organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro-4-fluoro­phen­yl)-2-(naphthalen-1-yl)acetamide

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 21 June 2011; accepted 22 June 2011; online 25 June 2011)

In the title compound, C18H13ClFNO, the dihedral angle between the mean planes of the chloro- and fluoro-substituted benzene ring and the naphthalene ring system is 60.5 (8)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming a zigzag chain along [101].

Related literature

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006[Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.]); Mijin et al. (2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]). For the coordination abilities of amides, see: Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.], 2010[Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.]). For related structures, see: Davis & Healy (2010[Davis, R. A. & Healy, P. C. (2010). Acta Cryst. E66, o2521.]); Li et al. (2010[Li, W.-S., Luo, X.-F., Wang, Y. & Hu, A.-X. (2010). Acta Cryst. E66, o1460.]); Li & Wu (2010[Li, H. M. & Wu, J.-L. (2010). Acta Cryst. E66, o1274.]); Wang et al. (2010[Wang, Y., Li, Y.-W. & Li, X.-X. (2010). Acta Cryst. E66, o1977.]); Xiao et al. (2010[Xiao, Z.-P., Ouyang, Y.-Z., Qin, S.-D., Xie, T. & Yang, J. (2010). Acta Cryst. E66, o67.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13ClFNO

  • Mr = 313.74

  • Monoclinic, P 21 /n

  • a = 8.096 (6) Å

  • b = 23.323 (6) Å

  • c = 8.404 (3) Å

  • β = 110.83 (5)°

  • V = 1483.4 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 173 K

  • 0.30 × 0.18 × 0.10 mm

Data collection
  • Oxford Diffraction Oxford Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.924, Tmax = 0.974

  • 13979 measured reflections

  • 3679 independent reflections

  • 2947 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.119

  • S = 1.04

  • 3679 reflections

  • 202 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.85 (1) 2.12 (2) 2.914 (2) 157 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). Crystal structures of some acetamide derivatives, viz., 2-(4-bromophenyl)-N-(2-methoxyphenyl)acetamide (Xiao et al., 2010), N-benzyl-2-(3-chloro-4-hydroxyphenyl)acetamide (Davis & Healy, 2010), 2-(2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yloxy)-N-(o-tolyl)acetamide (Li et al., 2010), N-benzyl-2-(2-bromophenyl)-2-(2-nitrophenoxy) acetamide (Li & Wu, 2010) and N-(4-chlorophenyl)-2-(8-quinolyloxy)acetamide monohydrate (Wang et al., 2010) have been reported. In view of the importance of amides, we report herein the crystal structure of the title compound, (I), C18H13ClFNO.

In the title compound, C18H13ClFNO, the dihedral angle between the mean planes of the chloro, fluoro substituted benzene ring and the naphthalene-1-yl ring is 60.5 (8)° (Fig. 2). Bond distances are in normal ranges (Allen et al., 1987). Crystal packing is stabilized by N—H···O hydrogen bonds (Fig. 3 and Table 1).

Related literature top

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For related structures, see: Davis & Healy (2010); Li et al. (2010); Li & Wu (2010); Wang et al. (2010); Xiao et al. (2010). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Naphthalen-1-ylacetyl chloride (0.204 g, 1 mmol) and 3-chloro-4-fluoroaniline (0.145 g, 1 mmol) were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h (Fig. 1). The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from toluene by the slow evaporation method (M.P.: 421 K).

Refinement top

The N-bound H atom was located in a difference Fourier map and refined isotropically with a distance restraint of N—H = 0.86 (2) Å. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model, with C—H lengths of 0.95 Å (CH) or 0.99 Å (CH2). Isotropic displacement parameters for these atoms were set to 1.19-1.21 (CH) or 1.20 (CH2) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction scheme of the title compound, (I).
[Figure 2] Fig. 2. Molecular structure of the title compound, showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed down the c axis. Dashed lines represent N—H···O hydrogen bonds.
N-(3-Chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide top
Crystal data top
C18H13ClFNOF(000) = 648
Mr = 313.74Dx = 1.405 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4655 reflections
a = 8.096 (6) Åθ = 3.1–32.5°
b = 23.323 (6) ŵ = 0.27 mm1
c = 8.404 (3) ÅT = 173 K
β = 110.83 (5)°Block, colorless
V = 1483.4 (13) Å30.30 × 0.18 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Oxford Xcalibur Eos Gemini
diffractometer
3679 independent reflections
Radiation source: Enhance (Mo) X-ray Source2947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.1500 pixels mm-1θmax = 28.3°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 3131
Tmin = 0.924, Tmax = 0.974l = 1011
13979 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.4725P]
where P = (Fo2 + 2Fc2)/3
3679 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
C18H13ClFNOV = 1483.4 (13) Å3
Mr = 313.74Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.096 (6) ŵ = 0.27 mm1
b = 23.323 (6) ÅT = 173 K
c = 8.404 (3) Å0.30 × 0.18 × 0.10 mm
β = 110.83 (5)°
Data collection top
Oxford Diffraction Oxford Xcalibur Eos Gemini
diffractometer
3679 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2947 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.974Rint = 0.024
13979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.25 e Å3
3679 reflectionsΔρmin = 0.31 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38936 (7)0.11723 (2)1.00561 (6)0.06507 (18)
F10.17103 (16)0.03432 (5)0.75440 (15)0.0629 (3)
O10.21705 (14)0.22471 (5)0.22432 (14)0.0486 (3)
N10.43807 (16)0.20845 (6)0.47811 (16)0.0379 (3)
H1N0.538 (2)0.2204 (7)0.544 (2)0.046*
C10.4025 (2)0.16306 (7)0.71760 (19)0.0380 (3)
H1B0.47620.19170.78800.046*
C20.3379 (2)0.11924 (7)0.7882 (2)0.0414 (4)
C30.2317 (2)0.07766 (7)0.6847 (2)0.0428 (4)
C40.1869 (2)0.07943 (7)0.5115 (2)0.0426 (4)
H4A0.11260.05070.44170.051*
C50.2506 (2)0.12309 (6)0.43962 (19)0.0385 (3)
H5A0.22050.12470.31970.046*
C60.35908 (18)0.16496 (6)0.54278 (18)0.0346 (3)
C70.36895 (18)0.23348 (6)0.32430 (18)0.0347 (3)
C80.4966 (2)0.27172 (7)0.2798 (2)0.0407 (3)
H8A0.58500.28700.38580.049*
H8B0.56040.24880.22090.049*
C90.40433 (19)0.32093 (6)0.16728 (19)0.0373 (3)
C100.3683 (2)0.31871 (8)0.0039 (2)0.0460 (4)
H10A0.40710.28660.05070.055*
C110.2745 (2)0.36315 (9)0.1131 (2)0.0555 (5)
H11A0.25090.36060.23200.067*
C120.2185 (2)0.40899 (8)0.0499 (2)0.0545 (5)
H12A0.15380.43830.12480.065*
C130.2547 (2)0.41419 (7)0.1263 (2)0.0449 (4)
C140.2016 (3)0.46210 (8)0.1974 (3)0.0609 (5)
H14A0.13630.49180.12470.073*
C150.2418 (3)0.46677 (9)0.3675 (3)0.0695 (6)
H15A0.20560.49970.41300.083*
C160.3361 (3)0.42340 (9)0.4765 (3)0.0633 (5)
H16A0.36480.42740.59580.076*
C170.3873 (2)0.37576 (7)0.4146 (2)0.0482 (4)
H17A0.44930.34630.49060.058*
C180.34938 (19)0.36936 (7)0.2373 (2)0.0384 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0760 (4)0.0795 (4)0.0392 (2)0.0043 (3)0.0199 (2)0.0062 (2)
F10.0707 (7)0.0521 (6)0.0693 (7)0.0078 (5)0.0291 (6)0.0142 (5)
O10.0360 (6)0.0473 (6)0.0456 (6)0.0067 (5)0.0064 (5)0.0111 (5)
N10.0282 (6)0.0420 (7)0.0344 (6)0.0039 (5)0.0002 (5)0.0035 (5)
C10.0342 (7)0.0390 (8)0.0366 (7)0.0023 (6)0.0072 (6)0.0021 (6)
C20.0395 (8)0.0478 (9)0.0359 (7)0.0078 (7)0.0120 (6)0.0047 (6)
C30.0392 (8)0.0380 (8)0.0522 (9)0.0042 (6)0.0175 (7)0.0077 (7)
C40.0385 (8)0.0351 (7)0.0492 (9)0.0008 (6)0.0096 (7)0.0033 (6)
C50.0363 (8)0.0395 (8)0.0353 (7)0.0004 (6)0.0072 (6)0.0018 (6)
C60.0273 (6)0.0363 (7)0.0358 (7)0.0044 (5)0.0060 (6)0.0029 (6)
C70.0307 (7)0.0316 (7)0.0352 (7)0.0031 (5)0.0037 (6)0.0001 (5)
C80.0315 (7)0.0425 (8)0.0433 (8)0.0013 (6)0.0073 (6)0.0056 (6)
C90.0296 (7)0.0401 (8)0.0374 (7)0.0049 (6)0.0058 (6)0.0060 (6)
C100.0420 (9)0.0526 (10)0.0402 (8)0.0100 (7)0.0107 (7)0.0010 (7)
C110.0505 (10)0.0740 (13)0.0348 (8)0.0145 (9)0.0064 (7)0.0117 (8)
C120.0429 (9)0.0570 (11)0.0527 (10)0.0052 (8)0.0037 (8)0.0241 (8)
C130.0333 (8)0.0420 (8)0.0544 (9)0.0035 (6)0.0094 (7)0.0135 (7)
C140.0519 (11)0.0419 (9)0.0868 (15)0.0050 (8)0.0222 (10)0.0154 (9)
C150.0762 (14)0.0506 (11)0.0893 (16)0.0019 (10)0.0386 (13)0.0080 (11)
C160.0754 (14)0.0589 (12)0.0604 (12)0.0043 (10)0.0302 (11)0.0072 (9)
C170.0509 (10)0.0481 (9)0.0428 (9)0.0026 (7)0.0133 (8)0.0034 (7)
C180.0309 (7)0.0390 (8)0.0414 (8)0.0050 (6)0.0081 (6)0.0063 (6)
Geometric parameters (Å, º) top
Cl1—C21.7242 (17)C9—C101.363 (2)
F1—C31.3454 (19)C9—C181.416 (2)
O1—C71.235 (2)C10—C111.414 (3)
N1—C71.3457 (19)C10—H10A0.9500
N1—C61.407 (2)C11—C121.343 (3)
N1—H1N0.849 (14)C11—H11A0.9500
C1—C21.375 (2)C12—C131.409 (3)
C1—C61.385 (2)C12—H12A0.9500
C1—H1B0.9500C13—C141.405 (3)
C2—C31.380 (2)C13—C181.429 (2)
C3—C41.370 (2)C14—C151.353 (3)
C4—C51.375 (2)C14—H14A0.9500
C4—H4A0.9500C15—C161.396 (3)
C5—C61.391 (2)C15—H15A0.9500
C5—H5A0.9500C16—C171.353 (3)
C7—C81.510 (2)C16—H16A0.9500
C8—C91.506 (2)C17—C181.418 (2)
C8—H8A0.9900C17—H17A0.9500
C8—H8B0.9900
C7—N1—C6126.36 (13)C10—C9—C18119.18 (14)
C7—N1—H1N117.4 (12)C10—C9—C8120.38 (15)
C6—N1—H1N116.2 (12)C18—C9—C8120.41 (14)
C2—C1—C6119.32 (14)C9—C10—C11121.43 (18)
C2—C1—H1B120.3C9—C10—H10A119.3
C6—C1—H1B120.3C11—C10—H10A119.3
C1—C2—C3119.85 (15)C12—C11—C10120.37 (17)
C1—C2—Cl1119.47 (13)C12—C11—H11A119.8
C3—C2—Cl1120.68 (13)C10—C11—H11A119.8
F1—C3—C4119.05 (15)C11—C12—C13120.77 (16)
F1—C3—C2119.71 (15)C11—C12—H12A119.6
C4—C3—C2121.24 (15)C13—C12—H12A119.6
C3—C4—C5119.37 (15)C14—C13—C12122.34 (17)
C3—C4—H4A120.3C14—C13—C18118.60 (17)
C5—C4—H4A120.3C12—C13—C18119.06 (17)
C4—C5—C6119.90 (14)C15—C14—C13121.24 (18)
C4—C5—H5A120.0C15—C14—H14A119.4
C6—C5—H5A120.0C13—C14—H14A119.4
C1—C6—C5120.32 (14)C14—C15—C16120.3 (2)
C1—C6—N1117.00 (13)C14—C15—H15A119.8
C5—C6—N1122.56 (14)C16—C15—H15A119.8
O1—C7—N1123.71 (15)C17—C16—C15120.9 (2)
O1—C7—C8122.22 (14)C17—C16—H16A119.5
N1—C7—C8114.01 (13)C15—C16—H16A119.5
C9—C8—C7112.03 (13)C16—C17—C18120.59 (17)
C9—C8—H8A109.2C16—C17—H17A119.7
C7—C8—H8A109.2C18—C17—H17A119.7
C9—C8—H8B109.2C9—C18—C17122.51 (14)
C7—C8—H8B109.2C9—C18—C13119.17 (15)
H8A—C8—H8B107.9C17—C18—C13118.31 (16)
C6—C1—C2—C30.3 (2)C18—C9—C10—C111.2 (2)
C6—C1—C2—Cl1179.17 (11)C8—C9—C10—C11176.99 (15)
C1—C2—C3—F1178.93 (14)C9—C10—C11—C120.1 (3)
Cl1—C2—C3—F11.6 (2)C10—C11—C12—C131.1 (3)
C1—C2—C3—C40.8 (2)C11—C12—C13—C14178.56 (17)
Cl1—C2—C3—C4178.65 (13)C11—C12—C13—C181.1 (2)
F1—C3—C4—C5179.02 (14)C12—C13—C14—C15178.31 (18)
C2—C3—C4—C50.7 (2)C18—C13—C14—C151.4 (3)
C3—C4—C5—C60.1 (2)C13—C14—C15—C160.6 (3)
C2—C1—C6—C50.3 (2)C14—C15—C16—C170.8 (3)
C2—C1—C6—N1175.86 (14)C15—C16—C17—C181.3 (3)
C4—C5—C6—C10.4 (2)C10—C9—C18—C17177.71 (15)
C4—C5—C6—N1175.56 (14)C8—C9—C18—C174.1 (2)
C7—N1—C6—C1150.76 (15)C10—C9—C18—C131.2 (2)
C7—N1—C6—C533.2 (2)C8—C9—C18—C13177.05 (13)
C6—N1—C7—O16.9 (3)C16—C17—C18—C9178.35 (17)
C6—N1—C7—C8170.51 (14)C16—C17—C18—C130.5 (2)
O1—C7—C8—C933.6 (2)C14—C13—C18—C9179.71 (15)
N1—C7—C8—C9148.94 (14)C12—C13—C18—C90.0 (2)
C7—C8—C9—C10100.15 (18)C14—C13—C18—C170.8 (2)
C7—C8—C9—C1878.05 (18)C12—C13—C18—C17178.91 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (1)2.12 (2)2.914 (2)157 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H13ClFNO
Mr313.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)8.096 (6), 23.323 (6), 8.404 (3)
β (°) 110.83 (5)
V3)1483.4 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.18 × 0.10
Data collection
DiffractometerOxford Diffraction Oxford Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.924, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
13979, 3679, 2947
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.119, 1.04
No. of reflections3679
No. of parameters202
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.31

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.849 (14)2.115 (15)2.914 (2)156.6 (17)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

ASP thanks the UOM for research facilities. BN thanks Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDavis, R. A. & Healy, P. C. (2010). Acta Cryst. E66, o2521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, W.-S., Luo, X.-F., Wang, Y. & Hu, A.-X. (2010). Acta Cryst. E66, o1460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H. M. & Wu, J.-L. (2010). Acta Cryst. E66, o1274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Li, Y.-W. & Li, X.-X. (2010). Acta Cryst. E66, o1977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.  Web of Science CrossRef CAS Google Scholar
First citationWu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, Z.-P., Ouyang, Y.-Z., Qin, S.-D., Xie, T. & Yang, J. (2010). Acta Cryst. E66, o67.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds