organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino-4-[4-(di­methyl­amino)­phen­yl]-4,5-di­hydro-1,2,5-thia­diazole 1,1-dioxide

aDepartment of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, bDepartment of Chemistry, Arts and Sciences Faculty, Ordu University, TR-52200 Ordu, Turkey, and cDepartment of Chemistry, Arts and Sciences Faculty, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: barslan@omu.edu.tr

(Received 22 May 2011; accepted 3 June 2011; online 18 June 2011)

The title compound, C10H14N4O2S, exists in the amine tautomeric form. The dihedral angle between the benzene and thia­diazo­lidine rings is 66.54 (19)°. In the crystal, mol­ecules are linked by N—H⋯O and N—H⋯N hydrogen bonds into a layer parallel to the ac plane. The layers are further linked by C—H⋯O hydrogen bonds.

Related literature

For background to and applications of sulfamides, see: Autrieth et al. (1940[Autrieth, L. F., Sveda, M., Sisler, H. H. & Butler, M. J. (1940). Chem. Rev. 26, 49-94.]); Bermudez et al. (1997[Bermudez, V. Z., Poinsignon, C. & Armand, M. B. (1997). J. Mater. Chem. 7, 1677-1692.]); Forster et al. (1971[Forster, D. L., Gilchrist, T. L. & Rees, C. W. (1971). J. Chem. Soc. C, pp. 993-999.]); Gazieva et al. (2000[Gazieva, G. A., Kravchenko, A. N. & Lebedev, O. V. (2000). Russ. Chem. Rev. 69, 221-230.]); Lawson & Tinkler (1970[Lawson, A. & Tinkler, R. B. (1970). Chem. Rev. 70, 604-616.]); Spillane & Benson (1980[Spillane, W. J. & Benson, G. A. (1980). Chem. Rev. 80, 1-188.]). For related structures; see: Gazieva et al. (2000[Gazieva, G. A., Kravchenko, A. N. & Lebedev, O. V. (2000). Russ. Chem. Rev. 69, 221-230.]); Lee et al. (1989[Lee, C. H., Korp, J. D. & Kohn, H. (1989). J. Org. Chem. 54, 3077-3083.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14N4O2S

  • Mr = 254.32

  • Monoclinic, P 21 /c

  • a = 7.2587 (8) Å

  • b = 9.8187 (8) Å

  • c = 16.893 (2) Å

  • β = 101.325 (10)°

  • V = 1180.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.44 × 0.32 × 0.21 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.955, Tmax = 0.985

  • 18500 measured reflections

  • 2615 independent reflections

  • 2294 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.06

  • 2615 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1i 0.87 (2) 2.16 (2) 2.947 (2) 151.0 (19)
N3—H3B⋯N4ii 0.88 (2) 2.09 (2) 2.930 (2) 160.6 (19)
C2—H2A⋯O2iii 0.959 (18) 2.416 (18) 3.038 (2) 122.3 (13)
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfamides (or sulfonamides) are well known compounds because of belonging to their pharmaceutical applications, especially in the field of antimicrobial chemotherapy. Sulfamides first used in the dye industry, but then come into question as a therapeutic antibacterial drugs for the treatment of infectious diseases. Especially were used for this purpose p-aminophenylsulfonamides (Bermudez et al., 1997; Gazieva et al., 2000). In addition, some studies revealed especially psychiatric effects of cyclic derivatives of sulfamides. They have been as well as use of insecticides and also soothing, relieving depression, pain killers and muscle relaxants (Spillane & Benson, 1980). Apart from being pharmacologically active compounds sulfamides have also been used in the making water-resistant resins (Autrieth et al., 1940; Forster et al., 1971; Lawson & Tinkler, 1970).

Tautomeric forms of 3-imino-1,2,5-thiadiazolidine 1,1-dioxides were studied (Gazieva et al., 2000; Lee et al.. 1989). In solution they ocur as equilibrium mixtures of tautomers A and A' (Fig. 1). This study verifies the preference of the enamine-imine tautomeric form in the solid state (Fig. 2). In the title compound all bond lenghts are in normal ranges. The benzene and the thiadiazolidine rings are planar with maximum deviations of 0.018 and 0.038 Å at atoms C6 and N2, respectively. S—O bond lenghts are 1.421 and 1.434 Å. The molecules are linked by intermolecular N—H···O, N—H···N and C—H···O hydrogen bonds (Fig. 3).

Related literature top

For background and applications of sulfamides, see: Autrieth et al. (1940); Bermudez et al. (1997); Forster et al. (1971); Gazieva et al. (2000); Lawson & Tinkler (1970); Spillane & Benson (1980). For related structures; see: Gazieva et al. (2000); Lee et al. (1989).

Experimental top

At 25 ml flask, 35 mg (0.72 mmol) sodium cyanide was added into 70% aqueous ethanol solution (1.3 ml) containing 70 mg (0.66 mmol) p-N,N-dimethyl benzaldehyde and 125 mg (1.3 mmol) sulfamide (Lee et al., 1989). Reaction mixtures was heated in microwave oven at 90 W for 3 minutes. 1 N NaOH solution (0.6 ml) was added into the resulting mixture. The aqueous solution was extracted with ethyl acetate (2 × 1.3 ml) and 0.7 ml diethyl ether. The aqueous phase was then acidified with 1 N HCl (pH ~2). The green-colored solids were recrystallized in ethyl alcohol (yield 47%, m.p. 208–210 °C).

Refinement top

Atoms H2A, H3A and H3B were freely refined. Other H atoms were placed in calculated positions (C—H = 0.93 or 0.96 Å and N—H = 0.86 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2 or 1.5Ueq(C or N).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The tautomeric forms of 3-imino-1,2,5-thiadiazolidine 1,1-dioxides.
[Figure 2] Fig. 2. An ORTEP view of the title compound, with the atom-numbering scheme and 30% probability of displacement ellipsoids.
[Figure 3] Fig. 3. A packing diagram of the title compound, viewed down the a axis.
3-Amino-4-[4-(dimethylamino)phenyl]-4,5-dihydro-1,2,5-thiadiazole 1,1-dioxide top
Crystal data top
C10H14N4O2SF(000) = 536
Mr = 254.32Dx = 1.431 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 24497 reflections
a = 7.2587 (8) Åθ = 2.1–27.7°
b = 9.8187 (8) ŵ = 0.27 mm1
c = 16.893 (2) ÅT = 293 K
β = 101.325 (10)°Prism, light green
V = 1180.6 (2) Å30.44 × 0.32 × 0.21 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
2615 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2294 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.042
Detector resolution: 6.67 pixels mm-1θmax = 27.2°, θmin = 2.4°
ω scansh = 99
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.955, Tmax = 0.985l = 2121
18500 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.4122P]
where P = (Fo2 + 2Fc2)/3
2615 reflections(Δ/σ)max = 0.008
166 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C10H14N4O2SV = 1180.6 (2) Å3
Mr = 254.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2587 (8) ŵ = 0.27 mm1
b = 9.8187 (8) ÅT = 293 K
c = 16.893 (2) Å0.44 × 0.32 × 0.21 mm
β = 101.325 (10)°
Data collection top
Stoe IPDS 2
diffractometer
2615 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2294 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.985Rint = 0.042
18500 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.40 e Å3
2615 reflectionsΔρmin = 0.47 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8325 (2)0.14751 (15)0.83505 (9)0.0338 (3)
C20.7810 (2)0.06451 (16)0.75795 (9)0.0349 (3)
C30.8875 (2)0.10603 (16)0.69385 (9)0.0342 (3)
C40.8616 (2)0.23280 (17)0.65646 (10)0.0409 (4)
H40.77260.29260.66940.049*
C50.9665 (2)0.27045 (18)0.60042 (10)0.0436 (4)
H50.94650.35520.57570.052*
C61.1026 (2)0.18340 (17)0.57999 (9)0.0360 (3)
C71.1227 (2)0.05506 (17)0.61548 (10)0.0410 (4)
H71.20820.00640.60140.049*
C81.0168 (2)0.01820 (17)0.67143 (10)0.0401 (4)
H81.03280.06790.69460.048*
C91.3411 (3)0.1279 (3)0.50170 (13)0.0593 (5)
H9A1.40680.16740.46330.089*
H9B1.27230.04940.47830.089*
H9C1.42970.10130.54910.089*
C101.3040 (3)0.3598 (2)0.54390 (13)0.0623 (6)
H10A1.37420.38360.50330.093*
H10B1.38760.35340.59540.093*
H10C1.21120.42860.54620.093*
N10.69481 (19)0.20064 (15)0.86387 (9)0.0431 (3)
N20.57725 (19)0.08209 (17)0.73433 (9)0.0458 (4)
H20.50950.05300.69000.055*
N31.0099 (2)0.16048 (16)0.86985 (9)0.0421 (3)
N41.21057 (19)0.22794 (16)0.52365 (8)0.0420 (3)
O10.38231 (17)0.07726 (15)0.84236 (9)0.0557 (4)
O20.4074 (2)0.28818 (16)0.77361 (12)0.0796 (5)
S10.49704 (6)0.16529 (4)0.80460 (3)0.04255 (15)
H2A0.810 (2)0.0288 (19)0.7719 (10)0.034 (4)*
H3A1.094 (3)0.128 (2)0.8452 (13)0.057 (6)*
H3B1.046 (3)0.206 (2)0.9150 (13)0.047 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0345 (7)0.0316 (7)0.0359 (7)0.0033 (6)0.0085 (6)0.0016 (6)
C20.0330 (7)0.0332 (7)0.0384 (7)0.0033 (6)0.0069 (6)0.0003 (6)
C30.0329 (7)0.0347 (8)0.0348 (7)0.0023 (6)0.0062 (6)0.0034 (6)
C40.0415 (8)0.0378 (8)0.0462 (9)0.0087 (7)0.0152 (7)0.0021 (7)
C50.0494 (9)0.0375 (8)0.0463 (9)0.0075 (7)0.0154 (7)0.0076 (7)
C60.0341 (7)0.0422 (8)0.0313 (7)0.0004 (6)0.0056 (6)0.0021 (6)
C70.0411 (8)0.0408 (9)0.0425 (8)0.0083 (7)0.0118 (7)0.0026 (7)
C80.0469 (9)0.0316 (7)0.0425 (8)0.0043 (6)0.0105 (7)0.0002 (6)
C90.0528 (11)0.0781 (14)0.0528 (10)0.0145 (10)0.0248 (9)0.0044 (10)
C100.0648 (12)0.0711 (14)0.0544 (11)0.0258 (11)0.0199 (10)0.0071 (10)
N10.0368 (7)0.0461 (8)0.0481 (8)0.0002 (6)0.0125 (6)0.0084 (6)
N20.0305 (7)0.0643 (10)0.0417 (7)0.0074 (6)0.0053 (6)0.0045 (7)
N30.0324 (7)0.0532 (9)0.0405 (7)0.0038 (6)0.0066 (6)0.0087 (6)
N40.0400 (7)0.0512 (8)0.0369 (7)0.0002 (6)0.0126 (6)0.0002 (6)
O10.0367 (6)0.0680 (9)0.0675 (8)0.0022 (6)0.0228 (6)0.0048 (7)
O20.0696 (10)0.0509 (9)0.1102 (14)0.0219 (8)0.0019 (9)0.0156 (9)
S10.0325 (2)0.0407 (2)0.0549 (3)0.00558 (15)0.00952 (17)0.00524 (18)
Geometric parameters (Å, º) top
C1—N11.304 (2)C8—H80.9300
C1—N31.313 (2)C9—N41.462 (2)
C1—C21.520 (2)C9—H9A0.9600
C2—N21.465 (2)C9—H9B0.9600
C2—C31.505 (2)C9—H9C0.9600
C2—H2A0.959 (18)C10—N41.471 (3)
C3—C81.381 (2)C10—H10A0.9600
C3—C41.392 (2)C10—H10B0.9600
C4—C51.377 (2)C10—H10C0.9600
C4—H40.9300N1—S11.6184 (15)
C5—C61.400 (2)N2—S11.6393 (15)
C5—H50.9300N2—H20.8600
C6—C71.391 (2)N3—H3A0.87 (2)
C6—N41.415 (2)N3—H3B0.88 (2)
C7—C81.379 (2)O1—S11.4339 (13)
C7—H70.9300O2—S11.4210 (15)
N1—C1—N3123.42 (15)N4—C9—H9B109.5
N1—C1—C2117.21 (14)H9A—C9—H9B109.5
N3—C1—C2119.36 (14)N4—C9—H9C109.5
N2—C2—C3113.96 (13)H9A—C9—H9C109.5
N2—C2—C1103.62 (13)H9B—C9—H9C109.5
C3—C2—C1113.38 (13)N4—C10—H10A109.5
N2—C2—H2A109.9 (10)N4—C10—H10B109.5
C3—C2—H2A108.5 (10)H10A—C10—H10B109.5
C1—C2—H2A107.3 (10)N4—C10—H10C109.5
C8—C3—C4118.22 (15)H10A—C10—H10C109.5
C8—C3—C2120.05 (14)H10B—C10—H10C109.5
C4—C3—C2121.72 (14)C1—N1—S1109.59 (12)
C5—C4—C3120.54 (15)C2—N2—S1110.17 (11)
C5—C4—H4119.7C2—N2—H2124.9
C3—C4—H4119.7S1—N2—H2124.9
C4—C5—C6121.20 (15)C1—N3—H3A118.3 (15)
C4—C5—H5119.4C1—N3—H3B122.7 (13)
C6—C5—H5119.4H3A—N3—H3B119 (2)
C7—C6—C5117.77 (15)C6—N4—C9115.77 (15)
C7—C6—N4123.02 (15)C6—N4—C10113.99 (14)
C5—C6—N4119.19 (15)C9—N4—C10110.99 (16)
C8—C7—C6120.55 (15)O2—S1—O1114.33 (10)
C8—C7—H7119.7O2—S1—N1109.39 (10)
C6—C7—H7119.7O1—S1—N1112.09 (8)
C7—C8—C3121.63 (15)O2—S1—N2111.00 (10)
C7—C8—H8119.2O1—S1—N2109.98 (9)
C3—C8—H8119.2N1—S1—N299.02 (7)
N4—C9—H9A109.5
N1—C1—C2—N25.40 (19)C4—C3—C8—C72.0 (2)
N3—C1—C2—N2175.73 (14)C2—C3—C8—C7177.17 (15)
N1—C1—C2—C3129.45 (15)N3—C1—N1—S1179.30 (13)
N3—C1—C2—C351.7 (2)C2—C1—N1—S11.88 (18)
N2—C2—C3—C8129.18 (16)C3—C2—N2—S1130.03 (12)
C1—C2—C3—C8112.61 (16)C1—C2—N2—S16.35 (15)
N2—C2—C3—C451.7 (2)C7—C6—N4—C92.6 (2)
C1—C2—C3—C466.6 (2)C5—C6—N4—C9176.21 (16)
C8—C3—C4—C51.9 (2)C7—C6—N4—C10127.99 (19)
C2—C3—C4—C5177.27 (15)C5—C6—N4—C1053.2 (2)
C3—C4—C5—C60.5 (3)C1—N1—S1—O2118.20 (14)
C4—C5—C6—C72.8 (2)C1—N1—S1—O1113.90 (13)
C4—C5—C6—N4178.32 (16)C1—N1—S1—N22.06 (14)
C5—C6—C7—C82.7 (2)C2—N2—S1—O2120.26 (13)
N4—C6—C7—C8178.48 (15)C2—N2—S1—O1112.22 (12)
C6—C7—C8—C30.3 (3)C2—N2—S1—N15.36 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.87 (2)2.16 (2)2.947 (2)151.0 (19)
N3—H3B···N4ii0.88 (2)2.09 (2)2.930 (2)160.6 (19)
C2—H2A···O2iii0.959 (18)2.416 (18)3.038 (2)122.3 (13)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H14N4O2S
Mr254.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.2587 (8), 9.8187 (8), 16.893 (2)
β (°) 101.325 (10)
V3)1180.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.44 × 0.32 × 0.21
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.955, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
18500, 2615, 2294
Rint0.042
(sin θ/λ)max1)0.643
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.06
No. of reflections2615
No. of parameters166
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.47

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1i0.87 (2)2.16 (2)2.947 (2)151.0 (19)
N3—H3B···N4ii0.88 (2)2.09 (2)2.930 (2)160.6 (19)
C2—H2A···O2iii0.959 (18)2.416 (18)3.038 (2)122.3 (13)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+3/2.
 

References

First citationAutrieth, L. F., Sveda, M., Sisler, H. H. & Butler, M. J. (1940). Chem. Rev. 26, 49–94.  Google Scholar
First citationBermudez, V. Z., Poinsignon, C. & Armand, M. B. (1997). J. Mater. Chem. 7, 1677–1692.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationForster, D. L., Gilchrist, T. L. & Rees, C. W. (1971). J. Chem. Soc. C, pp. 993–999.  Google Scholar
First citationGazieva, G. A., Kravchenko, A. N. & Lebedev, O. V. (2000). Russ. Chem. Rev. 69, 221–230.  CrossRef CAS Google Scholar
First citationLawson, A. & Tinkler, R. B. (1970). Chem. Rev. 70, 604–616.  CrossRef Google Scholar
First citationLee, C. H., Korp, J. D. & Kohn, H. (1989). J. Org. Chem. 54, 3077–3083.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpillane, W. J. & Benson, G. A. (1980). Chem. Rev. 80, 1–188.  Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds