organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,6-Bis(chloro­meth­yl)pyridine

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 26 May 2011; accepted 30 May 2011; online 4 June 2011)

In the title compound, C7H7Cl2N, a halogenated derivative of 2,6-lutidine, the C—Cl vectors of the chloro­methyl groups point at opposite sides of the aromatic plane to each other. A weak dispersive Cl⋯Cl contact [3.4342 (3) Å] connects the mol­ecules into a chain along the [101] direction. A ππ inter­action with a centroid–centroid distance of 3.7481 (5) Å is also observed.

Related literature

For the crystal structure of the hydro­chloride of the title compound, see: Lozano & Jones (2004[Lozano, V. & Jones, P. G. (2004). Acta Cryst. C60, o653-o655.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7Cl2N

  • Mr = 176.04

  • Monoclinic, P 21 /c

  • a = 8.9927 (2) Å

  • b = 12.1581 (3) Å

  • c = 7.4893 (2) Å

  • β = 113.535 (1)°

  • V = 750.72 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 100 K

  • 0.52 × 0.41 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.727, Tmax = 0.872

  • 6994 measured reflections

  • 1845 independent reflections

  • 1768 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.051

  • S = 1.09

  • 1845 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Multidentate ligands are versatile complexation agents for a variety of main group elements as well as transition metals. In some cases, the assignment or the determination of oxidation states of coordinated transition metals relies heavily on the knowledge of metric parameters within the ligand. To enable comparative studies within a group of coordination compounds currently under investigation in our working group we determined the crystal structure of the title compound which serves as a starting material for one of the multidentate ligands applied thereof. The crystal structure of the hydrochloride of the title compound is apparent in the literature (Lozano & Jones, 2004).

In the molecule, the chloromethyl substituents are pointing at the two different sides of the plane defined by the atoms of the aromatic system. Intracyclic angles span a range from 117.41 (8)–123.38 (8) ° with the smallest angle on the nitrogen atom and the two biggest ones on the carbon atoms adjacent to it (Fig. 1).

The molecules in the crystal structure only interact via weak dispersive Cl···Cl contacts [Cl1···Cl2ii 3.4342 (3) Å; symmetry code: (ii) x - 1, y, z - 1] whose range falls by about 0.1 Å below the sum of van-der-Waals radii. These contacts connect the molecules to a chains along the [101] direction (Fig. 2). The closest distance between two π-systems was found at 3.7481 (5) Å. The packing of the compound in the crystal structure is shown in Figure 3.

Related literature top

For the crystal structure of the hydrochloride of the title compound, see: Lozano & Jones (2004).

Experimental top

The compound was obtained commercially (Aldrich). Crystals suitable for the X-ray diffraction study were taken directly from the provided product.

Refinement top

C-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms and C—H 0.99 Å for the methylene groups) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along the b axis. Symmetry codes: (i) x + 1, y, z + 1; (ii) x - 1, y, z - 1.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along the b axis. (anisotropic displacement ellipsoids drawn at 50% probability level).
1,6-Bis(chloromethyl)pyridine top
Crystal data top
C7H7Cl2NF(000) = 360
Mr = 176.04Dx = 1.558 Mg m3
Monoclinic, P21/cMelting point: 346 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.9927 (2) ÅCell parameters from 5840 reflections
b = 12.1581 (3) Åθ = 2.5–28.3°
c = 7.4893 (2) ŵ = 0.78 mm1
β = 113.535 (1)°T = 100 K
V = 750.72 (3) Å3Platelet, colourless
Z = 40.52 × 0.41 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
1845 independent reflections
Radiation source: fine-focus sealed tube1768 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.727, Tmax = 0.872k = 1416
6994 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0223P)2 + 0.2778P]
where P = (Fo2 + 2Fc2)/3
1845 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C7H7Cl2NV = 750.72 (3) Å3
Mr = 176.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9927 (2) ŵ = 0.78 mm1
b = 12.1581 (3) ÅT = 100 K
c = 7.4893 (2) Å0.52 × 0.41 × 0.18 mm
β = 113.535 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1845 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1768 reflections with I > 2σ(I)
Tmin = 0.727, Tmax = 0.872Rint = 0.014
6994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.09Δρmax = 0.36 e Å3
1845 reflectionsΔρmin = 0.18 e Å3
91 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.34591 (3)0.401927 (19)0.11753 (3)0.01804 (7)
Cl20.47219 (3)0.37996 (2)0.61934 (3)0.01866 (7)
N10.06320 (9)0.35805 (7)0.36585 (10)0.01355 (16)
C10.06797 (11)0.30473 (8)0.36501 (12)0.01361 (17)
C20.07993 (11)0.19055 (8)0.36280 (13)0.01536 (18)
H20.17470.15590.36260.018*
C30.04877 (11)0.12810 (8)0.36096 (13)0.01600 (18)
H30.04350.05000.35850.019*
C40.18529 (11)0.18224 (8)0.36276 (13)0.01472 (18)
H40.27570.14200.36240.018*
C50.18709 (10)0.29671 (8)0.36515 (12)0.01296 (17)
C60.20508 (12)0.37527 (8)0.36486 (13)0.01779 (19)
H6A0.16170.44570.43170.021*
H6B0.26200.33750.43650.021*
C70.33299 (11)0.35840 (8)0.36959 (13)0.01679 (19)
H7A0.29910.43020.30330.020*
H7B0.38720.31600.29980.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01397 (11)0.02042 (12)0.01663 (12)0.00406 (8)0.00284 (8)0.00130 (8)
Cl20.01427 (11)0.02260 (13)0.01632 (12)0.00528 (8)0.00316 (8)0.00105 (8)
N10.0133 (4)0.0151 (4)0.0111 (3)0.0002 (3)0.0037 (3)0.0007 (3)
C10.0118 (4)0.0183 (4)0.0093 (4)0.0014 (3)0.0027 (3)0.0005 (3)
C20.0126 (4)0.0193 (4)0.0131 (4)0.0030 (3)0.0040 (3)0.0002 (3)
C30.0177 (4)0.0136 (4)0.0153 (4)0.0009 (3)0.0050 (3)0.0006 (3)
C40.0134 (4)0.0165 (4)0.0137 (4)0.0016 (3)0.0048 (3)0.0008 (3)
C50.0118 (4)0.0165 (4)0.0093 (4)0.0014 (3)0.0029 (3)0.0008 (3)
C60.0143 (4)0.0243 (5)0.0135 (4)0.0042 (4)0.0042 (3)0.0007 (3)
C70.0146 (4)0.0218 (5)0.0134 (4)0.0046 (3)0.0049 (3)0.0021 (3)
Geometric parameters (Å, º) top
Cl1—C61.8074 (10)C3—H30.9500
Cl2—C71.8068 (9)C4—C51.3918 (13)
N1—C51.3425 (11)C4—H40.9500
N1—C11.3438 (12)C5—C71.5001 (12)
C1—C21.3920 (14)C6—H6A0.9900
C1—C61.5016 (13)C6—H6B0.9900
C2—C31.3888 (13)C7—H7A0.9900
C2—H20.9500C7—H7B0.9900
C3—C41.3883 (13)
C5—N1—C1117.41 (8)N1—C5—C7116.23 (8)
N1—C1—C2123.00 (8)C4—C5—C7120.39 (8)
N1—C1—C6116.32 (8)C1—C6—Cl1110.02 (6)
C2—C1—C6120.67 (8)C1—C6—H6A109.7
C3—C2—C1118.98 (9)Cl1—C6—H6A109.7
C3—C2—H2120.5C1—C6—H6B109.7
C1—C2—H2120.5Cl1—C6—H6B109.7
C4—C3—C2118.55 (9)H6A—C6—H6B108.2
C4—C3—H3120.7C5—C7—Cl2109.50 (6)
C2—C3—H3120.7C5—C7—H7A109.8
C3—C4—C5118.68 (8)Cl2—C7—H7A109.8
C3—C4—H4120.7C5—C7—H7B109.8
C5—C4—H4120.7Cl2—C7—H7B109.8
N1—C5—C4123.38 (8)H7A—C7—H7B108.2
C5—N1—C1—C20.23 (12)C1—N1—C5—C7178.98 (7)
C5—N1—C1—C6179.72 (7)C3—C4—C5—N10.01 (13)
N1—C1—C2—C30.14 (14)C3—C4—C5—C7179.26 (8)
C6—C1—C2—C3179.33 (8)N1—C1—C6—Cl191.43 (8)
C1—C2—C3—C40.44 (13)C2—C1—C6—Cl188.07 (9)
C2—C3—C4—C50.38 (13)N1—C5—C7—Cl290.05 (8)
C1—N1—C5—C40.29 (12)C4—C5—C7—Cl289.24 (9)

Experimental details

Crystal data
Chemical formulaC7H7Cl2N
Mr176.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.9927 (2), 12.1581 (3), 7.4893 (2)
β (°) 113.535 (1)
V3)750.72 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.52 × 0.41 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.727, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
6994, 1845, 1768
Rint0.014
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.051, 1.09
No. of reflections1845
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.18

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Mr Barry Noble for helpful discussions.

References

First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLozano, V. & Jones, P. G. (2004). Acta Cryst. C60, o653–o655.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds