organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1770-o1771

(E)-1-(4-Amino­phen­yl)-3-(pyridin-3-yl)prop-2-en-1-one

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bExcellence Center, Mae Fah Luang University, Thasud, Muang, Chaing Rai 57100, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 13 June 2011; accepted 16 June 2011; online 22 June 2011)

The title chalcone derivative, C14H12N2O, consists of 4-amino­phenyl and pyridine rings bridged by a prop-2-en-1-one unit and exists in a trans configuration with respect to the C=C double bond. The mol­ecule is slightly twisted with a dihedral angle of 29.38 (7)° between the benzene and pyridine rings. The prop-2-en-1-one bridge is nearly planar with an r.m.s. deviation of 0.0384 (1) Å and makes dihedral angles of 15.40 (9) and 16.30 (9)°, respectively, with the benzene and pyridine rings. In the crystal, mol­ecules are linked by N—H⋯N and N—H⋯O hydrogen bonds into a layer parallel to the ab plane. A ππ inter­action with a centroid–centroid distance of 3.6946 (10) Å is also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Horkaew et al. (2010[Horkaew, J., Chantrapromma, S., Saewan, N. & Fun, H.-K. (2010). Acta Cryst. E66, o2346-o2347.]). For background to and applications of chalcones, see: Gaber et al. (2008[Gaber, M., El-Daly, S. A., Fayed, T. A. & El-Sayed, Y. S. (2008). J. Opt. Laser Techol. 40, 528-537.]); Ávila et al. (2008[Ávila, H. P., Smânia, E. de F. A., Delle Monache, F. & Smânia, A. Jr (2008). Bioorg. Med. Chem. 16, 9790-9794.]); Mei et al. (2001[Mei, L., Prapon, W. & Mei, L. G. (2001). J. Med. Chem. 44, 4443-4452.]); Ohad et al. (2004[Ohad, N., Ramadan, M., Soliman, K., Snait, T. & Jacob, V. (2004). J. Photochem. 65, 1389-1395.]); Patil et al. (2007[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Kumar, R. S. S. & Narayana Rao, D. (2007). J. Cryst. Growth, 303, 520-524.]); Svetlichny et al. (2007[Svetlichny, V. Y., Merola, F., Dobretsov, G. E., Gularyan, S. K. & Syrejshchikova, T. I. (2007). Chem. Phys. Lipids, 145, 13-26.]); Tewtrakul et al. (2003[Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503-508.]); Wu et al. (2006[Wu, X., Tiekink, E. R. T., Kostetski, I., Kocherginsky, N., Tan, A. L. C., Khoo, S. B., Wilairat, P. & Go, M.-L. (2006). Eur. J. Pharm. Sci. 27, 175-187.]); Xu et al. (2005[Xu, Z., Bai, G. & Dong, C. (2005). Bioorg. Med. Chem. 13, 5694-5699.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O

  • Mr = 224.26

  • Orthorhombic, P b c a

  • a = 12.0046 (12) Å

  • b = 7.9329 (9) Å

  • c = 22.925 (3) Å

  • V = 2183.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.52 × 0.32 × 0.18 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.985

  • 12726 measured reflections

  • 3177 independent reflections

  • 2433 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 1.03

  • 3177 reflections

  • 202 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.88 (2) 2.13 (2) 2.9920 (16) 170 (2)
N1—H2N1⋯N2ii 0.93 (2) 2.26 (2) 3.1471 (17) 161.7 (19)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are 1,3-diaryl-2-propen-1-ones which can be obtained from both synthetic and natural sources. They have a wide variety of biological activities such as antimalarial (Mei et al., 2001), HIV-1 protease inhibitory (Tewtrakul et al., 2003), antityrosinase (Ohad et al., 2004), antibacterial (Ávila et al., 2008) and antiplasmodial (Wu et al., 2006) properties. Moreover, chalcones have also been studied for non-linear optical (NLO) (Patil et al., 2007) and fluorescent materials (Gaber et al., 2008). These compounds have also been used for sensor, liquid crystal display and fluorescence probe for sensing of DNA or proteins (Svetlichny et al., 2007; Xu et al., 2005). These interesting properties has lead us to synthesize the title compound (I), which contains the amino and pyridine groups in order to study its bioactivity and fluorescent properties. Our results show that (I) was inactive for antibacterial and tyrosinase inhibitory activities. However (I) exhibits weak fluorescence with the maximum emission at 437 nm when was excited at 310 nm. Herein the crystal structure of (I) is reported.

The molecule of the title chalcone derivative (Fig. 1), C14H12N2O, exists in a E configuration with respect to the C8C9 ethenyl bond [1.332 (2) Å] and the torsion angle C7–C8–C9–C10 = -176.57 (13)°. The molecule is twisted with a dihedral angle between the phenyl and pyridine rings being 29.38 (7)°. The prop-2-en-1-one unit (C7-C9/O1) is nearly planar [r.m.s. of 0.0384 (1) Å] and the torsion angle O1–C7–C8–C9 being -12.5 (2)°. This middle bridge makes the dihedral angles of 15.40 (9) and 16.30 (9)° with the phenyl and pyridine rings, respectively. The bond distances are of normal values (Allen et al., 1987) and are comparable with the related structure (Horkaew et al., 2010).

In the crystal packing, the molecules are linked by N—H···N and N—H···O hydrogen bonds (Table 1) into sheets parallel to the ab plane (Fig. 2). A ππ interaction with a Cg1···Cg1 distance of 3.6946 (10) Å is observed in the crystal; Cg1 is the centroid of the C10–C14/N1 ring. In addition C···C [3.3505 (19) Å; symmetry code 3/2-x, 1/2+y, z and 3.3776 (19) Å: symmetry code 3/2-x, -1/2+y, z], C···O [3.1312 (18) Å; symmetry code 3/2-x, -1/2+y, z] and N···O [2.9920 (16) Å; symmetry code 2-x,1/2+y,3/2-z] short contacts are also observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For a related structure, see: Horkaew et al. (2010). For background to and applications of chalcones, see: Gaber et al. (2008); Ávila et al. (2008); Mei et al. (2001); Ohad et al. (2004); Patil et al. (2007); Svetlichny et al. (2007); Tewtrakul et al. (2003); Wu et al. (2006); Xu et al. (2005). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by condensation of 4-aminoacetophenone (0.40 g, 3 mmol) with 3-pyridinecarboxaldehyde (0.18 ml, 3 mmol) in ethanol (15 ml) in the presence of 10% NaOH (aq) (5 ml). After stirring for 2 hr at room temperature, the resulting yellow solid was collected by filtration, washed with distilled diethyl ether, dried and purified by repeated recrysallization from acetone. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from methanol by the slow evaporation of the solvent at room temperature after several days, Mp. 453-454 K.

Refinement top

All H atoms were located in a difference Fourier map and refined isotropically. The highest residual electron density peak is located at 0.74 Å from C8 and the deepest hole is located at 1.35 Å from C14.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis, Hydrogen bonds were shown as dashed lines.
(E)-1-(4-Aminophenyl)-3-(pyridin-3-yl)prop-2-en-1-one top
Crystal data top
C14H12N2ODx = 1.365 Mg m3
Mr = 224.26Melting point = 453–454 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3177 reflections
a = 12.0046 (12) Åθ = 2.5–30.0°
b = 7.9329 (9) ŵ = 0.09 mm1
c = 22.925 (3) ÅT = 100 K
V = 2183.2 (4) Å3Block, yellow
Z = 80.52 × 0.32 × 0.18 mm
F(000) = 944
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3177 independent reflections
Radiation source: sealed tube2433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1614
Tmin = 0.956, Tmax = 0.985k = 1110
12726 measured reflectionsl = 3223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.5761P]
where P = (Fo2 + 2Fc2)/3
3177 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C14H12N2OV = 2183.2 (4) Å3
Mr = 224.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.0046 (12) ŵ = 0.09 mm1
b = 7.9329 (9) ÅT = 100 K
c = 22.925 (3) Å0.52 × 0.32 × 0.18 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3177 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2433 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.985Rint = 0.043
12726 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.132All H-atom parameters refined
S = 1.03Δρmax = 0.37 e Å3
3177 reflectionsΔρmin = 0.18 e Å3
202 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.87481 (8)0.00829 (13)0.62116 (4)0.0274 (2)
N10.88749 (10)0.40307 (16)0.86417 (5)0.0262 (3)
H1N10.9537 (17)0.447 (3)0.8695 (9)0.037 (5)*
H2N10.8278 (17)0.431 (3)0.8878 (9)0.043 (5)*
N20.34284 (10)0.06758 (18)0.57106 (5)0.0317 (3)
C10.82037 (9)0.14511 (16)0.70829 (6)0.0195 (3)
C20.92774 (10)0.20798 (16)0.72041 (6)0.0210 (3)
H2A0.9864 (14)0.193 (2)0.6922 (7)0.023 (4)*
C30.95058 (10)0.29288 (16)0.77139 (6)0.0214 (3)
H3A1.0254 (14)0.340 (2)0.7786 (7)0.029 (4)*
C40.86642 (10)0.31820 (17)0.81357 (6)0.0208 (3)
C50.75956 (10)0.25227 (18)0.80220 (6)0.0234 (3)
H5A0.7024 (17)0.265 (3)0.8321 (9)0.045 (5)*
C60.73797 (10)0.16943 (17)0.75074 (6)0.0214 (3)
H6A0.6624 (14)0.121 (2)0.7442 (7)0.025 (4)*
C70.79831 (10)0.05897 (16)0.65285 (6)0.0205 (3)
C80.68037 (10)0.03488 (18)0.63425 (6)0.0226 (3)
H8A0.6213 (16)0.097 (3)0.6564 (9)0.042 (5)*
C90.65435 (10)0.06655 (17)0.58997 (6)0.0232 (3)
H9A0.7163 (14)0.126 (2)0.5705 (7)0.031 (4)*
C100.54235 (10)0.10884 (17)0.56899 (6)0.0219 (3)
C110.52786 (11)0.2397 (2)0.52922 (6)0.0284 (3)
H11A0.5968 (15)0.303 (2)0.5147 (8)0.030 (4)*
C120.42183 (12)0.2841 (2)0.51084 (7)0.0313 (3)
H12A0.4105 (16)0.374 (3)0.4827 (9)0.040 (5)*
C130.33284 (12)0.1966 (2)0.53375 (7)0.0313 (3)
H13A0.2553 (16)0.229 (2)0.5245 (8)0.041 (5)*
C140.44619 (11)0.0255 (2)0.58784 (6)0.0267 (3)
H14A0.4500 (15)0.070 (3)0.6168 (8)0.034 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0178 (4)0.0354 (6)0.0292 (5)0.0004 (4)0.0009 (4)0.0037 (4)
N10.0177 (5)0.0342 (7)0.0267 (6)0.0028 (4)0.0018 (4)0.0020 (5)
N20.0186 (5)0.0466 (8)0.0299 (6)0.0020 (5)0.0015 (5)0.0051 (5)
C10.0148 (5)0.0193 (6)0.0245 (6)0.0002 (4)0.0024 (4)0.0034 (5)
C20.0143 (5)0.0216 (6)0.0271 (6)0.0001 (4)0.0004 (5)0.0027 (5)
C30.0135 (5)0.0219 (6)0.0286 (7)0.0010 (4)0.0020 (4)0.0031 (5)
C40.0169 (5)0.0219 (6)0.0237 (6)0.0004 (4)0.0026 (4)0.0043 (5)
C50.0156 (5)0.0296 (7)0.0248 (6)0.0029 (5)0.0011 (5)0.0027 (5)
C60.0142 (5)0.0243 (6)0.0255 (6)0.0023 (4)0.0015 (4)0.0051 (5)
C70.0158 (5)0.0210 (6)0.0246 (6)0.0004 (4)0.0013 (4)0.0038 (5)
C80.0159 (5)0.0263 (7)0.0257 (6)0.0015 (5)0.0013 (5)0.0001 (5)
C90.0162 (5)0.0267 (7)0.0267 (6)0.0002 (5)0.0014 (5)0.0009 (5)
C100.0186 (6)0.0265 (7)0.0205 (6)0.0019 (4)0.0003 (4)0.0019 (5)
C110.0214 (6)0.0339 (8)0.0298 (7)0.0001 (5)0.0019 (5)0.0049 (6)
C120.0264 (7)0.0358 (8)0.0316 (7)0.0036 (5)0.0038 (6)0.0071 (6)
C130.0210 (6)0.0440 (9)0.0290 (7)0.0039 (6)0.0043 (5)0.0027 (6)
C140.0190 (6)0.0348 (8)0.0262 (7)0.0019 (5)0.0015 (5)0.0039 (6)
Geometric parameters (Å, º) top
O1—C71.2381 (16)C5—H5A0.97 (2)
N1—C41.3649 (18)C6—H6A0.996 (17)
N1—H1N10.88 (2)C7—C81.4909 (17)
N1—H2N10.93 (2)C8—C91.332 (2)
N2—C131.339 (2)C8—H8A1.00 (2)
N2—C141.3410 (17)C9—C101.4668 (17)
C1—C61.4011 (18)C9—H9A0.986 (18)
C1—C21.4097 (16)C10—C111.392 (2)
C1—C71.4671 (18)C10—C141.3986 (19)
C2—C31.3767 (19)C11—C121.3864 (19)
C2—H2A0.963 (16)C11—H11A1.023 (18)
C3—C41.4127 (18)C12—C131.378 (2)
C3—H3A0.988 (17)C12—H12A0.97 (2)
C4—C51.4097 (17)C13—H13A0.99 (2)
C5—C61.3749 (19)C14—H14A1.01 (2)
C4—N1—H1N1118.9 (13)O1—C7—C8119.67 (12)
C4—N1—H2N1118.2 (12)C1—C7—C8118.61 (11)
H1N1—N1—H2N1121.7 (19)C9—C8—C7121.19 (12)
C13—N2—C14117.14 (13)C9—C8—H8A121.1 (11)
C6—C1—C2117.38 (12)C7—C8—H8A117.8 (11)
C6—C1—C7122.58 (11)C8—C9—C10127.07 (12)
C2—C1—C7120.04 (11)C8—C9—H9A117.1 (10)
C3—C2—C1121.50 (12)C10—C9—H9A115.8 (10)
C3—C2—H2A119.0 (10)C11—C10—C14116.83 (12)
C1—C2—H2A119.5 (10)C11—C10—C9119.98 (12)
C2—C3—C4120.55 (11)C14—C10—C9123.18 (12)
C2—C3—H3A120.7 (10)C12—C11—C10120.21 (13)
C4—C3—H3A118.8 (10)C12—C11—H11A121.3 (10)
N1—C4—C5120.58 (12)C10—C11—H11A118.5 (10)
N1—C4—C3121.28 (11)C13—C12—C11117.90 (14)
C5—C4—C3118.13 (12)C13—C12—H12A121.0 (12)
C6—C5—C4120.50 (12)C11—C12—H12A121.1 (12)
C6—C5—H5A121.3 (12)N2—C13—C12123.98 (13)
C4—C5—H5A118.2 (12)N2—C13—H13A115.0 (11)
C5—C6—C1121.92 (11)C12—C13—H13A121.0 (11)
C5—C6—H6A119.0 (10)N2—C14—C10123.89 (14)
C1—C6—H6A119.0 (10)N2—C14—H14A114.7 (10)
O1—C7—C1121.71 (11)C10—C14—H14A121.4 (10)
C6—C1—C2—C31.23 (18)O1—C7—C8—C912.5 (2)
C7—C1—C2—C3178.45 (12)C1—C7—C8—C9168.37 (12)
C1—C2—C3—C40.56 (19)C7—C8—C9—C10176.57 (13)
C2—C3—C4—N1179.56 (12)C8—C9—C10—C11168.40 (14)
C2—C3—C4—C50.85 (19)C8—C9—C10—C1410.3 (2)
N1—C4—C5—C6178.84 (13)C14—C10—C11—C121.1 (2)
C3—C4—C5—C61.57 (19)C9—C10—C11—C12177.71 (14)
C4—C5—C6—C10.9 (2)C10—C11—C12—C130.9 (2)
C2—C1—C6—C50.50 (19)C14—N2—C13—C121.8 (2)
C7—C1—C6—C5179.18 (12)C11—C12—C13—N22.5 (2)
C6—C1—C7—O1165.18 (12)C13—N2—C14—C100.5 (2)
C2—C1—C7—O115.15 (19)C11—C10—C14—N21.9 (2)
C6—C1—C7—C815.74 (19)C9—C10—C14—N2176.92 (14)
C2—C1—C7—C8163.92 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.88 (2)2.13 (2)2.9920 (16)170 (2)
N1—H2N1···N2ii0.93 (2)2.26 (2)3.1471 (17)161.7 (19)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H12N2O
Mr224.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)12.0046 (12), 7.9329 (9), 22.925 (3)
V3)2183.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.52 × 0.32 × 0.18
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.956, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
12726, 3177, 2433
Rint0.043
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.132, 1.03
No. of reflections3177
No. of parameters202
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.37, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.88 (2)2.13 (2)2.9920 (16)170 (2)
N1—H2N1···N2ii0.93 (2)2.26 (2)3.1471 (17)161.7 (19)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors thank the Thailand Research Fund (TRF) for a research grant (RSA 5280033) and the Prince of Songkla University for financial support. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationÁvila, H. P., Smânia, E. de F. A., Delle Monache, F. & Smânia, A. Jr (2008). Bioorg. Med. Chem. 16, 9790–9794.  Web of Science PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaber, M., El-Daly, S. A., Fayed, T. A. & El-Sayed, Y. S. (2008). J. Opt. Laser Techol. 40, 528–537.  CrossRef CAS Google Scholar
First citationHorkaew, J., Chantrapromma, S., Saewan, N. & Fun, H.-K. (2010). Acta Cryst. E66, o2346–o2347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMei, L., Prapon, W. & Mei, L. G. (2001). J. Med. Chem. 44, 4443–4452.  Web of Science PubMed Google Scholar
First citationOhad, N., Ramadan, M., Soliman, K., Snait, T. & Jacob, V. (2004). J. Photochem. 65, 1389–1395.  Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Kumar, R. S. S. & Narayana Rao, D. (2007). J. Cryst. Growth, 303, 520–524.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvetlichny, V. Y., Merola, F., Dobretsov, G. E., Gularyan, S. K. & Syrejshchikova, T. I. (2007). Chem. Phys. Lipids, 145, 13–26.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503–508.  CAS Google Scholar
First citationWu, X., Tiekink, E. R. T., Kostetski, I., Kocherginsky, N., Tan, A. L. C., Khoo, S. B., Wilairat, P. & Go, M.-L. (2006). Eur. J. Pharm. Sci. 27, 175–187.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXu, Z., Bai, G. & Dong, C. (2005). Bioorg. Med. Chem. 13, 5694–5699.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1770-o1771
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds