Pd1—N1180.0C18—C19—H19121.1
C10—O1—Pd1122.2 (3)C19—C20—C15121.3 (4)
C1—N1—C8108.0 (3)C19—C20—N2128.4 (3)
C1—N1—Pd1121.8 (2)C15—C20—N2110.3 (3)
C8—N1—Pd1130.2 (2)C22—C21—C13123.0 (4)
N1—C1—C9125.1 (4)C22—C21—H21118.5
N1—C1—C2112.2 (3)C13—C21—H21118.5
C9—C1—C2122.5 (3)O2—C22—C21128.7 (4)
C3—C2—C1100.7 (3)O2—C22—H22115.6
C3—C2—C11112.4 (3)C21—C22—H22115.6
C1—C2—C11112.4 (3)C14—C23—H23A109.5
C3—C2—C12111.7 (3)C14—C23—H23B109.5
C1—C2—C12109.3 (3)H23A—C23—H23B109.5
C11—C2—C12110.1 (3)C14—C23—H23C109.5
C4—C3—C8121.0 (4)H23A—C23—H23C109.5
C4—C3—C2130.2 (4)H23B—C23—H23C109.5
C8—C3—C2108.8 (3)C14—C24—H24A109.5
C3—C4—C5118.9 (4)C14—C24—H24B109.5
C3—C4—H4120.5H24A—C24—H24B109.5
C5—C4—H4120.5C14—C24—H24C109.5
C4—C5—C6120.2 (4)H24A—C24—H24C109.5
C4—C5—H5119.9H24B—C24—H24C109.5
C6—C5—H5119.9O3iii—Pd3—O3180.000 (1)
C5—C6—C7121.0 (4)O3iii—Pd3—N388.92 (11)
C5—C6—H6119.5O3—Pd3—N391.08 (11)
C7—C6—H6119.5O3iii—Pd3—N3iii91.08 (11)
C8—C7—C6118.5 (3)O3—Pd3—N3iii88.92 (11)
C8—C7—H7120.7N3—Pd3—N3iii179.999 (1)
C6—C7—H7120.7C34—O3—Pd3122.8 (2)
C7—C8—C3120.2 (3)C25—N3—C32108.0 (3)
C7—C8—N1129.8 (3)C25—N3—Pd3121.4 (2)
C3—C8—N1109.9 (3)C32—N3—Pd3130.4 (2)
C10—C9—C1123.7 (4)N3—C25—C33125.6 (3)
C10—C9—H9118.1N3—C25—C26112.3 (3)
C1—C9—H9118.1C33—C25—C26122.1 (3)
O1—C10—C9128.5 (4)C27—C26—C25100.5 (3)
O1—C10—H10115.7C27—C26—C36111.4 (3)
C9—C10—H10115.7C25—C26—C36108.9 (3)
C2—C11—H11A109.5C27—C26—C35113.6 (3)
C2—C11—H11B109.5C25—C26—C35112.3 (3)
H11A—C11—H11B109.5C36—C26—C35109.7 (3)
C2—C11—H11C109.5C28—C27—C32120.2 (4)
H11A—C11—H11C109.5C28—C27—C26130.8 (4)
H11B—C11—H11C109.5C32—C27—C26109.0 (3)
C2—C12—H12A109.5C29—C28—C27119.1 (4)
C2—C12—H12B109.5C29—C28—H28120.4
H12A—C12—H12B109.5C27—C28—H28120.4
C2—C12—H12C109.5C28—C29—C30120.0 (4)
H12A—C12—H12C109.5C28—C29—H29120.0
H12B—C12—H12C109.5C30—C29—H29120.0
O2ii—Pd2—O2180.0C29—C30—C31121.7 (4)
O2ii—Pd2—N2ii90.13 (11)C29—C30—H30119.1
O2—Pd2—N2ii89.87 (11)C31—C30—H30119.1
O2ii—Pd2—N289.87 (11)C32—C31—C30117.8 (4)
O2—Pd2—N290.13 (11)C32—C31—H31121.1
N2ii—Pd2—N2179.999 (1)C30—C31—H31121.1
C22—O2—Pd2122.6 (2)C31—C32—C27121.1 (3)
C13—N2—C20108.2 (3)C31—C32—N3129.0 (3)
C13—N2—Pd2122.1 (2)C27—C32—N3109.9 (3)
C20—N2—Pd2129.4 (2)C34—C33—C25124.3 (4)
N2—C13—C21125.5 (3)C34—C33—H33117.8
N2—C13—C14111.9 (3)C25—C33—H33117.8
C21—C13—C14122.6 (3)O3—C34—C33127.6 (4)
C15—C14—C13101.2 (3)O3—C34—H34116.2
C15—C14—C24111.8 (3)C33—C34—H34116.2
C13—C14—C24111.2 (3)C26—C35—H35A109.5
C15—C14—C23111.8 (3)C26—C35—H35B109.5
C13—C14—C23110.8 (3)H35A—C35—H35B109.5
C24—C14—C23109.9 (3)C26—C35—H35C109.5
C16—C15—C20119.8 (4)H35A—C35—H35C109.5
C16—C15—C14131.8 (4)H35B—C35—H35C109.5
C20—C15—C14108.3 (3)C26—C36—H36A109.5
C15—C16—C17118.9 (4)C26—C36—H36B109.5
C15—C16—H16120.5H36A—C36—H36B109.5
C17—C16—H16120.5C26—C36—H36C109.5
C18—C17—C16120.7 (4)H36A—C36—H36C109.5
C18—C17—H17119.6H36B—C36—H36C109.5
C16—C17—H17119.6
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1; (iii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the benzene C27–C32 and C3–C8 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O2ii0.952.403.353 (5)177
C7—H7···O1i0.952.342.965 (4)123
C19—H19···O2ii0.952.272.860 (5)120
C31—H31···O3iii0.952.252.861 (5)121
C9—H9···Cg1iv0.952.853.794 (5)170
C33—H33···Cg2ii0.952.763.630 (4)153
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Pd(C12H12NO)2]
Mr478.85
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.453 (2), 12.669 (3), 13.056 (3)
α, β, γ (°)87.750 (3), 73.271 (3), 70.565 (3)
V3)1558.5 (6)
Z3
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.18 × 0.09 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.853, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
13381, 6083, 4905
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.03
No. of reflections6083
No. of parameters403
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.35, 0.75

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the benzene C27–C32 and C3–C8 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.952.403.353 (5)177
C7—H7···O1ii0.952.342.965 (4)123
C19—H19···O2i0.952.272.860 (5)120
C31—H31···O3iii0.952.252.861 (5)121
C9—H9···Cg1iv0.952.853.794 (5)170
C33—H33···Cg2i0.952.763.630 (4)153
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z; (iii) x+1, y+2, z+1; (iv) x, y1, z.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP004/2010B).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem, 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Olmstead, M. M. (2011). Eur. J. Inorg. Chem. pp. 2394–2404.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds