metal-organic compounds
[1,2-Bis(diisopropylphosphanyl)ethane-κ2P,P′]dichloridonickel(II)
aFacultad de Química, Universidad Nacional Autónoma de México, México DF, 04510, Mexico
*Correspondence e-mail: mfa@unam.mx
In the 2(C14H32P2)], the NiII atom lies on a twofold rotation axis and shows a slightly distorted square-planar coordination geometry, with a dihedral angle of 10.01 (8)° between the cis-Cl—Ni—Cl and cis-P—Ni—P planes. There is no significant intermolecular interaction except very weak C—H⋯Cl interactions. The crystal studied was a racemic twin.
of title compound, [NiClRelated literature
For the synthesis, see: Scott et al. (1990). For applications of nickel complexes to catalytic systems, see: Vicic & Jones (1997); Arévalo & García (2010). For related structures, see: Cañavera-Buelvas et al. (2011); Angulo et al. (2003); Dahlenburg & Kurth (2001).
Experimental
Crystal data
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811021209/is2724sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811021209/is2724Isup2.hkl
A concentrated THF solution of the complex [Ni(dippe)Cl2], prepared according to the reported procedure (Scott et al., 1990), was stored in a freezer at -30 °C. After a couple of days suitable crystals for X-ray diffraction studies were obtained. NMR (25 °C): 31P{1H} (CDCl3, 121.32 MHz, 25 °C): δ 85.9 (s). NMR 1H (CDCl3,300 MHz, 25 °C): δ 1.30 (m, CH3, 24H), 1.6 (m, CH2, 4H), 2.48 (m, CH, 4H). Elemental analysis experimental (calculated): C 43.0 (42.9), H 8.24% (8.23%).
H atoms attached to C atoms were placed in geometrically idealized positions, and refined as riding on their parent atoms, with C—H distances fixed to 0.98 (methyl CH3), 0.99 (methylene CH2) and 1.00 Å (methine CH), and with Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(C). The crystal studied was a racemic twin; the minor twin component refined to 47 (3)%.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size. |
[NiCl2(C14H32P2)] | Dx = 1.393 Mg m−3 |
Mr = 391.95 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4c2 | Cell parameters from 3046 reflections |
a = 14.2402 (2) Å | θ = 3.4–26.0° |
c = 18.4369 (7) Å | µ = 1.48 mm−1 |
V = 3738.70 (16) Å3 | T = 122 K |
Z = 8 | Prism, brown |
F(000) = 1664 | 0.17 × 0.14 × 0.07 mm |
Oxford Xcalibur Atlas Gemini diffractometer | 1850 independent reflections |
Graphite monochromator | 1547 reflections with I > 2σ(I) |
Detector resolution: 10.4685 pixels mm-1 | Rint = 0.030 |
ω scans | θmax = 26.1°, θmin = 3.4° |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010) | h = −16→17 |
Tmin = 0.975, Tmax = 0.989 | k = −17→17 |
5823 measured reflections | l = −22→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0391P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max = 0.001 |
1850 reflections | Δρmax = 0.80 e Å−3 |
92 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 832 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.53 (3) |
[NiCl2(C14H32P2)] | Z = 8 |
Mr = 391.95 | Mo Kα radiation |
Tetragonal, I4c2 | µ = 1.48 mm−1 |
a = 14.2402 (2) Å | T = 122 K |
c = 18.4369 (7) Å | 0.17 × 0.14 × 0.07 mm |
V = 3738.70 (16) Å3 |
Oxford Xcalibur Atlas Gemini diffractometer | 1850 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010) | 1547 reflections with I > 2σ(I) |
Tmin = 0.975, Tmax = 0.989 | Rint = 0.030 |
5823 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.070 | Δρmax = 0.80 e Å−3 |
S = 0.97 | Δρmin = −0.23 e Å−3 |
1850 reflections | Absolute structure: Flack (1983), 832 Friedel pairs |
92 parameters | Absolute structure parameter: 0.53 (3) |
0 restraints |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5579 (3) | 0.2802 (2) | 0.4018 (2) | 0.0423 (9) | |
H1 | 0.5088 | 0.2434 | 0.3754 | 0.051* | |
C2 | 0.5856 (3) | 0.3616 (3) | 0.3527 (3) | 0.0708 (15) | |
H2A | 0.5296 | 0.3982 | 0.3403 | 0.106* | |
H2B | 0.6144 | 0.3371 | 0.3083 | 0.106* | |
H2C | 0.6307 | 0.4019 | 0.3781 | 0.106* | |
C3 | 0.5142 (3) | 0.3145 (3) | 0.4703 (2) | 0.0580 (13) | |
H3A | 0.5614 | 0.3477 | 0.4993 | 0.087* | |
H3B | 0.49 | 0.261 | 0.498 | 0.087* | |
H3C | 0.4625 | 0.3573 | 0.4588 | 0.087* | |
C4 | 0.7002 (3) | 0.1639 (3) | 0.33272 (17) | 0.0457 (10) | |
H4 | 0.7238 | 0.2221 | 0.3086 | 0.055* | |
C5 | 0.6214 (3) | 0.1240 (3) | 0.2847 (2) | 0.0676 (12) | |
H5A | 0.6454 | 0.1136 | 0.2355 | 0.101* | |
H5B | 0.569 | 0.1686 | 0.283 | 0.101* | |
H5C | 0.5995 | 0.0642 | 0.3049 | 0.101* | |
C6 | 0.7832 (3) | 0.0972 (3) | 0.3400 (2) | 0.0554 (12) | |
H6A | 0.7648 | 0.043 | 0.3695 | 0.083* | |
H6B | 0.8356 | 0.1299 | 0.3634 | 0.083* | |
H6C | 0.8025 | 0.0757 | 0.2918 | 0.083* | |
C7 | 0.5952 (2) | 0.0942 (2) | 0.45870 (15) | 0.0292 (6) | |
H7A | 0.5299 | 0.0924 | 0.4404 | 0.035* | |
H7B | 0.6277 | 0.0369 | 0.4416 | 0.035* | |
P1 | 0.65506 (6) | 0.19836 (6) | 0.42220 (5) | 0.0280 (2) | |
Cl1 | 0.83890 (6) | 0.31965 (6) | 0.58688 (5) | 0.0349 (2) | |
Ni1 | 0.75392 (2) | 0.25392 (2) | 0.5 | 0.02082 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0335 (19) | 0.0391 (19) | 0.054 (3) | −0.0022 (16) | −0.0121 (19) | 0.0064 (18) |
C2 | 0.053 (3) | 0.060 (3) | 0.099 (4) | 0.003 (2) | −0.009 (3) | 0.038 (3) |
C3 | 0.039 (2) | 0.050 (2) | 0.085 (4) | 0.0139 (18) | −0.001 (2) | −0.006 (2) |
C4 | 0.064 (3) | 0.046 (2) | 0.0270 (18) | −0.019 (2) | 0.0057 (17) | −0.0057 (17) |
C5 | 0.090 (4) | 0.074 (4) | 0.039 (2) | −0.015 (2) | −0.013 (2) | −0.016 (2) |
C6 | 0.067 (3) | 0.042 (2) | 0.057 (3) | −0.004 (2) | 0.022 (2) | −0.013 (2) |
C7 | 0.0251 (18) | 0.0270 (19) | 0.0355 (16) | −0.0077 (12) | −0.0012 (17) | −0.0046 (17) |
P1 | 0.0269 (4) | 0.0268 (4) | 0.0303 (5) | −0.0055 (3) | −0.0020 (4) | 0.0005 (4) |
Cl1 | 0.0306 (4) | 0.0344 (5) | 0.0397 (5) | −0.0094 (3) | −0.0042 (4) | −0.0077 (4) |
Ni1 | 0.01688 (15) | 0.01688 (15) | 0.0287 (3) | −0.00262 (17) | 0.00055 (18) | −0.00055 (18) |
C1—C3 | 1.491 (5) | C5—H5A | 0.98 |
C1—C2 | 1.522 (6) | C5—H5B | 0.98 |
C1—P1 | 1.847 (3) | C5—H5C | 0.98 |
C1—H1 | 1.00 | C6—H6A | 0.98 |
C2—H2A | 0.98 | C6—H6B | 0.98 |
C2—H2B | 0.98 | C6—H6C | 0.98 |
C2—H2C | 0.98 | C7—C7i | 1.523 (6) |
C3—H3A | 0.98 | C7—P1 | 1.838 (3) |
C3—H3B | 0.98 | C7—H7A | 0.99 |
C3—H3C | 0.98 | C7—H7B | 0.99 |
C4—C6 | 1.522 (6) | P1—Ni1 | 2.1600 (9) |
C4—C5 | 1.538 (5) | Cl1—Ni1 | 2.2150 (8) |
C4—P1 | 1.837 (3) | Ni1—P1i | 2.1600 (9) |
C4—H4 | 1.00 | Ni1—Cl1i | 2.2150 (8) |
C3—C1—C2 | 111.2 (3) | C4—C5—H5C | 109.5 |
C3—C1—P1 | 110.3 (3) | H5A—C5—H5C | 109.5 |
C2—C1—P1 | 114.0 (3) | H5B—C5—H5C | 109.5 |
C3—C1—H1 | 107 | C4—C6—H6A | 109.5 |
C2—C1—H1 | 107 | C4—C6—H6B | 109.5 |
P1—C1—H1 | 107 | H6A—C6—H6B | 109.5 |
C1—C2—H2A | 109.5 | C4—C6—H6C | 109.5 |
C1—C2—H2B | 109.5 | H6A—C6—H6C | 109.5 |
H2A—C2—H2B | 109.5 | H6B—C6—H6C | 109.5 |
C1—C2—H2C | 109.5 | C7i—C7—P1 | 111.27 (13) |
H2A—C2—H2C | 109.5 | C7i—C7—H7A | 109.4 |
H2B—C2—H2C | 109.5 | P1—C7—H7A | 109.4 |
C1—C3—H3A | 109.5 | C7i—C7—H7B | 109.4 |
C1—C3—H3B | 109.5 | P1—C7—H7B | 109.4 |
H3A—C3—H3B | 109.5 | H7A—C7—H7B | 108 |
C1—C3—H3C | 109.5 | C4—P1—C7 | 105.97 (15) |
H3A—C3—H3C | 109.5 | C4—P1—C1 | 104.33 (18) |
H3B—C3—H3C | 109.5 | C7—P1—C1 | 103.68 (17) |
C6—C4—C5 | 112.7 (4) | C4—P1—Ni1 | 117.79 (14) |
C6—C4—P1 | 111.0 (3) | C7—P1—Ni1 | 110.76 (10) |
C5—C4—P1 | 111.1 (3) | C1—P1—Ni1 | 113.10 (12) |
C6—C4—H4 | 107.2 | P1—Ni1—P1i | 87.91 (5) |
C5—C4—H4 | 107.2 | P1—Ni1—Cl1 | 172.36 (3) |
P1—C4—H4 | 107.2 | P1i—Ni1—Cl1 | 89.73 (3) |
C4—C5—H5A | 109.5 | P1—Ni1—Cl1i | 89.73 (3) |
C4—C5—H5B | 109.5 | P1i—Ni1—Cl1i | 172.36 (3) |
H5A—C5—H5B | 109.5 | Cl1—Ni1—Cl1i | 93.51 (5) |
C6—C4—P1—C7 | −72.2 (3) | C2—C1—P1—C7 | −164.7 (3) |
C5—C4—P1—C7 | 54.2 (3) | C3—C1—P1—Ni1 | −50.7 (3) |
C6—C4—P1—C1 | 178.8 (3) | C2—C1—P1—Ni1 | 75.3 (3) |
C5—C4—P1—C1 | −54.9 (3) | C4—P1—Ni1—P1i | −129.91 (14) |
C6—C4—P1—Ni1 | 52.4 (3) | C7—P1—Ni1—P1i | −7.74 (12) |
C5—C4—P1—Ni1 | 178.8 (3) | C1—P1—Ni1—P1i | 108.15 (14) |
C7i—C7—P1—C4 | 153.8 (3) | C4—P1—Ni1—Cl1 | 158.0 (3) |
C7i—C7—P1—C1 | −96.6 (4) | C7—P1—Ni1—Cl1 | −79.9 (3) |
C7i—C7—P1—Ni1 | 25.0 (4) | C1—P1—Ni1—Cl1 | 36.0 (3) |
C3—C1—P1—C4 | −179.9 (3) | C4—P1—Ni1—Cl1i | 42.82 (14) |
C2—C1—P1—C4 | −53.9 (4) | C7—P1—Ni1—Cl1i | 164.99 (13) |
C3—C1—P1—C7 | 69.4 (3) | C1—P1—Ni1—Cl1i | −79.12 (14) |
Symmetry code: (i) y+1/2, x−1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···Cl1ii | 0.98 | 2.94 | 3.808 (4) | 148 |
C5—H5A···Cl1iii | 0.98 | 2.91 | 3.777 (4) | 148 |
Symmetry codes: (ii) x−1/2, −y+1/2, z; (iii) −x+3/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [NiCl2(C14H32P2)] |
Mr | 391.95 |
Crystal system, space group | Tetragonal, I4c2 |
Temperature (K) | 122 |
a, c (Å) | 14.2402 (2), 18.4369 (7) |
V (Å3) | 3738.70 (16) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.48 |
Crystal size (mm) | 0.17 × 0.14 × 0.07 |
Data collection | |
Diffractometer | Oxford Xcalibur Atlas Gemini diffractometer |
Absorption correction | Analytical (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.975, 0.989 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5823, 1850, 1547 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.070, 0.97 |
No. of reflections | 1850 |
No. of parameters | 92 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.80, −0.23 |
Absolute structure | Flack (1983), 832 Friedel pairs |
Absolute structure parameter | 0.53 (3) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···Cl1i | 0.98 | 2.94 | 3.808 (4) | 148 |
C5—H5A···Cl1ii | 0.98 | 2.91 | 3.777 (4) | 148 |
Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) −x+3/2, −y+1/2, z−1/2. |
Acknowledgements
We thank PAPIIT-DGAPA-UNAM (IN-201010) and CONACYT (080606) for their financial support of this work. We also thank Dr A. Arévalo for technical assistance.
References
Angulo, I. M., Bouwman, E., van Gorkum, R., Lok, S. M., Lutz, M. & Spek, A. L. (2003). J. Mol. Catal. A Chem. 202, 97–106. CSD CrossRef CAS Google Scholar
Arévalo, A. & García, J. J. (2010). Eur. J. Inorg. Chem. pp. 4063–4074. Google Scholar
Cañavera-Buelvas, F., Flores-Alamo, M. & García, J. J. (2011). Acta Cryst. E67, m501. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dahlenburg, L. & Kurth, V. (2001). Inorg. Chim. Acta, 319, 176–182. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Scott, F., Krüger, C. & Betz, P. (1990). J. Organomet. Chem. 387, 113–121. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vicic, D. A. & Jones, W. D. (1997). J. Am. Chem. Soc. 119, 10855–10856. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of the current complex [Ni (dippe)Cl2] was documented 21 years ago (Scott et al., 1990) and still the corresponding X-ray structure of this compound has not been reported. This type of nickel complexes are useful starting materials for the preparation of catalysts and catalytic precursors, for a series of active catalyst in a wide variety of model reactions (Vicic & Jones, 1997) and catalytic systems (Arévalo & García, 2010).
In the title complex, [Ni(dippe)Cl2], the NiII atom is coordinated by two P atoms of dippe ligand and two chloride anions (Fig. 1) into a slight distorted square-planar coordination geometry with a dihedral angle between the planes defined by the two cis-Cl–Ni–Cl and cis-P–Ni–P fragments [10.01 (8)°]. Additionally the NiII atom is situated 0.0837 (1) Å above the Cl1/P1/Cl1/P1 plane. These deviations from planarity, which can be attributed to some steric efect of the dippe ligand, are somewhat shorter than the distortion from ideal square-planar coordination geometry observed on [Ni (dippe)Cl2](carbazole)2 complex (Cañavera-Buelvas et al., 2011) with the NiCl2/NiP2 dihedral angle of 15.32° and somewhat larger than the distortion from ideal square-planar coordination geometry observed for related [Ni(dcpe)Cl2] (Angulo et al., 2003) and [(1S,2S)-C5H8{P(C6H11)2}2NiCl2] (Dahlenburg & Kurth, 2001) complexes, where the NiCl2/NiP2 dihedral angles of 3.96 and 5.37°, respectively.
In the crystal packing, there are two intermolecular contacts of the type hydrogen bond (Table 2) mainly between the carbon donor atom of the dippe to Cl1 chloride atom acceptor of the metallic complex, C5—H5A···Cl1 2.91 Å and C3—H3B···Cl1 2.94 Å.