organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1811-o1812

Glycozolidal

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bNatural Products Research Laboratory, School of Science, Mae Fah Luang University, Tasud, Muang Chiang Rai 57100, Thailand, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 17 June 2011; accepted 20 June 2011; online 25 June 2011)

The title compound known as glycozolidal (systematic name: 2,7-dimeth­oxy-9H-carbazole-3-carbaldehyde), C15H13NO3, is a naturally occurring carbazole, which was isolated from the roots of Clausena lansium. The carbazole ring system is essentially planar, with an r.m.s. deviation of 0.0093 (1) Å. In the crystal, inter­molecular N—H⋯O hydrogen bonds connect the mol­ecules into a chain along the c axis. C—H⋯O, C—H⋯π and ππ inter­actions, with centroid–centroid distances of 3.5924 (6), 3.6576 (6) and 3.8613 (6) Å, are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to carbazole alkaloids and their activities, see: Kongkathip & Kongkathip (2009[Kongkathip, N. & Kongkathip, B. (2009). Heterocycles, 79, 121-144.]); Laphookhieo et al. (2009[Laphookhieo, S., Sripisut, T., Prawat, U. & Karalai, C. (2009). Heterocycles, 78, 2115-2119.]); Li et al. (1991[Li, W. S., McChesney, J. D. & El-Feraly, F. S. (1991). Phytochemistry, 30, 343-346.]); Maneerat & Laphookhieo (2010[Maneerat, W. & Laphookhieo, S. (2010). Heterocycles, 81, 1261-1269.]); Maneerat et al. (2010[Maneerat, W., Prawat, U., Saewan, N. & Laphookhieo, S. (2010). J. Braz. Chem. Soc. 21, 665-668.]); Sripisut & Laphookhieo (2010[Sripisut, T. & Laphookhieo, S. (2010). J. Asian Nat. Prod. Res. 12, 614-617.]); Tangyuenyongwatthana et al. (1992[Tangyuenyongwatthana, P., Pummangura, S. & Thanyavuthi, D. (1992). Songklanakarin J. Sci. Technol. 14, 157-162.]); Thongthoom et al. (2010[Thongthoom, T., Songsiang, U., Phaosiri, C. & Yenjai, C. (2010). Arch. Pharm. Res. 33, 675-680.]); Yenjai et al. (2000[Yenjai, C., Sripontan, S., Sriprajun, P., Kittakoop, P., Jintasirikul, A., Tanticharoen, M. & Thebtaranonth, Y. (2000). Planta Med. 66, 277-279.]). For related structures, see: Fun et al. (2007[Fun, H.-K., Laphookhieo, S., Maneerat, W. & Chantrapromma, S. (2007). Acta Cryst. E63, o3964-o3965.], 2009[Fun, H.-K., Maneerat, W., Laphookhieo, S. & Chantrapromma, S. (2009). Acta Cryst. E65, o2497-o2498.], 2010[Fun, H.-K., Maneerat, W., Laphookhieo, S. & Chantrapromma, S. (2010). Acta Cryst. E66, o2418-o2419.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO3

  • Mr = 255.26

  • Monoclinic, C 2/c

  • a = 20.5756 (4) Å

  • b = 8.1298 (1) Å

  • c = 14.0411 (3) Å

  • β = 98.871 (1)°

  • V = 2320.64 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.53 × 0.42 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.984

  • 13003 measured reflections

  • 3381 independent reflections

  • 3032 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.115

  • S = 1.04

  • 3381 reflections

  • 178 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C4/C11/C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3i 0.890 (17) 2.106 (17) 2.9758 (11) 165.2 (15)
C15—H15C⋯O2ii 0.98 2.44 3.3888 (14) 162
C15—H15ACg2iii 0.98 2.91 3.6613 (12) 134
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbazole alkaloids are major compounds found in Rutaceae plants, especially in Clausena genus (Laphookhieo et al., 2009; Li et al., 1991; Maneerat et al., 2010; Sripisut & Laphookhieo, 2010; Tangyuenyongwatthana et al., 1992) which showed diverse pharmacological activities such as anti-cancer, anti-malaria, anti-TB and anti-HIV (Kongkathip & Kongkathip, 2009; Yenjai et al., 2000; Thongthoom et al., 2010) properties. During the course of our on-going research on chemical constituents and bioactive compounds from Clausena plants (Maneerat et al., 2010; Maneerat & Laphookhieo, 2010; Sripisut & Laphookhieo, 2010), the title compound (I) which was known as glycozolidal (Li et al., 1991) was isolated from the roots of C. lansium which was collected from Nan province in the northern part of Thailand. Herein the isolation and crystal structure of (I) was reported.

In the structure of (I), C15H13NO3 (Fig. 1), the carbazole ring system (C1–C12/N1) is essentially planar with an r.m.s. deviation of 0.0093 (1) Å. The aldehyde substituent is planarly attached to the benzene ring which can be indicated by the torsion angle C4–C3–C14–O2 = -3.35 (16)°. whereas the two methoxy groups are slightly deviated from their attached benzene rings with the torsion angles C13–O1–C2–C1 = -6.03 (14)° and C15–O3–C6–C7 = 13.32 (13)°. The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987) and are comparable to the related structures (Fun et al., 2007, 2009, 2010).

In the crystal packing (Fig. 2), N—H···O intermolecular hydrogen bonds (Table 1) connected the molecules into one dimensional chains along the [0 0 1] direction. The crystal is consolidated by short N···O [2.9758 (11) Å] contact, as well as by N—H···O hydrogen bonds, C—H···O and C—H···π (Table 1) and ππ interactions with the distances of Cg1···Cg1iv = 3.8613 (6) Å Cg1···Cg2iv = 3.5924 (6) Å and Cg2···Cg3iv = 3.6576 (6) Å [symmetry code: (iv) 1/2 - x, 1/2 - y, 1 - z; Cg1, Cg2 and Cg3 are the centroids of the C9–C12/N1, C1–C4/C11/C12 and C5–C10 rings, respectively]. .

Related literature top

For bond-length data, see: Allen et al. (1987). For background to carbazole alkaloids and their activities, see: Kongkathip & Kongkathip (2009); Laphookhieo et al. (2009); Li et al. (1991); Maneerat & Laphookhieo (2010); Maneerat et al. (2010); Sripisut & Laphookhieo (2010); Tangyuenyongwatthana et al. (1992); Thongthoom et al. (2010); Yenjai et al. (2000). For related structures, see: Fun et al. (2007, 2009, 2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The air dried roots of C. lansium (2.92 kg) were successively extracted with acetone over the period of 3 days at room temperature. The solvent was removed under reduced pressure to provide the acetone extract (61.46 g) which was subjected to quick column chromatography (QCC) over silica gel and eluted with a gradient of hexanes-EtOAc (100% hexane to 100% EtOAc) to provide eight fractions (A—H). Fraction C (14.79 g) was further separated by sephadex LH-20 with CH3OH to give six subfractions (C1—6). Subfraction C4 (5.70 g) was subjected to repeated QCC using 20% hexanes-EtOAc yielding the title compound (I) (19.6 mg). Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from CH2Cl2/acetone (1:4, v/v) after several days, Mp 469.6–470.7 K.

Refinement top

The H atom attached to N1 was located in a difference map and isotropically refined. The remaining H atoms were placed in calculated positions with d(C—H) = 0.95 Å for aromatic and CH, and 0.98 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.69 Å from atom C5 and the deepest hole is located at 0.64 Å from atom C9.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis, showing one dimensional chains along the [0 0 1] direction. Hydrogen bonds are shown as dashed lines.
2,7-Dimethoxy-9H-carbazole-3-carbaldehyde top
Crystal data top
C15H13NO3F(000) = 1072
Mr = 255.26Dx = 1.461 Mg m3
Monoclinic, C2/cMelting point = 469.6–470.7 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 20.5756 (4) ÅCell parameters from 3381 reflections
b = 8.1298 (1) Åθ = 2.0–30.0°
c = 14.0411 (3) ŵ = 0.10 mm1
β = 98.871 (1)°T = 100 K
V = 2320.64 (7) Å3Block, yellow
Z = 80.53 × 0.42 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3381 independent reflections
Radiation source: sealed tube3032 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2828
Tmin = 0.947, Tmax = 0.984k = 119
13003 measured reflectionsl = 1915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0682P)2 + 1.6186P]
where P = (Fo2 + 2Fc2)/3
3381 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H13NO3V = 2320.64 (7) Å3
Mr = 255.26Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.5756 (4) ŵ = 0.10 mm1
b = 8.1298 (1) ÅT = 100 K
c = 14.0411 (3) Å0.53 × 0.42 × 0.16 mm
β = 98.871 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3381 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3032 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.984Rint = 0.020
13003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.45 e Å3
3381 reflectionsΔρmin = 0.24 e Å3
178 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06869 (4)0.45177 (10)0.60778 (5)0.01915 (17)
O20.01915 (4)0.13634 (10)0.39162 (6)0.02408 (18)
O30.34527 (3)0.26588 (9)0.16940 (5)0.01588 (16)
N10.27840 (4)0.55708 (10)0.49606 (6)0.01503 (17)
H1N10.2977 (8)0.626 (2)0.5410 (12)0.031 (4)*
C10.17456 (5)0.51795 (12)0.56255 (7)0.01507 (18)
H1A0.18550.59220.61480.018*
C20.11513 (5)0.43366 (12)0.54868 (7)0.01486 (19)
C30.09900 (5)0.32215 (12)0.47030 (7)0.01479 (18)
C40.14322 (5)0.29659 (12)0.40535 (7)0.01420 (18)
H4A0.13250.22210.35320.017*
C50.27380 (4)0.30870 (12)0.28279 (7)0.01392 (18)
H5A0.24400.23300.24790.017*
C60.33378 (5)0.34504 (12)0.25284 (7)0.01366 (18)
C70.37905 (5)0.45348 (12)0.30457 (7)0.01510 (18)
H7A0.41960.47590.28260.018*
C80.36473 (5)0.52877 (12)0.38837 (7)0.01506 (19)
H8A0.39550.60030.42480.018*
C90.30431 (5)0.49645 (12)0.41708 (7)0.01365 (18)
C100.25861 (4)0.38624 (11)0.36532 (6)0.01310 (18)
C110.20281 (4)0.38018 (11)0.41712 (6)0.01329 (18)
C120.21752 (4)0.48914 (11)0.49667 (7)0.01357 (18)
C130.08690 (5)0.55135 (13)0.69203 (7)0.0199 (2)
H13A0.05100.55190.73050.030*
H13B0.09550.66410.67260.030*
H13C0.12660.50610.73060.030*
C140.03699 (5)0.23074 (13)0.45831 (8)0.0192 (2)
H14A0.00890.24570.50530.023*
C150.41126 (5)0.27000 (14)0.14839 (8)0.0200 (2)
H15A0.41530.19320.09580.030*
H15B0.44190.23800.20590.030*
H15C0.42170.38160.12910.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0164 (3)0.0238 (4)0.0186 (4)0.0010 (3)0.0070 (3)0.0029 (3)
O20.0178 (4)0.0251 (4)0.0294 (4)0.0050 (3)0.0038 (3)0.0061 (3)
O30.0146 (3)0.0201 (3)0.0135 (3)0.0005 (2)0.0042 (2)0.0016 (2)
N10.0141 (4)0.0167 (4)0.0145 (4)0.0030 (3)0.0028 (3)0.0026 (3)
C10.0157 (4)0.0159 (4)0.0137 (4)0.0003 (3)0.0025 (3)0.0008 (3)
C20.0142 (4)0.0162 (4)0.0147 (4)0.0011 (3)0.0039 (3)0.0015 (3)
C30.0135 (4)0.0156 (4)0.0154 (4)0.0007 (3)0.0025 (3)0.0012 (3)
C40.0144 (4)0.0145 (4)0.0136 (4)0.0010 (3)0.0017 (3)0.0007 (3)
C50.0139 (4)0.0143 (4)0.0134 (4)0.0007 (3)0.0018 (3)0.0004 (3)
C60.0149 (4)0.0145 (4)0.0118 (4)0.0013 (3)0.0029 (3)0.0010 (3)
C70.0133 (4)0.0164 (4)0.0157 (4)0.0014 (3)0.0029 (3)0.0016 (3)
C80.0143 (4)0.0156 (4)0.0152 (4)0.0026 (3)0.0021 (3)0.0004 (3)
C90.0138 (4)0.0137 (4)0.0133 (4)0.0004 (3)0.0018 (3)0.0006 (3)
C100.0129 (4)0.0138 (4)0.0127 (4)0.0006 (3)0.0021 (3)0.0014 (3)
C110.0134 (4)0.0143 (4)0.0123 (4)0.0004 (3)0.0024 (3)0.0008 (3)
C120.0132 (4)0.0140 (4)0.0133 (4)0.0003 (3)0.0015 (3)0.0012 (3)
C130.0226 (5)0.0206 (5)0.0178 (5)0.0012 (4)0.0074 (4)0.0015 (4)
C140.0143 (4)0.0206 (5)0.0232 (5)0.0019 (3)0.0047 (3)0.0002 (4)
C150.0166 (4)0.0243 (5)0.0204 (5)0.0012 (4)0.0073 (4)0.0016 (4)
Geometric parameters (Å, º) top
O1—C21.3667 (11)C5—C101.3962 (13)
O1—C131.4347 (13)C5—H5A0.9500
O2—C141.2225 (13)C6—C71.4013 (13)
O3—C61.3887 (11)C7—C81.3975 (13)
O3—C151.4337 (11)C7—H7A0.9500
N1—C121.3702 (11)C8—C91.3896 (13)
N1—C91.3927 (12)C8—H8A0.9500
N1—H1N10.890 (17)C9—C101.4158 (13)
C1—C21.3890 (13)C10—C111.4516 (12)
C1—C121.3944 (13)C11—C121.4212 (13)
C1—H1A0.9500C13—H13A0.9800
C2—C31.4250 (13)C13—H13B0.9800
C3—C41.3995 (13)C13—H13C0.9800
C3—C141.4637 (13)C14—H14A0.9500
C4—C111.3892 (13)C15—H15A0.9800
C4—H4A0.9500C15—H15B0.9800
C5—C61.3954 (12)C15—H15C0.9800
C2—O1—C13116.31 (8)C7—C8—H8A120.8
C6—O3—C15116.91 (8)C8—C9—N1129.31 (9)
C12—N1—C9108.96 (8)C8—C9—C10121.59 (9)
C12—N1—H1N1123.8 (11)N1—C9—C10109.10 (8)
C9—N1—H1N1127.2 (11)C5—C10—C9119.72 (8)
C2—C1—C12117.29 (9)C5—C10—C11134.11 (8)
C2—C1—H1A121.4C9—C10—C11106.16 (8)
C12—C1—H1A121.4C4—C11—C12118.40 (8)
O1—C2—C1122.99 (9)C4—C11—C10135.13 (9)
O1—C2—C3115.86 (8)C12—C11—C10106.47 (8)
C1—C2—C3121.15 (9)N1—C12—C1127.59 (9)
C4—C3—C2120.03 (9)N1—C12—C11109.30 (8)
C4—C3—C14119.50 (9)C1—C12—C11123.10 (9)
C2—C3—C14120.45 (9)O1—C13—H13A109.5
C11—C4—C3120.02 (9)O1—C13—H13B109.5
C11—C4—H4A120.0H13A—C13—H13B109.5
C3—C4—H4A120.0O1—C13—H13C109.5
C6—C5—C10118.43 (8)H13A—C13—H13C109.5
C6—C5—H5A120.8H13B—C13—H13C109.5
C10—C5—H5A120.8O2—C14—C3124.07 (10)
O3—C6—C5115.45 (8)O2—C14—H14A118.0
O3—C6—C7122.88 (8)C3—C14—H14A118.0
C5—C6—C7121.67 (9)O3—C15—H15A109.5
C8—C7—C6120.15 (8)O3—C15—H15B109.5
C8—C7—H7A119.9H15A—C15—H15B109.5
C6—C7—H7A119.9O3—C15—H15C109.5
C9—C8—C7118.40 (9)H15A—C15—H15C109.5
C9—C8—H8A120.8H15B—C15—H15C109.5
C13—O1—C2—C16.03 (14)C6—C5—C10—C11179.98 (10)
C13—O1—C2—C3174.23 (8)C8—C9—C10—C50.65 (14)
C12—C1—C2—O1179.61 (9)N1—C9—C10—C5179.76 (8)
C12—C1—C2—C30.12 (14)C8—C9—C10—C11178.56 (9)
O1—C2—C3—C4179.41 (8)N1—C9—C10—C110.55 (10)
C1—C2—C3—C40.33 (14)C3—C4—C11—C120.77 (14)
O1—C2—C3—C142.02 (14)C3—C4—C11—C10179.17 (10)
C1—C2—C3—C14178.23 (9)C5—C10—C11—C40.18 (19)
C2—C3—C4—C110.13 (14)C9—C10—C11—C4179.22 (10)
C14—C3—C4—C11178.71 (9)C5—C10—C11—C12179.87 (10)
C15—O3—C6—C5166.26 (8)C9—C10—C11—C120.83 (10)
C15—O3—C6—C713.32 (13)C9—N1—C12—C1179.26 (9)
C10—C5—C6—O3178.94 (8)C9—N1—C12—C110.49 (11)
C10—C5—C6—C71.47 (14)C2—C1—C12—N1179.72 (9)
O3—C6—C7—C8179.69 (8)C2—C1—C12—C110.56 (14)
C5—C6—C7—C80.13 (14)C4—C11—C12—N1179.22 (8)
C6—C7—C8—C91.58 (14)C10—C11—C12—N10.82 (10)
C7—C8—C9—N1179.11 (9)C4—C11—C12—C11.01 (14)
C7—C8—C9—C101.98 (14)C10—C11—C12—C1178.95 (9)
C12—N1—C9—C8178.97 (10)C4—C3—C14—O23.35 (16)
C12—N1—C9—C100.05 (11)C2—C3—C14—O2178.08 (10)
C6—C5—C10—C91.08 (13)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C4/C11/C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.890 (17)2.106 (17)2.9758 (11)165.2 (15)
C15—H15C···O2ii0.982.443.3888 (14)162
C15—H15A···Cg2iii0.982.913.6613 (12)134
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13NO3
Mr255.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)20.5756 (4), 8.1298 (1), 14.0411 (3)
β (°) 98.871 (1)
V3)2320.64 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.53 × 0.42 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.947, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
13003, 3381, 3032
Rint0.020
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.04
No. of reflections3381
No. of parameters178
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C4/C11/C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.890 (17)2.106 (17)2.9758 (11)165.2 (15)
C15—H15C···O2ii0.982.443.3888 (14)162
C15—H15A···Cg2iii0.982.913.6613 (12)134
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

SL and WM thank Mae Fah Luang University and the Thailand Research Fund through the TRF-research scholar (grant No. RSA5280011) and the Royal Golden Jubilee PhD Program (grant No. PHD/0006/2552) for financial support. SC thanks the Prince of Songkla University for generous support through the Crystal Materials Research Unit. The authors also Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Laphookhieo, S., Maneerat, W. & Chantrapromma, S. (2007). Acta Cryst. E63, o3964–o3965.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Maneerat, W., Laphookhieo, S. & Chantrapromma, S. (2009). Acta Cryst. E65, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Maneerat, W., Laphookhieo, S. & Chantrapromma, S. (2010). Acta Cryst. E66, o2418–o2419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKongkathip, N. & Kongkathip, B. (2009). Heterocycles, 79, 121–144.  Web of Science CrossRef CAS Google Scholar
First citationLaphookhieo, S., Sripisut, T., Prawat, U. & Karalai, C. (2009). Heterocycles, 78, 2115–2119.  Web of Science CrossRef CAS Google Scholar
First citationLi, W. S., McChesney, J. D. & El-Feraly, F. S. (1991). Phytochemistry, 30, 343–346.  CAS Google Scholar
First citationManeerat, W. & Laphookhieo, S. (2010). Heterocycles, 81, 1261–1269.  CAS Google Scholar
First citationManeerat, W., Prawat, U., Saewan, N. & Laphookhieo, S. (2010). J. Braz. Chem. Soc. 21, 665–668.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSripisut, T. & Laphookhieo, S. (2010). J. Asian Nat. Prod. Res. 12, 614–617.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTangyuenyongwatthana, P., Pummangura, S. & Thanyavuthi, D. (1992). Songklanakarin J. Sci. Technol. 14, 157–162.  Google Scholar
First citationThongthoom, T., Songsiang, U., Phaosiri, C. & Yenjai, C. (2010). Arch. Pharm. Res. 33, 675–680.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYenjai, C., Sripontan, S., Sriprajun, P., Kittakoop, P., Jintasirikul, A., Tanticharoen, M. & Thebtaranonth, Y. (2000). Planta Med. 66, 277–279.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1811-o1812
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds