organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-hy­dr­oxy­ethanaminium) naphthalene-1,5-di­sulfonate

aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: yslhzzj@sina.com

(Received 30 May 2011; accepted 15 June 2011; online 30 June 2011)

In the crystal structure of the title compound, 2C2H8NO+·C10H6O6S22−, the anion lies on an inversion centre. The components are held together by O—H⋯O hydrogen bond, forming a 2:1 aggregate. The aggregates are further connected by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Gao et al. (2005[Gao, S., Huo, L.-H. & Ng, S. W. (2005). Acta Cryst. E61, o98-o99.]); Li & Chai (2007[Li, Z.-S. & Chai, J.-S. (2007). Acta Cryst. E63, o3258.]); Russell et al. (1997[Russell, V. A., Evans, C. C., Li, W.-J. & Ward, M. D. (1997). Science, 276, 575-579.]); Sakwa & Wheeler (2003[Sakwa, S. & Wheeler, K. A. (2003). Acta Cryst. C59, o332-o334.]); Wang et al. (2008[Wang, Z.-L., Jin, L.-Y. & Wei, L.-H. (2008). Acta Cryst. E64, o674.]); Zhang et al. (2005[Zhang, X.-L., Ye, B.-H. & Chen, X.-M. (2005). Cryst. Growth Des. 5, 617-622.]).

[Scheme 1]

Experimental

Crystal data
  • 2C2H8NO+·C10H6O6S22−

  • Mr = 410.48

  • Monoclinic, P 21 /c

  • a = 9.7946 (14) Å

  • b = 8.9011 (13) Å

  • c = 10.4050 (16) Å

  • β = 104.334 (2)°

  • V = 878.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.42 × 0.34 × 0.30 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.855, Tmax = 0.898

  • 4721 measured reflections

  • 1718 independent reflections

  • 1625 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.080

  • S = 1.04

  • 1718 reflections

  • 122 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4′⋯O2 0.835 (10) 2.041 (10) 2.840 (2) 160 (2)
N1—H1A⋯O4i 0.89 2.13 2.934 (2) 149
N1—H1B⋯O1ii 0.89 1.90 2.766 (2) 164
N1—H1C⋯O3iii 0.89 1.96 2.837 (2) 168
C3—H3⋯O1iv 0.93 2.41 3.270 (2) 154
C5—H5⋯O2v 0.93 2.55 3.459 (2) 167
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z; (iii) x, y-1, z; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Several supramolecular structures of naphthalene-1,5-disulfonate have been reported previously (Russell et al., 1997; Zhang et al., 2005; Gao et al., 2005; Wang et al., 2008). As an extension of research, we report here the synthesis and structure of the title compound, (I) (Table 1 & Fig. 1).

The naphthalene-1,5-disulfonate anion is linked to the ethanolaminium cation by O2—H4'···O4 hydrogen bond (Fig. 1 & Table 1). The crystal structure is further built by N—H···O and C—H···O hydrogen bonds. (Fig. 2 & Table 1). Due to steric hindrance of sulfonate, the nearest centroid separation between naphthalene rings is of 5.264 (3) Å, suggesting no ππ stacking. The arrangement of naphthalene rings is very similar to those observed in previous cases (Sakwa & Wheeler, 2003; Li & Chai, 2007; Wang et al., 2008), but is different from that in bis(oxonium monohydrate) naphthalene-1,5-disulfonate, which shows a partial ππ stacking.

Related literature top

For related structures, see: Gao et al. (2005); Li & Chai (2007); Russell et al. (1997); Sakwa & Wheeler (2003); Wang et al. (2008); Zhang et al. (2005).

Experimental top

Naphthalene-1,5-disulfonic acid (5.1 g) and ethanolamine (1.2 g) in a molar ratio of 1:1 were mixed and dissolved in sufficient ethanol by heating to 373 K, at which point a clear solution resulted. The system was then cooled slowly to room temperature. Crystals of (I) (4.7 g) were formed, collected and washed with ethanol.

Refinement top

All H atoms except atom H4' were placed in calculated positions and allowed to ride on their parent atoms with distances of 0.93 Å for aromatic group, 0.97 Å for methylene and 0.89 Å for amino group, and with Uiso(H) set at 1.2 or 1.5Ueq of the parent atoms. The positions of atom H4' were refined with a distance restraint O—H = 0.84 (2) Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. The unlabeled half of naphthalene-1,5-disulfonate anion are generated from the labeled half by symmetry operation of (1 - x, 2 - y, - z). The O—H···O hydrogen bond is illustrated as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the c axis. Hydrogen bonds are drawn as dashed lines.
Bis(2-hydroxyethanaminium) naphthalene-1,5-disulfonate top
Crystal data top
2C2H8NO+·C10H6O6S22F(000) = 432.0
Mr = 410.48Dx = 1.551 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1567 reflections
a = 9.7946 (14) Åθ = 2.1–16.1°
b = 8.9011 (13) ŵ = 0.35 mm1
c = 10.4050 (16) ÅT = 293 K
β = 104.334 (2)°Prism, colorless
V = 878.9 (2) Å30.42 × 0.34 × 0.30 mm
Z = 2
Data collection top
Bruker APEX area-detector
diffractometer
1718 independent reflections
Radiation source: fine-focus sealed tube1625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1211
Tmin = 0.855, Tmax = 0.898k = 710
4721 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.3961P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1718 reflectionsΔρmax = 0.43 e Å3
122 parametersΔρmin = 0.34 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (3)
Crystal data top
2C2H8NO+·C10H6O6S22V = 878.9 (2) Å3
Mr = 410.48Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.7946 (14) ŵ = 0.35 mm1
b = 8.9011 (13) ÅT = 293 K
c = 10.4050 (16) Å0.42 × 0.34 × 0.30 mm
β = 104.334 (2)°
Data collection top
Bruker APEX area-detector
diffractometer
1718 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1625 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.898Rint = 0.019
4721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.080H-atom parameters constrained
S = 1.04Δρmax = 0.43 e Å3
1718 reflectionsΔρmin = 0.34 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84543 (12)0.76241 (16)0.12460 (11)0.0408 (3)
O20.75476 (13)0.65670 (12)0.04999 (12)0.0380 (3)
O30.89350 (12)0.88364 (13)0.09087 (11)0.0368 (3)
O40.85710 (15)0.38353 (14)0.03184 (13)0.0449 (3)
H4'0.843 (3)0.4733 (14)0.015 (2)0.067*
S10.79615 (4)0.79324 (4)0.00698 (3)0.02542 (15)
N10.91425 (15)0.17298 (16)0.20858 (14)0.0359 (3)
H1A0.93130.16410.29630.054*
H1B0.98980.21080.18720.054*
H1C0.89470.08300.17130.054*
C10.64066 (14)0.90372 (15)0.06386 (14)0.0232 (3)
C20.56077 (14)0.95467 (15)0.02605 (13)0.0223 (3)
C30.59815 (15)0.91921 (17)0.16367 (14)0.0266 (3)
H30.67750.86090.19830.032*
C40.51843 (16)0.97004 (17)0.24527 (14)0.0292 (3)
H40.54400.94550.33490.035*
C50.60178 (16)0.94103 (17)0.19575 (14)0.0271 (3)
H50.65510.90740.25260.033*
C60.79262 (19)0.2745 (2)0.16027 (18)0.0394 (4)
H6A0.81370.37160.20290.047*
H6B0.71120.23380.18560.047*
C70.7569 (2)0.2955 (2)0.01220 (19)0.0490 (5)
H7A0.75020.19770.03000.059*
H7B0.66530.34330.01570.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0307 (6)0.0605 (8)0.0332 (6)0.0100 (5)0.0116 (5)0.0071 (6)
O20.0458 (7)0.0233 (6)0.0464 (7)0.0058 (5)0.0145 (5)0.0026 (5)
O30.0315 (6)0.0343 (6)0.0396 (6)0.0016 (5)0.0006 (5)0.0078 (5)
O40.0649 (8)0.0265 (6)0.0475 (7)0.0058 (6)0.0219 (6)0.0020 (5)
S10.0249 (2)0.0249 (2)0.0263 (2)0.00367 (13)0.00597 (15)0.00329 (13)
N10.0386 (7)0.0330 (7)0.0368 (7)0.0016 (6)0.0102 (6)0.0055 (6)
C10.0238 (7)0.0200 (7)0.0262 (7)0.0003 (5)0.0070 (5)0.0013 (5)
C20.0246 (7)0.0194 (6)0.0233 (7)0.0017 (5)0.0063 (5)0.0007 (5)
C30.0274 (7)0.0253 (7)0.0261 (7)0.0033 (6)0.0050 (6)0.0025 (6)
C40.0361 (8)0.0305 (8)0.0210 (7)0.0014 (6)0.0068 (6)0.0026 (6)
C50.0325 (8)0.0252 (7)0.0256 (7)0.0004 (6)0.0109 (6)0.0017 (6)
C60.0420 (9)0.0340 (9)0.0454 (9)0.0024 (7)0.0168 (8)0.0010 (7)
C70.0594 (12)0.0359 (10)0.0457 (10)0.0083 (8)0.0016 (9)0.0037 (8)
Geometric parameters (Å, º) top
O1—S11.4485 (11)C2—C2i1.429 (3)
O2—S11.4533 (12)C3—C41.365 (2)
O3—S11.4535 (11)C3—H30.9300
O4—C71.417 (2)C4—C5i1.406 (2)
O4—H4'0.835 (10)C4—H40.9300
S1—C11.7862 (14)C5—C4i1.406 (2)
N1—C61.481 (2)C5—H50.9300
N1—H1A0.8900C6—C71.505 (3)
N1—H1B0.8900C6—H6A0.9700
N1—H1C0.8900C6—H6B0.9700
C1—C51.371 (2)C7—H7A0.9700
C1—C21.4338 (19)C7—H7B0.9700
C2—C31.423 (2)
C7—O4—H4'107.6 (18)C4—C3—H3119.7
O1—S1—O2111.79 (8)C2—C3—H3119.7
O1—S1—O3113.50 (7)C3—C4—C5i120.96 (13)
O2—S1—O3112.22 (7)C3—C4—H4119.5
O1—S1—C1105.04 (7)C5i—C4—H4119.5
O2—S1—C1107.12 (7)C1—C5—C4i120.20 (13)
O3—S1—C1106.56 (7)C1—C5—H5119.9
C6—N1—H1A109.5C4i—C5—H5119.9
C6—N1—H1B109.5N1—C6—C7112.78 (15)
H1A—N1—H1B109.5N1—C6—H6A109.0
C6—N1—H1C109.5C7—C6—H6A109.0
H1A—N1—H1C109.5N1—C6—H6B109.0
H1B—N1—H1C109.5C7—C6—H6B109.0
C5—C1—C2121.01 (13)H6A—C6—H6B107.8
C5—C1—S1117.89 (11)O4—C7—C6113.31 (16)
C2—C1—S1121.08 (10)O4—C7—H7A108.9
C3—C2—C2i119.32 (15)C6—C7—H7A108.9
C3—C2—C1122.72 (13)O4—C7—H7B108.9
C2i—C2—C1117.97 (15)C6—C7—H7B108.9
C4—C3—C2120.54 (13)H7A—C7—H7B107.7
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O20.84 (1)2.04 (1)2.840 (2)160 (2)
N1—H1A···O4ii0.892.132.934 (2)149
N1—H1B···O1iii0.891.902.766 (2)164
N1—H1C···O3iv0.891.962.837 (2)168
C3—H3···O1v0.932.413.270 (2)154
C5—H5···O2vi0.932.553.459 (2)167
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x+2, y+1, z; (iv) x, y1, z; (v) x, y+3/2, z+1/2; (vi) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula2C2H8NO+·C10H6O6S22
Mr410.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.7946 (14), 8.9011 (13), 10.4050 (16)
β (°) 104.334 (2)
V3)878.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.42 × 0.34 × 0.30
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.855, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
4721, 1718, 1625
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.04
No. of reflections1718
No. of parameters122
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.34

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4'···O20.835 (10)2.041 (10)2.840 (2)160 (2)
N1—H1A···O4i0.892.132.934 (2)149
N1—H1B···O1ii0.891.902.766 (2)164
N1—H1C···O3iii0.891.962.837 (2)168
C3—H3···O1iv0.932.413.270 (2)154
C5—H5···O2v0.932.553.459 (2)167
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1, z; (iii) x, y1, z; (iv) x, y+3/2, z+1/2; (v) x, y+3/2, z1/2.
 

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, S., Huo, L.-H. & Ng, S. W. (2005). Acta Cryst. E61, o98–o99.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Z.-S. & Chai, J.-S. (2007). Acta Cryst. E63, o3258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRussell, V. A., Evans, C. C., Li, W.-J. & Ward, M. D. (1997). Science, 276, 575–579.  CrossRef CAS PubMed Google Scholar
First citationSakwa, S. & Wheeler, K. A. (2003). Acta Cryst. C59, o332–o334.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-L., Jin, L.-Y. & Wei, L.-H. (2008). Acta Cryst. E64, o674.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, X.-L., Ye, B.-H. & Chen, X.-M. (2005). Cryst. Growth Des. 5, 617–622.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds