organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-((E)-{(S)-(6-Meth­­oxy­quinolin-4-yl)[(2S)-8-vinyl­quinuclidin-2-yl]methyl­imino}­meth­yl)phenol

aDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Shaanxi Province, Xi'an 710032, People's Republic of China
*Correspondence e-mail: weihechem@fmmu.edu.cn

(Received 29 April 2011; accepted 3 June 2011; online 18 June 2011)

The title compound, C27H29N3O2, adopts an E configuration with respect to the C=N bond. The molecular structure is stabilized by inter­molecular O—H⋯N inter­actions between a hy­droxy H atom and the N atom on the quinoline ring.

Related literature

For literature on the preparation of Schiff base compounds, see: Jennings & Lovely (1991[Jennings, W. B. & Lovely, C. J. (1991). Tetrahedron, 41, 5561-5568.]); Yoon & Jacobsen (2005[Yoon, T. P. & Jacobsen, E. N. (2005). Angew. Chem. Int. Ed. 44, 466-468.]). For the uses of Schiff base compounds, see: Yin et al. (2004[Yin, H. D., Wang, Q. B. & Xue, S. C. (2004). J. Organomet. Chem. 689, 2480-2485.]). For the crystal structures of Schiff base compounds, see: Zhu (2011[Zhu, H.-Y. (2011). Acta Cryst. E67, o812.]); Xie et al. (2010[Xie, Y.-S., Dong, W.-L., He, L.-P., Zhang, X.-L. & Zhao, B.-X. (2010). Acta Cryst. E66, o3106.]). For reference bond values, see: Jones (1986[Jones, P. G. (1986). Acta Cryst. A42, 57.]); Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]). For information on the absolute structure of the title compound, see: Brunner et al. (1995[Brunner, H., Biigler, J. & Nuber, B. (1995). Tetrahedron Asymmetry, 6, 1699-1702.]); He et al. (2006[He, W., Liu, P., Zhang, B.-L. Sun, X.-L. & Zhang, S.-Y. (2006). Appl. Organometal. Chem. 20, 328-334.]).

[Scheme 1]

Experimental

Crystal data
  • C27H29N3O2

  • Mr = 427.53

  • Orthorhombic, P 21 21 21

  • a = 8.9285 (15) Å

  • b = 11.6759 (19) Å

  • c = 21.939 (4) Å

  • V = 2287.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.35 × 0.29 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.987

  • 11474 measured reflections

  • 2339 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.084

  • S = 1.05

  • 2339 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.605 (2) 148

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

In recent years, considerable attention has been focused on the Schiff-base ligands, e.g. as organocatalysts or ligands of metal complexes in asymmetric reactions; as biological active compounds owing to their anti-tumour abilities (Yin et al., 2004). We report here the crystal structure of the title Schiff-base compound (Fig. 1).

The molecule of the compound adopts an E configuration with respect to the CN bond. The dihedral angle between the quinoline ring and the part of spirane C8C18C24 is 63.06°. The dihedral angle between benzene ring and quinoline ring is 65.20°. And it is 54.46° between benzene ring and the spirane part C8C18C24. All the bond lengths are within normal values (Jones, 1986; Hooft et al., 2008), and are comparable with those in the similar Cinchona alkaloid-derived Schiff base compounds as cited above (Zhu, 2011; Xie et al., 2010). The molecular conformation is stabilized by O—H···N interactions (Table 1).

Related literature top

For literature on the preparation of Schiff base compounds, see: Jennings & Lovely (1991); Yoon & Jacobsen (2005). For the uses of Schiff base compounds, see: Yin et al. (2004). For the crystal structures of typical Schiff base compounds, see: Zhu (2011); Xie et al. (2010). For reference bond values, see: Jones (1986); Hooft et al. (2008). For information on the absolute structure information of the title compound, see: Brunner et al. (1995); He et al. (2006).

Experimental top

Salicylaldehyde (0.24 ml, 2.3 mmol) and 9-amino-(9-deoxy)-epiquinine (0.513 g, 1.588 mmol) in toluene (40 ml) was heated to reflux. After that, two scoops of Al2O3 (about 1.5 g, dried at 110 °C for two hours before use) were added to the solution. And then added one more scoop each hour. After four hours, the temperature was slowly cooling down to room temperature. Then the mixture was filtrated and the residue was washed with Et2O. The combined organic layers were removed under reduced pressure. The residue was purified by flash chromatography on silica gel (CH2Cl2/methanol/Et3N 30/1/1) to afford Schiff base compound 1 b (570 mg, 84% yield) as a yellow solid. HRMS (ESI, M+H) calcd for C27H30N3O2 428.2338, found 428.2333.

Refinement top

All H atoms were placed in their calculated positions and then refined using the riding model approximation, with C—H lengths of 0.93Å (CH), 0.97Å (CH2), 0.96Å (CH3), and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C27).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound.
2-((E)-{(S)-(6-Methoxyquinolin-4-yl)[(2S)-8- vinylquinuclidin-2-yl]methylimino}methyl)phenol top
Crystal data top
C27H29N3O2Dx = 1.242 Mg m3
Mr = 427.53Melting point: 438(1) K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 8.9285 (15) ÅCell parameters from 4474 reflections
b = 11.6759 (19) Åθ = 2.5–27.8°
c = 21.939 (4) ŵ = 0.08 mm1
V = 2287.1 (7) Å3T = 296 K
Z = 4Block, yellow
F(000) = 9120.35 × 0.29 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
2339 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 910
Tmin = 0.973, Tmax = 0.987k = 1312
11474 measured reflectionsl = 2623
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.044P)2 + 0.2035P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2339 reflectionsΔρmax = 0.10 e Å3
292 parametersΔρmin = 0.10 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0073 (11)
Crystal data top
C27H29N3O2V = 2287.1 (7) Å3
Mr = 427.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.9285 (15) ŵ = 0.08 mm1
b = 11.6759 (19) ÅT = 296 K
c = 21.939 (4) Å0.35 × 0.29 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
2339 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2098 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.987Rint = 0.026
11474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 0.10 e Å3
2339 reflectionsΔρmin = 0.10 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.41218 (19)0.89212 (15)0.85006 (7)0.0446 (4)
N20.2454 (2)1.09111 (16)0.66032 (9)0.0596 (5)
N30.7031 (2)0.98276 (17)0.88131 (7)0.0534 (5)
O10.2162 (2)0.92618 (13)0.93612 (7)0.0639 (4)
H10.27490.94310.90880.096*
O20.6132 (2)0.73226 (15)0.59318 (7)0.0676 (5)
C10.2036 (2)0.81020 (19)0.93959 (8)0.0478 (5)
C20.1042 (3)0.7639 (2)0.98102 (10)0.0648 (7)
H20.04690.81161.00570.078*
C30.0903 (3)0.6468 (2)0.98559 (11)0.0714 (7)
H30.02360.61591.01370.086*
C40.1735 (3)0.5744 (2)0.94915 (11)0.0706 (7)
H40.16270.49540.95240.085*
C50.2728 (3)0.62049 (19)0.90787 (11)0.0578 (6)
H50.32950.57200.88340.069*
C60.2897 (2)0.73866 (18)0.90213 (8)0.0443 (5)
C70.3947 (2)0.78523 (18)0.85793 (9)0.0446 (5)
H70.45130.73480.83450.054*
C80.5154 (2)0.93012 (18)0.80204 (8)0.0425 (5)
H80.57190.86440.78650.051*
C90.4216 (2)0.98194 (16)0.75096 (8)0.0413 (4)
C100.3234 (2)1.06841 (19)0.76429 (10)0.0518 (5)
H100.31311.09320.80430.062*
C110.2389 (3)1.1196 (2)0.71834 (12)0.0573 (6)
H110.17331.17790.72940.069*
C120.3404 (2)1.00365 (19)0.64556 (10)0.0494 (5)
C130.3487 (3)0.9714 (2)0.58382 (10)0.0596 (6)
H130.29161.01070.55520.071*
C140.4382 (3)0.8840 (2)0.56510 (9)0.0601 (6)
H140.44230.86430.52410.072*
C150.5242 (2)0.82375 (19)0.60786 (9)0.0495 (5)
C160.5222 (2)0.85392 (18)0.66807 (9)0.0458 (5)
H160.58160.81400.69570.055*
C170.4310 (2)0.94490 (17)0.68904 (8)0.0410 (4)
C180.6243 (2)1.02128 (19)0.82638 (8)0.0465 (5)
H180.56471.08850.83770.056*
C190.7364 (3)1.0596 (2)0.77607 (10)0.0639 (7)
H19A0.72361.01290.73990.077*
H19B0.71841.13900.76520.077*
C200.8952 (3)1.0458 (2)0.80107 (11)0.0639 (6)
H200.96831.06890.77010.077*
C210.9177 (3)0.9201 (2)0.81741 (14)0.0804 (8)
H21A1.01950.90760.83130.096*
H21B0.90030.87240.78190.096*
C220.8070 (3)0.8886 (2)0.86801 (12)0.0674 (7)
H22A0.75020.82160.85580.081*
H22B0.86210.86930.90470.081*
C230.7916 (3)1.0797 (2)0.90419 (10)0.0636 (6)
H23A0.83761.05820.94260.076*
H23B0.72511.14380.91190.076*
C240.9161 (3)1.1181 (2)0.85889 (11)0.0603 (6)
H241.01351.09870.87680.072*
C250.9125 (3)1.2447 (2)0.84784 (13)0.0727 (7)
H250.82331.27500.83300.087*
C261.0210 (4)1.3160 (3)0.85690 (14)0.0932 (9)
H26A1.11251.28990.87170.112*
H26B1.00771.39350.84860.112*
C270.6104 (4)0.6886 (3)0.53269 (10)0.0893 (9)
H27A0.64490.74650.50500.134*
H27B0.50990.66700.52220.134*
H27C0.67460.62280.53000.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0486 (9)0.0457 (10)0.0395 (9)0.0028 (8)0.0046 (7)0.0016 (7)
N20.0560 (11)0.0516 (11)0.0712 (13)0.0021 (10)0.0051 (10)0.0136 (10)
N30.0598 (11)0.0577 (11)0.0426 (9)0.0051 (10)0.0053 (8)0.0014 (8)
O10.0809 (11)0.0513 (9)0.0596 (9)0.0002 (9)0.0226 (9)0.0035 (8)
O20.0864 (11)0.0694 (11)0.0469 (8)0.0073 (10)0.0076 (8)0.0099 (8)
C10.0538 (12)0.0507 (13)0.0390 (10)0.0019 (10)0.0019 (10)0.0014 (9)
C20.0707 (15)0.0719 (17)0.0517 (13)0.0034 (14)0.0177 (12)0.0014 (12)
C30.0781 (17)0.0786 (18)0.0574 (14)0.0175 (15)0.0167 (13)0.0138 (13)
C40.0897 (18)0.0547 (15)0.0674 (15)0.0137 (15)0.0075 (14)0.0125 (13)
C50.0679 (14)0.0463 (13)0.0591 (13)0.0017 (12)0.0074 (12)0.0038 (11)
C60.0482 (11)0.0473 (12)0.0375 (9)0.0018 (9)0.0014 (9)0.0036 (9)
C70.0479 (11)0.0454 (12)0.0405 (10)0.0012 (10)0.0033 (9)0.0003 (9)
C80.0442 (10)0.0453 (11)0.0379 (9)0.0011 (9)0.0046 (8)0.0007 (9)
C90.0408 (10)0.0394 (10)0.0438 (10)0.0071 (9)0.0025 (8)0.0045 (9)
C100.0516 (12)0.0479 (12)0.0559 (12)0.0017 (11)0.0078 (10)0.0002 (10)
C110.0530 (12)0.0456 (12)0.0734 (16)0.0042 (11)0.0064 (11)0.0093 (11)
C120.0488 (11)0.0470 (12)0.0523 (12)0.0088 (10)0.0035 (10)0.0095 (10)
C130.0674 (14)0.0602 (14)0.0510 (12)0.0078 (13)0.0152 (11)0.0141 (11)
C140.0752 (15)0.0676 (16)0.0375 (11)0.0139 (14)0.0051 (11)0.0019 (11)
C150.0566 (12)0.0479 (12)0.0441 (11)0.0086 (11)0.0055 (10)0.0015 (9)
C160.0497 (11)0.0465 (12)0.0413 (10)0.0045 (10)0.0020 (9)0.0030 (9)
C170.0401 (10)0.0406 (11)0.0422 (9)0.0085 (8)0.0010 (8)0.0040 (9)
C180.0502 (11)0.0476 (12)0.0415 (10)0.0052 (10)0.0022 (9)0.0005 (9)
C190.0603 (13)0.0809 (17)0.0504 (12)0.0277 (14)0.0008 (11)0.0005 (13)
C200.0519 (12)0.0726 (17)0.0672 (14)0.0130 (12)0.0106 (11)0.0142 (13)
C210.0683 (15)0.0689 (18)0.104 (2)0.0005 (14)0.0052 (16)0.0314 (16)
C220.0717 (15)0.0593 (15)0.0713 (15)0.0022 (13)0.0193 (13)0.0007 (12)
C230.0668 (14)0.0665 (15)0.0574 (13)0.0067 (13)0.0074 (12)0.0147 (12)
C240.0481 (12)0.0574 (14)0.0755 (15)0.0019 (11)0.0123 (11)0.0088 (12)
C250.0646 (15)0.0635 (16)0.0900 (19)0.0015 (14)0.0104 (14)0.0072 (14)
C260.091 (2)0.0693 (19)0.119 (2)0.0187 (18)0.003 (2)0.0112 (18)
C270.133 (3)0.084 (2)0.0506 (13)0.006 (2)0.0223 (16)0.0132 (14)
Geometric parameters (Å, º) top
N1—C71.269 (3)C13—C141.359 (3)
N1—C81.468 (2)C13—H130.9300
N2—C111.317 (3)C14—C151.402 (3)
N2—C121.367 (3)C14—H140.9300
N3—C181.466 (3)C15—C161.367 (3)
N3—C221.468 (3)C16—C171.415 (3)
N3—C231.468 (3)C16—H160.9300
O1—C11.361 (3)C18—C191.556 (3)
O1—H10.8200C18—H180.9800
O2—C151.369 (3)C19—C201.529 (3)
O2—C271.422 (3)C19—H19A0.9700
C1—C21.380 (3)C19—H19B0.9700
C1—C61.401 (3)C20—C211.525 (4)
C2—C31.377 (4)C20—C241.535 (3)
C2—H20.9300C20—H200.9800
C3—C41.381 (4)C21—C221.531 (4)
C3—H30.9300C21—H21A0.9700
C4—C51.377 (3)C21—H21B0.9700
C4—H40.9300C22—H22A0.9700
C5—C61.394 (3)C22—H22B0.9700
C5—H50.9300C23—C241.558 (3)
C6—C71.455 (3)C23—H23A0.9700
C7—H70.9300C23—H23B0.9700
C8—C91.524 (3)C24—C251.498 (4)
C8—C181.537 (3)C24—H240.9800
C8—H80.9800C25—C261.293 (4)
C9—C101.369 (3)C25—H250.9300
C9—C171.428 (3)C26—H26A0.9300
C10—C111.394 (3)C26—H26B0.9300
C10—H100.9300C27—H27A0.9600
C11—H110.9300C27—H27B0.9600
C12—C131.408 (3)C27—H27C0.9600
C12—C171.426 (3)
C7—N1—C8118.14 (18)C16—C17—C12118.01 (18)
C11—N2—C12116.44 (19)C16—C17—C9124.77 (17)
C18—N3—C22111.69 (17)C12—C17—C9117.22 (18)
C18—N3—C23107.62 (18)N3—C18—C8112.13 (17)
C22—N3—C23107.80 (17)N3—C18—C19111.27 (17)
C1—O1—H1109.5C8—C18—C19111.09 (16)
C15—O2—C27119.3 (2)N3—C18—H18107.4
O1—C1—C2118.6 (2)C8—C18—H18107.4
O1—C1—C6121.00 (18)C19—C18—H18107.4
C2—C1—C6120.4 (2)C20—C19—C18108.15 (19)
C3—C2—C1119.6 (2)C20—C19—H19A110.1
C3—C2—H2120.2C18—C19—H19A110.1
C1—C2—H2120.2C20—C19—H19B110.1
C2—C3—C4121.1 (2)C18—C19—H19B110.1
C2—C3—H3119.4H19A—C19—H19B108.4
C4—C3—H3119.4C21—C20—C19107.9 (2)
C5—C4—C3119.2 (2)C21—C20—C24108.6 (2)
C5—C4—H4120.4C19—C20—C24110.6 (2)
C3—C4—H4120.4C21—C20—H20109.9
C4—C5—C6121.1 (2)C19—C20—H20109.9
C4—C5—H5119.5C24—C20—H20109.9
C6—C5—H5119.5C20—C21—C22108.5 (2)
C5—C6—C1118.5 (2)C20—C21—H21A110.0
C5—C6—C7120.0 (2)C22—C21—H21A110.0
C1—C6—C7121.46 (19)C20—C21—H21B110.0
N1—C7—C6122.49 (19)C22—C21—H21B110.0
N1—C7—H7118.8H21A—C21—H21B108.4
C6—C7—H7118.8N3—C22—C21111.8 (2)
N1—C8—C9107.63 (15)N3—C22—H22A109.2
N1—C8—C18110.92 (15)C21—C22—H22A109.2
C9—C8—C18109.15 (16)N3—C22—H22B109.2
N1—C8—H8109.7C21—C22—H22B109.2
C9—C8—H8109.7H22A—C22—H22B107.9
C18—C8—H8109.7N3—C23—C24112.82 (18)
C10—C9—C17117.65 (18)N3—C23—H23A109.0
C10—C9—C8119.18 (18)C24—C23—H23A109.0
C17—C9—C8123.17 (17)N3—C23—H23B109.0
C9—C10—C11120.6 (2)C24—C23—H23B109.0
C9—C10—H10119.7H23A—C23—H23B107.8
C11—C10—H10119.7C25—C24—C20114.0 (2)
N2—C11—C10124.5 (2)C25—C24—C23111.8 (2)
N2—C11—H11117.7C20—C24—C23106.36 (18)
C10—C11—H11117.7C25—C24—H24108.2
N2—C12—C13117.4 (2)C20—C24—H24108.2
N2—C12—C17123.57 (19)C23—C24—H24108.2
C13—C12—C17119.0 (2)C26—C25—C24126.5 (3)
C14—C13—C12121.5 (2)C26—C25—H25116.8
C14—C13—H13119.2C24—C25—H25116.8
C12—C13—H13119.2C25—C26—H26A120.0
C13—C14—C15119.8 (2)C25—C26—H26B120.0
C13—C14—H14120.1H26A—C26—H26B120.0
C15—C14—H14120.1O2—C27—H27A109.5
C16—C15—O2115.9 (2)O2—C27—H27B109.5
C16—C15—C14120.6 (2)H27A—C27—H27B109.5
O2—C15—C14123.51 (18)O2—C27—H27C109.5
C15—C16—C17121.0 (2)H27A—C27—H27C109.5
C15—C16—H16119.5H27B—C27—H27C109.5
C17—C16—H16119.5
O1—C1—C2—C3179.6 (2)C15—C16—C17—C9179.84 (19)
C6—C1—C2—C30.2 (4)N2—C12—C17—C16178.52 (19)
C1—C2—C3—C40.4 (4)C13—C12—C17—C161.9 (3)
C2—C3—C4—C50.5 (4)N2—C12—C17—C90.9 (3)
C3—C4—C5—C60.4 (4)C13—C12—C17—C9178.69 (19)
C4—C5—C6—C10.2 (3)C10—C9—C17—C16177.42 (18)
C4—C5—C6—C7179.6 (2)C8—C9—C17—C162.7 (3)
O1—C1—C6—C5179.7 (2)C10—C9—C17—C121.9 (3)
C2—C1—C6—C50.2 (3)C8—C9—C17—C12177.90 (17)
O1—C1—C6—C70.5 (3)C22—N3—C18—C867.6 (2)
C2—C1—C6—C7179.7 (2)C23—N3—C18—C8174.22 (17)
C8—N1—C7—C6176.87 (16)C22—N3—C18—C1957.5 (2)
C5—C6—C7—N1178.6 (2)C23—N3—C18—C1960.7 (2)
C1—C6—C7—N11.3 (3)N1—C8—C18—N353.4 (2)
C7—N1—C8—C9109.5 (2)C9—C8—C18—N3171.84 (16)
C7—N1—C8—C18131.2 (2)N1—C8—C18—C19178.63 (18)
N1—C8—C9—C1054.8 (2)C9—C8—C18—C1963.0 (2)
C18—C8—C9—C1065.7 (2)N3—C18—C19—C200.7 (3)
N1—C8—C9—C17125.40 (19)C8—C18—C19—C20126.4 (2)
C18—C8—C9—C17114.15 (19)C18—C19—C20—C2159.8 (3)
C17—C9—C10—C111.5 (3)C18—C19—C20—C2458.9 (3)
C8—C9—C10—C11178.35 (19)C19—C20—C21—C2262.9 (3)
C12—N2—C11—C101.3 (3)C24—C20—C21—C2257.0 (3)
C9—C10—C11—N20.2 (3)C18—N3—C22—C2154.8 (3)
C11—N2—C12—C13179.7 (2)C23—N3—C22—C2163.2 (2)
C11—N2—C12—C170.7 (3)C20—C21—C22—N35.9 (3)
N2—C12—C13—C14178.8 (2)C18—N3—C23—C2463.8 (2)
C17—C12—C13—C141.6 (3)C22—N3—C23—C2456.8 (3)
C12—C13—C14—C150.3 (3)C21—C20—C24—C25174.1 (2)
C27—O2—C15—C16174.0 (2)C19—C20—C24—C2567.7 (3)
C27—O2—C15—C145.4 (3)C21—C20—C24—C2362.3 (3)
C13—C14—C15—C161.8 (3)C19—C20—C24—C2356.0 (3)
C13—C14—C15—O2177.6 (2)N3—C23—C24—C25129.9 (2)
O2—C15—C16—C17178.10 (18)N3—C23—C24—C204.9 (3)
C14—C15—C16—C171.4 (3)C20—C24—C25—C26116.8 (3)
C15—C16—C17—C120.5 (3)C23—C24—C25—C26122.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.605 (2)148

Experimental details

Crystal data
Chemical formulaC27H29N3O2
Mr427.53
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.9285 (15), 11.6759 (19), 21.939 (4)
V3)2287.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.29 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.973, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
11474, 2339, 2098
Rint0.026
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.05
No. of reflections2339
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.10

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.605 (2)147.5
 

Acknowledgements

The authors thank the Natural Science Foundation of China (grant No. 21072228) for financial support.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrunner, H., Biigler, J. & Nuber, B. (1995). Tetrahedron Asymmetry, 6, 1699–1702.  CrossRef CAS Google Scholar
First citationHe, W., Liu, P., Zhang, B.-L. Sun, X.-L. & Zhang, S.-Y. (2006). Appl. Organometal. Chem. 20, 328–334.  CrossRef CAS Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJennings, W. B. & Lovely, C. J. (1991). Tetrahedron, 41, 5561–5568.  CrossRef Google Scholar
First citationJones, P. G. (1986). Acta Cryst. A42, 57.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y.-S., Dong, W.-L., He, L.-P., Zhang, X.-L. & Zhao, B.-X. (2010). Acta Cryst. E66, o3106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, H. D., Wang, Q. B. & Xue, S. C. (2004). J. Organomet. Chem. 689, 2480–2485.  Web of Science CSD CrossRef CAS Google Scholar
First citationYoon, T. P. & Jacobsen, E. N. (2005). Angew. Chem. Int. Ed. 44, 466–468.  CrossRef CAS Google Scholar
First citationZhu, H.-Y. (2011). Acta Cryst. E67, o812.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds