metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,2-Bis­(diiso­propyl­phosphan­yl)ethane-κ2P,P′]di­chloridonickel(II)

aFacultad de Química, Universidad Nacional Autónoma de México, México DF, 04510, Mexico
*Correspondence e-mail: mfa@unam.mx

(Received 26 May 2011; accepted 2 June 2011; online 11 June 2011)

In the crystal structure of title compound, [NiCl2(C14H32P2)], the NiII atom lies on a twofold rotation axis and shows a slightly distorted square-planar coordination geometry, with a dihedral angle of 10.01 (8)° between the cis-Cl—Ni—Cl and cis-P—Ni—P planes. There is no significant inter­molecular inter­action except very weak C—H⋯Cl inter­actions. The crystal studied was a racemic twin.

Related literature

For the synthesis, see: Scott et al. (1990[Scott, F., Krüger, C. & Betz, P. (1990). J. Organomet. Chem. 387, 113-121.]). For applications of nickel complexes to catalytic systems, see: Vicic & Jones (1997[Vicic, D. A. & Jones, W. D. (1997). J. Am. Chem. Soc. 119, 10855-10856.]); Arévalo & García (2010[Arévalo, A. & García, J. J. (2010). Eur. J. Inorg. Chem. pp. 4063-4074.]). For related structures, see: Cañavera-Buelvas et al. (2011[Cañavera-Buelvas, F., Flores-Alamo, M. & García, J. J. (2011). Acta Cryst. E67, m501.]); Angulo et al. (2003[Angulo, I. M., Bouwman, E., van Gorkum, R., Lok, S. M., Lutz, M. & Spek, A. L. (2003). J. Mol. Catal. A Chem. 202, 97-106.]); Dahlenburg & Kurth (2001[Dahlenburg, L. & Kurth, V. (2001). Inorg. Chim. Acta, 319, 176-182.]).

[Scheme 1]

Experimental

Crystal data
  • [NiCl2(C14H32P2)]

  • Mr = 391.95

  • Tetragonal, [I \overline 4c 2]

  • a = 14.2402 (2) Å

  • c = 18.4369 (7) Å

  • V = 3738.70 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 122 K

  • 0.17 × 0.14 × 0.07 mm

Data collection
  • Oxford Xcalibur Atlas Gemini diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.975, Tmax = 0.989

  • 5823 measured reflections

  • 1850 independent reflections

  • 1547 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.070

  • S = 0.97

  • 1850 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 832 Friedel pairs

  • Flack parameter: 0.53 (3)

Table 1
Selected bond lengths (Å)

Ni1—P1 2.1600 (9)
Ni1—Cl1 2.2150 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯Cl1i 0.98 2.94 3.808 (4) 148
C5—H5A⋯Cl1ii 0.98 2.91 3.777 (4) 148
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The synthesis of the current complex [Ni (dippe)Cl2] was documented 21 years ago (Scott et al., 1990) and still the corresponding X-ray structure of this compound has not been reported. This type of nickel complexes are useful starting materials for the preparation of catalysts and catalytic precursors, for a series of active catalyst in a wide variety of model reactions (Vicic & Jones, 1997) and catalytic systems (Arévalo & García, 2010).

In the title complex, [Ni(dippe)Cl2], the NiII atom is coordinated by two P atoms of dippe ligand and two chloride anions (Fig. 1) into a slight distorted square-planar coordination geometry with a dihedral angle between the planes defined by the two cis-Cl–Ni–Cl and cis-P–Ni–P fragments [10.01 (8)°]. Additionally the NiII atom is situated 0.0837 (1) Å above the Cl1/P1/Cl1/P1 plane. These deviations from planarity, which can be attributed to some steric efect of the dippe ligand, are somewhat shorter than the distortion from ideal square-planar coordination geometry observed on [Ni (dippe)Cl2](carbazole)2 complex (Cañavera-Buelvas et al., 2011) with the NiCl2/NiP2 dihedral angle of 15.32° and somewhat larger than the distortion from ideal square-planar coordination geometry observed for related [Ni(dcpe)Cl2] (Angulo et al., 2003) and [(1S,2S)-C5H8{P(C6H11)2}2NiCl2] (Dahlenburg & Kurth, 2001) complexes, where the NiCl2/NiP2 dihedral angles of 3.96 and 5.37°, respectively.

In the crystal packing, there are two intermolecular contacts of the type hydrogen bond (Table 2) mainly between the carbon donor atom of the dippe to Cl1 chloride atom acceptor of the metallic complex, C5—H5A···Cl1 2.91 Å and C3—H3B···Cl1 2.94 Å.

Related literature top

For the synthesis, see: Scott et al. (1990). For applications of nickel complexes to catalytic systems, see: Vicic & Jones (1997); Arévalo & García (2010). For related structures, see: Cañavera-Buelvas et al. (2011); Angulo et al. (2003); Dahlenburg & Kurth (2001).

Experimental top

A concentrated THF solution of the complex [Ni(dippe)Cl2], prepared according to the reported procedure (Scott et al., 1990), was stored in a freezer at -30 °C. After a couple of days suitable crystals for X-ray diffraction studies were obtained. NMR (25 °C): 31P{1H} (CDCl3, 121.32 MHz, 25 °C): δ 85.9 (s). NMR 1H (CDCl3,300 MHz, 25 °C): δ 1.30 (m, CH3, 24H), 1.6 (m, CH2, 4H), 2.48 (m, CH, 4H). Elemental analysis experimental (calculated): C 43.0 (42.9), H 8.24% (8.23%).

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions, and refined as riding on their parent atoms, with C—H distances fixed to 0.98 (methyl CH3), 0.99 (methylene CH2) and 1.00 Å (methine CH), and with Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(C). The crystal studied was a racemic twin; the minor twin component refined to 47 (3)%.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size.
[1,2-Bis(diisopropylphosphanyl)ethane-κ2P,P']dichloridonickel(II) top
Crystal data top
[NiCl2(C14H32P2)]Dx = 1.393 Mg m3
Mr = 391.95Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4c2Cell parameters from 3046 reflections
a = 14.2402 (2) Åθ = 3.4–26.0°
c = 18.4369 (7) ŵ = 1.48 mm1
V = 3738.70 (16) Å3T = 122 K
Z = 8Prism, brown
F(000) = 16640.17 × 0.14 × 0.07 mm
Data collection top
Oxford Xcalibur Atlas Gemini
diffractometer
1850 independent reflections
Graphite monochromator1547 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.030
ω scansθmax = 26.1°, θmin = 3.4°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1617
Tmin = 0.975, Tmax = 0.989k = 1717
5823 measured reflectionsl = 2216
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0391P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
1850 reflectionsΔρmax = 0.80 e Å3
92 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 832 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.53 (3)
Crystal data top
[NiCl2(C14H32P2)]Z = 8
Mr = 391.95Mo Kα radiation
Tetragonal, I4c2µ = 1.48 mm1
a = 14.2402 (2) ÅT = 122 K
c = 18.4369 (7) Å0.17 × 0.14 × 0.07 mm
V = 3738.70 (16) Å3
Data collection top
Oxford Xcalibur Atlas Gemini
diffractometer
1850 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
1547 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.989Rint = 0.030
5823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.070Δρmax = 0.80 e Å3
S = 0.97Δρmin = 0.23 e Å3
1850 reflectionsAbsolute structure: Flack (1983), 832 Friedel pairs
92 parametersAbsolute structure parameter: 0.53 (3)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5579 (3)0.2802 (2)0.4018 (2)0.0423 (9)
H10.50880.24340.37540.051*
C20.5856 (3)0.3616 (3)0.3527 (3)0.0708 (15)
H2A0.52960.39820.34030.106*
H2B0.61440.33710.30830.106*
H2C0.63070.40190.37810.106*
C30.5142 (3)0.3145 (3)0.4703 (2)0.0580 (13)
H3A0.56140.34770.49930.087*
H3B0.490.2610.4980.087*
H3C0.46250.35730.45880.087*
C40.7002 (3)0.1639 (3)0.33272 (17)0.0457 (10)
H40.72380.22210.30860.055*
C50.6214 (3)0.1240 (3)0.2847 (2)0.0676 (12)
H5A0.64540.11360.23550.101*
H5B0.5690.16860.2830.101*
H5C0.59950.06420.30490.101*
C60.7832 (3)0.0972 (3)0.3400 (2)0.0554 (12)
H6A0.76480.0430.36950.083*
H6B0.83560.12990.36340.083*
H6C0.80250.07570.29180.083*
C70.5952 (2)0.0942 (2)0.45870 (15)0.0292 (6)
H7A0.52990.09240.44040.035*
H7B0.62770.03690.44160.035*
P10.65506 (6)0.19836 (6)0.42220 (5)0.0280 (2)
Cl10.83890 (6)0.31965 (6)0.58688 (5)0.0349 (2)
Ni10.75392 (2)0.25392 (2)0.50.02082 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0335 (19)0.0391 (19)0.054 (3)0.0022 (16)0.0121 (19)0.0064 (18)
C20.053 (3)0.060 (3)0.099 (4)0.003 (2)0.009 (3)0.038 (3)
C30.039 (2)0.050 (2)0.085 (4)0.0139 (18)0.001 (2)0.006 (2)
C40.064 (3)0.046 (2)0.0270 (18)0.019 (2)0.0057 (17)0.0057 (17)
C50.090 (4)0.074 (4)0.039 (2)0.015 (2)0.013 (2)0.016 (2)
C60.067 (3)0.042 (2)0.057 (3)0.004 (2)0.022 (2)0.013 (2)
C70.0251 (18)0.0270 (19)0.0355 (16)0.0077 (12)0.0012 (17)0.0046 (17)
P10.0269 (4)0.0268 (4)0.0303 (5)0.0055 (3)0.0020 (4)0.0005 (4)
Cl10.0306 (4)0.0344 (5)0.0397 (5)0.0094 (3)0.0042 (4)0.0077 (4)
Ni10.01688 (15)0.01688 (15)0.0287 (3)0.00262 (17)0.00055 (18)0.00055 (18)
Geometric parameters (Å, º) top
C1—C31.491 (5)C5—H5A0.98
C1—C21.522 (6)C5—H5B0.98
C1—P11.847 (3)C5—H5C0.98
C1—H11.00C6—H6A0.98
C2—H2A0.98C6—H6B0.98
C2—H2B0.98C6—H6C0.98
C2—H2C0.98C7—C7i1.523 (6)
C3—H3A0.98C7—P11.838 (3)
C3—H3B0.98C7—H7A0.99
C3—H3C0.98C7—H7B0.99
C4—C61.522 (6)P1—Ni12.1600 (9)
C4—C51.538 (5)Cl1—Ni12.2150 (8)
C4—P11.837 (3)Ni1—P1i2.1600 (9)
C4—H41.00Ni1—Cl1i2.2150 (8)
C3—C1—C2111.2 (3)C4—C5—H5C109.5
C3—C1—P1110.3 (3)H5A—C5—H5C109.5
C2—C1—P1114.0 (3)H5B—C5—H5C109.5
C3—C1—H1107C4—C6—H6A109.5
C2—C1—H1107C4—C6—H6B109.5
P1—C1—H1107H6A—C6—H6B109.5
C1—C2—H2A109.5C4—C6—H6C109.5
C1—C2—H2B109.5H6A—C6—H6C109.5
H2A—C2—H2B109.5H6B—C6—H6C109.5
C1—C2—H2C109.5C7i—C7—P1111.27 (13)
H2A—C2—H2C109.5C7i—C7—H7A109.4
H2B—C2—H2C109.5P1—C7—H7A109.4
C1—C3—H3A109.5C7i—C7—H7B109.4
C1—C3—H3B109.5P1—C7—H7B109.4
H3A—C3—H3B109.5H7A—C7—H7B108
C1—C3—H3C109.5C4—P1—C7105.97 (15)
H3A—C3—H3C109.5C4—P1—C1104.33 (18)
H3B—C3—H3C109.5C7—P1—C1103.68 (17)
C6—C4—C5112.7 (4)C4—P1—Ni1117.79 (14)
C6—C4—P1111.0 (3)C7—P1—Ni1110.76 (10)
C5—C4—P1111.1 (3)C1—P1—Ni1113.10 (12)
C6—C4—H4107.2P1—Ni1—P1i87.91 (5)
C5—C4—H4107.2P1—Ni1—Cl1172.36 (3)
P1—C4—H4107.2P1i—Ni1—Cl189.73 (3)
C4—C5—H5A109.5P1—Ni1—Cl1i89.73 (3)
C4—C5—H5B109.5P1i—Ni1—Cl1i172.36 (3)
H5A—C5—H5B109.5Cl1—Ni1—Cl1i93.51 (5)
C6—C4—P1—C772.2 (3)C2—C1—P1—C7164.7 (3)
C5—C4—P1—C754.2 (3)C3—C1—P1—Ni150.7 (3)
C6—C4—P1—C1178.8 (3)C2—C1—P1—Ni175.3 (3)
C5—C4—P1—C154.9 (3)C4—P1—Ni1—P1i129.91 (14)
C6—C4—P1—Ni152.4 (3)C7—P1—Ni1—P1i7.74 (12)
C5—C4—P1—Ni1178.8 (3)C1—P1—Ni1—P1i108.15 (14)
C7i—C7—P1—C4153.8 (3)C4—P1—Ni1—Cl1158.0 (3)
C7i—C7—P1—C196.6 (4)C7—P1—Ni1—Cl179.9 (3)
C7i—C7—P1—Ni125.0 (4)C1—P1—Ni1—Cl136.0 (3)
C3—C1—P1—C4179.9 (3)C4—P1—Ni1—Cl1i42.82 (14)
C2—C1—P1—C453.9 (4)C7—P1—Ni1—Cl1i164.99 (13)
C3—C1—P1—C769.4 (3)C1—P1—Ni1—Cl1i79.12 (14)
Symmetry code: (i) y+1/2, x1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···Cl1ii0.982.943.808 (4)148
C5—H5A···Cl1iii0.982.913.777 (4)148
Symmetry codes: (ii) x1/2, y+1/2, z; (iii) x+3/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[NiCl2(C14H32P2)]
Mr391.95
Crystal system, space groupTetragonal, I4c2
Temperature (K)122
a, c (Å)14.2402 (2), 18.4369 (7)
V3)3738.70 (16)
Z8
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.17 × 0.14 × 0.07
Data collection
DiffractometerOxford Xcalibur Atlas Gemini
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.975, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
5823, 1850, 1547
Rint0.030
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.070, 0.97
No. of reflections1850
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.23
Absolute structureFlack (1983), 832 Friedel pairs
Absolute structure parameter0.53 (3)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
P1—Ni12.1600 (9)Cl1—Ni12.2150 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···Cl1i0.982.943.808 (4)148
C5—H5A···Cl1ii0.982.913.777 (4)148
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+3/2, y+1/2, z1/2.
 

Acknowledgements

We thank PAPIIT-DGAPA-UNAM (IN-201010) and CONACYT (080606) for their financial support of this work. We also thank Dr A. Arévalo for technical assistance.

References

First citationAngulo, I. M., Bouwman, E., van Gorkum, R., Lok, S. M., Lutz, M. & Spek, A. L. (2003). J. Mol. Catal. A Chem. 202, 97–106.  CSD CrossRef CAS Google Scholar
First citationArévalo, A. & García, J. J. (2010). Eur. J. Inorg. Chem. pp. 4063–4074.  Google Scholar
First citationCañavera-Buelvas, F., Flores-Alamo, M. & García, J. J. (2011). Acta Cryst. E67, m501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDahlenburg, L. & Kurth, V. (2001). Inorg. Chim. Acta, 319, 176–182.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationScott, F., Krüger, C. & Betz, P. (1990). J. Organomet. Chem. 387, 113–121.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicic, D. A. & Jones, W. D. (1997). J. Am. Chem. Soc. 119, 10855–10856.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds