organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)-2-oxo­ethyl 3-(tri­fluoro­meth­yl)benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bOrganic Chemistry Division, Department of Chemistry, National Institute of Technology – Karnataka, Surathkal, Mangalore 575 025, India, and cDepartment of Physics, National Institute of Technology – Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 24 May 2011; accepted 30 May 2011; online 11 June 2011)

In the title compound, C16H10ClF3O3, the two benzene rings are slightly twisted from each other, with a dihedral angle of 15.50 (8)° between the planes. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a layer parallel to the bc plane.

Related literature

For the background and applications of phenacyl benzoates, see: Sheehan & Umezaw (1973[Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771-3773.]); Ruzicka et al. (2002[Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581-2590.]); Litera et al. (2006[Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713-723.]); Rather & Reid (1919[Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75-83.]); Huang et al. (1996[Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.]); Gandhi et al. (1995[Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10ClF3O3

  • Mr = 342.69

  • Monoclinic, P 21 /c

  • a = 14.3036 (7) Å

  • b = 12.1335 (6) Å

  • c = 8.5464 (4) Å

  • β = 101.444 (1)°

  • V = 1453.76 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 K

  • 0.28 × 0.16 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.966

  • 15629 measured reflections

  • 3822 independent reflections

  • 2963 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.121

  • S = 1.04

  • 3822 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.95 2.53 3.205 (2) 128
C4—H4A⋯O3ii 0.95 2.53 3.289 (2) 137
C8—H8A⋯O3iii 0.99 2.48 3.474 (2) 177
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenacyl benzoates derivatives are very important in identification of organic acids (Rather & Reid, 1919), they undergo photolysis in neutral and mild conditions (Sheehan & Umezaw, 1973; Ruzicka et al., 2002; Litera et al., 2006). They find applications in the field of synthetic chemistry for the synthesis of oxazoles, imidazoles (Huang et al., 1996), benzoxazepine (Gandhi et al., 1995). We hereby report the crystal structure of 2-(4-chlorophenyl)-2-oxoethyl 3-(trifluoromethyl) benzoate of potential commercial importance.

In the title compound (Fig. 1), the chlorophenyl (C1–C6/CL1) group is slightly twisted away from the benzene ring (C10–C15) with a dihedral angle of 15.50 (8)°. Bond lengths (Allen et al., 1987) and angles are within the normal ranges.

In the crystal packing (Fig. 2), intermolecular C1—H1A···O1i, C4—H4A···O3ii and C8—H8A···O3iii hydrogen bonds (Table 1) link the molecules into a layer parallel to the bc plane.

Related literature top

For the background and applications of phenacyl benzoates, see: Sheehan & Umezaw (1973); Ruzicka et al. (2002); Litera et al. (2006); Rather & Reid (1919); Huang et al. (1996); Gandhi et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3-(trifluoromethyl)benzoic acid (1.0 g, 0.0052 mol), potassium carbonate (0.80 g, 0.0057 mol) and 2-bromo-1-(4-chlorophenyl)ethanone (1.21 g, 0.0052 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, colourless needle-shaped crystals, 2-(4-chlorophenyl)-2-oxoethyl 3-(trifluoromethyl)benzoate begin to separate. It was collected by filtration and recrystallized from ethanol. Yield: 1.60 g, 88.88%, m.p.: 387–388 K.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.95 or 0.99 Å) and refined with a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2-(4-Chlorophenyl)-2-oxoethyl 3-(trifluoromethyl)benzoate top
Crystal data top
C16H10ClF3O3F(000) = 696
Mr = 342.69Dx = 1.566 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3750 reflections
a = 14.3036 (7) Åθ = 2.9–29.9°
b = 12.1335 (6) ŵ = 0.31 mm1
c = 8.5464 (4) ÅT = 100 K
β = 101.444 (1)°Block, colourless
V = 1453.76 (12) Å30.28 × 0.16 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3822 independent reflections
Radiation source: fine-focus sealed tube2963 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 29.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1919
Tmin = 0.919, Tmax = 0.966k = 1016
15629 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0486P)2 + 1.0347P]
where P = (Fo2 + 2Fc2)/3
3822 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H10ClF3O3V = 1453.76 (12) Å3
Mr = 342.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3036 (7) ŵ = 0.31 mm1
b = 12.1335 (6) ÅT = 100 K
c = 8.5464 (4) Å0.28 × 0.16 × 0.11 mm
β = 101.444 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3822 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2963 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.966Rint = 0.046
15629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.04Δρmax = 0.52 e Å3
3822 reflectionsΔρmin = 0.33 e Å3
208 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22643 (4)0.86068 (4)1.07291 (6)0.02896 (14)
F10.92991 (14)0.87892 (13)0.01853 (17)0.0580 (5)
F21.04777 (11)0.85923 (17)0.2147 (2)0.0727 (6)
F30.93614 (10)0.73951 (11)0.17107 (16)0.0371 (3)
O10.53911 (10)1.07226 (11)0.66621 (15)0.0222 (3)
O20.66428 (9)0.93394 (11)0.59360 (15)0.0214 (3)
O30.69311 (10)0.76708 (11)0.49795 (17)0.0260 (3)
C10.43295 (14)0.83441 (15)0.8232 (2)0.0202 (4)
H1A0.46780.77740.78450.024*
C20.36390 (14)0.80774 (16)0.9092 (2)0.0225 (4)
H2A0.35090.73290.92970.027*
C30.31378 (14)0.89225 (16)0.9650 (2)0.0207 (4)
C40.33093 (13)1.00257 (16)0.9356 (2)0.0202 (4)
H4A0.29571.05930.97420.024*
C50.39992 (13)1.02787 (15)0.8495 (2)0.0191 (4)
H5A0.41221.10280.82850.023*
C60.45214 (13)0.94487 (15)0.7924 (2)0.0171 (4)
C70.52797 (13)0.97681 (15)0.7041 (2)0.0182 (4)
C80.59082 (14)0.88503 (15)0.6632 (2)0.0199 (4)
H8A0.61950.84370.76090.024*
H8B0.55260.83320.58680.024*
C90.71079 (13)0.86489 (15)0.5125 (2)0.0190 (4)
C100.78492 (13)0.92229 (15)0.4433 (2)0.0185 (4)
C110.80562 (14)1.03401 (16)0.4691 (2)0.0219 (4)
H11A0.77321.07580.53580.026*
C120.87340 (15)1.08395 (17)0.3975 (3)0.0276 (4)
H12A0.88721.16010.41490.033*
C130.92112 (15)1.02351 (17)0.3007 (2)0.0264 (4)
H13A0.96731.05800.25110.032*
C140.90109 (14)0.91177 (17)0.2764 (2)0.0228 (4)
C150.83340 (13)0.86101 (16)0.3467 (2)0.0198 (4)
H15A0.82000.78480.32920.024*
C160.95338 (16)0.84786 (19)0.1713 (3)0.0314 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0281 (3)0.0281 (3)0.0351 (3)0.0017 (2)0.0170 (2)0.0031 (2)
F10.1082 (15)0.0398 (9)0.0358 (8)0.0034 (9)0.0380 (9)0.0024 (6)
F20.0272 (8)0.0992 (15)0.0989 (14)0.0158 (8)0.0301 (8)0.0676 (12)
F30.0439 (8)0.0256 (7)0.0466 (8)0.0074 (6)0.0204 (6)0.0064 (6)
O10.0289 (7)0.0134 (6)0.0255 (6)0.0011 (5)0.0082 (6)0.0029 (5)
O20.0242 (7)0.0165 (6)0.0263 (6)0.0022 (5)0.0121 (5)0.0020 (5)
O30.0311 (8)0.0137 (6)0.0362 (8)0.0031 (6)0.0140 (6)0.0030 (6)
C10.0241 (9)0.0131 (9)0.0243 (9)0.0023 (7)0.0070 (7)0.0001 (7)
C20.0257 (10)0.0162 (9)0.0272 (9)0.0001 (7)0.0088 (8)0.0023 (7)
C30.0212 (9)0.0214 (9)0.0210 (8)0.0017 (7)0.0078 (7)0.0011 (7)
C40.0214 (9)0.0167 (9)0.0219 (8)0.0035 (7)0.0030 (7)0.0010 (7)
C50.0224 (9)0.0140 (8)0.0199 (8)0.0012 (7)0.0020 (7)0.0013 (7)
C60.0200 (9)0.0140 (8)0.0175 (7)0.0005 (7)0.0039 (6)0.0007 (7)
C70.0212 (9)0.0153 (8)0.0173 (8)0.0007 (7)0.0021 (7)0.0010 (7)
C80.0232 (9)0.0152 (9)0.0225 (8)0.0007 (7)0.0074 (7)0.0011 (7)
C90.0203 (9)0.0170 (9)0.0200 (8)0.0011 (7)0.0046 (7)0.0008 (7)
C100.0186 (9)0.0156 (9)0.0214 (8)0.0003 (7)0.0038 (7)0.0018 (7)
C110.0227 (9)0.0175 (9)0.0268 (9)0.0015 (7)0.0078 (7)0.0019 (7)
C120.0265 (10)0.0168 (10)0.0413 (11)0.0027 (8)0.0112 (9)0.0028 (8)
C130.0249 (10)0.0237 (10)0.0323 (10)0.0034 (8)0.0100 (8)0.0020 (8)
C140.0210 (9)0.0238 (10)0.0246 (9)0.0010 (8)0.0068 (7)0.0039 (8)
C150.0216 (9)0.0161 (9)0.0219 (8)0.0000 (7)0.0043 (7)0.0014 (7)
C160.0298 (11)0.0325 (12)0.0356 (11)0.0061 (9)0.0155 (9)0.0119 (9)
Geometric parameters (Å, º) top
Cl1—C31.7364 (19)C5—H5A0.9500
F1—C161.336 (3)C6—C71.490 (3)
F2—C161.335 (3)C7—C81.515 (3)
F3—C161.338 (3)C8—H8A0.9900
O1—C71.222 (2)C8—H8B0.9900
O2—C91.344 (2)C9—C101.486 (3)
O2—C81.435 (2)C10—C151.394 (3)
O3—C91.215 (2)C10—C111.396 (3)
C1—C21.381 (3)C11—C121.385 (3)
C1—C61.403 (3)C11—H11A0.9500
C1—H1A0.9500C12—C131.383 (3)
C2—C31.389 (3)C12—H12A0.9500
C2—H2A0.9500C13—C141.393 (3)
C3—C41.393 (3)C13—H13A0.9500
C4—C51.378 (3)C14—C151.381 (3)
C4—H4A0.9500C14—C161.495 (3)
C5—C61.398 (3)C15—H15A0.9500
C9—O2—C8115.72 (14)O3—C9—O2123.20 (17)
C2—C1—C6120.70 (17)O3—C9—C10124.57 (17)
C2—C1—H1A119.6O2—C9—C10112.22 (16)
C6—C1—H1A119.6C15—C10—C11119.79 (17)
C1—C2—C3118.83 (18)C15—C10—C9117.65 (17)
C1—C2—H2A120.6C11—C10—C9122.55 (17)
C3—C2—H2A120.6C12—C11—C10120.03 (18)
C2—C3—C4121.75 (18)C12—C11—H11A120.0
C2—C3—Cl1119.64 (15)C10—C11—H11A120.0
C4—C3—Cl1118.61 (15)C13—C12—C11120.28 (19)
C5—C4—C3118.75 (17)C13—C12—H12A119.9
C5—C4—H4A120.6C11—C12—H12A119.9
C3—C4—H4A120.6C12—C13—C14119.61 (19)
C4—C5—C6120.98 (17)C12—C13—H13A120.2
C4—C5—H5A119.5C14—C13—H13A120.2
C6—C5—H5A119.5C15—C14—C13120.71 (18)
C5—C6—C1118.99 (17)C15—C14—C16120.48 (19)
C5—C6—C7118.83 (16)C13—C14—C16118.80 (18)
C1—C6—C7122.16 (16)C14—C15—C10119.58 (18)
O1—C7—C6121.81 (17)C14—C15—H15A120.2
O1—C7—C8121.41 (17)C10—C15—H15A120.2
C6—C7—C8116.78 (15)F2—C16—F1106.7 (2)
O2—C8—C7107.97 (14)F2—C16—F3106.1 (2)
O2—C8—H8A110.1F1—C16—F3105.40 (17)
C7—C8—H8A110.1F2—C16—C14112.24 (17)
O2—C8—H8B110.1F1—C16—C14112.5 (2)
C7—C8—H8B110.1F3—C16—C14113.35 (18)
H8A—C8—H8B108.4
C6—C1—C2—C30.1 (3)O2—C9—C10—C15175.47 (15)
C1—C2—C3—C40.5 (3)O3—C9—C10—C11177.10 (18)
C1—C2—C3—Cl1179.84 (15)O2—C9—C10—C113.2 (2)
C2—C3—C4—C50.4 (3)C15—C10—C11—C120.7 (3)
Cl1—C3—C4—C5179.73 (14)C9—C10—C11—C12178.00 (18)
C3—C4—C5—C60.1 (3)C10—C11—C12—C130.2 (3)
C4—C5—C6—C10.4 (3)C11—C12—C13—C140.4 (3)
C4—C5—C6—C7178.17 (16)C12—C13—C14—C150.7 (3)
C2—C1—C6—C50.3 (3)C12—C13—C14—C16179.9 (2)
C2—C1—C6—C7178.24 (17)C13—C14—C15—C100.2 (3)
C5—C6—C7—O17.6 (2)C16—C14—C15—C10179.49 (17)
C1—C6—C7—O1173.85 (17)C11—C10—C15—C140.4 (3)
C5—C6—C7—C8172.43 (16)C9—C10—C15—C14178.31 (16)
C1—C6—C7—C86.1 (2)C15—C14—C16—F2128.0 (2)
C9—O2—C8—C7163.11 (14)C13—C14—C16—F252.7 (3)
O1—C7—C8—O25.7 (2)C15—C14—C16—F1111.7 (2)
C6—C7—C8—O2174.34 (14)C13—C14—C16—F167.6 (2)
C8—O2—C9—O30.2 (3)C15—C14—C16—F37.8 (3)
C8—O2—C9—C10179.50 (14)C13—C14—C16—F3172.98 (18)
O3—C9—C10—C154.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.952.533.205 (2)128
C4—H4A···O3ii0.952.533.289 (2)137
C8—H8A···O3iii0.992.483.474 (2)177
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H10ClF3O3
Mr342.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.3036 (7), 12.1335 (6), 8.5464 (4)
β (°) 101.444 (1)
V3)1453.76 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.28 × 0.16 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.919, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
15629, 3822, 2963
Rint0.046
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.121, 1.04
No. of reflections3822
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.95002.53003.205 (2)128.00
C4—H4A···O3ii0.95002.53003.289 (2)137.00
C8—H8A···O3iii0.992.483.474 (2)177.4
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

H-KF and W-SL thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). W-SL also thanks the Malaysian government and USM for the award of a Research Fellowship. AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for a `Young Scientist' award. BG thanks the Department of Information Technology, New Delhi, India, for the financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.  CrossRef CAS Web of Science Google Scholar
First citationHuang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.  CrossRef CAS Web of Science Google Scholar
First citationLitera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713–723.  Web of Science PubMed Google Scholar
First citationRather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83.  CrossRef CAS Google Scholar
First citationRuzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581–2590.  Web of Science CrossRef CAS Google Scholar
First citationSheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771–3773.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds