metal-organic compounds
Chloridobis(dimethylglyoximato-κ2N,N′)(4-methylpyridine-κN)cobalt(III) hemihydrate
aDepartment of Chemistry, Loyola College (Autonomous), Chennai 600 034, India
*Correspondence e-mail: dayalan77@gmail.com
In the title complex, [Co(C4H7N2O2)2Cl(C6H7N)]·0.5H2O, the central CoIII ion, chelated by four N atoms of the two bidenate glyoximate ligands, exhibits a slightly distorted octahedral geometry. The axial positions are occupied by a chloride ion and the 4-methylpyridine N atom. Intermolecular O—H⋯O hydrogen bonds link the molecules in the crystal via the water molecules, while the glyoximate ligands exhibit intramolecular O—H⋯O hydrogen bonds.
Related literature
For similar structures, see: Revathi et al. (2009); Kavitha et al. (2008). For vitamin-B12 models, see: Brown et al. (2005); Randaccio et al. (1989). For structure–property relationships, see: Gupta et al. (2004); Dutta et al. (2009). For intramolecular hydrogen bonding, see: Reemers & Englert (2002); Dolphin (1982); For details of the synthesis, see: Ramesh et al. (2008); Toscano et al. (1983). For spectroscopic details, see: Dayalan & Vijayaraghavan (2001); Silverstein & Bassler (1984); Bline & Hadzi (1958). For chemical properties of cobaloximes, see: Schrauzer & Windgassen (1966).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2008); cell APEX2 and SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811020162/jh2292sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811020162/jh2292Isup2.hkl
The complex was prepared by the literature method (Schrauzer et al.,1966) using H[Co(dmgH)2 Cl2] as the starting material (Ramesh et al.,2008). The dichloro cobaloxime was mixed with 4-methylpyridine in 1:1 molar ratio in about 60 ml of ethanol and allowed to stir for 3 hrs. The resulting brown coloured complex was filtered,washed with absolute ethanol followed by ether and dried over vacuum desicator. Crystals of the complex were grown in ethanol by slow evaporation method. The complex was characterized by UV, IR and H1NMR spectra. A moderately intense band around 250 nm may be ascribed to π- π* transition of the dmgH - group. A shoulder around 330 nm may be due to the ligand to metal charge transfer transition, LMCT (Dayalan et al., 2001). The C=N stretching vibration of the oxime in its complex was observed at 1580 cm-1 and the intra molecular hydrogen bonded –OH around 3450 cm-1. A moderate peak at 1094 cm-1 may be assigned to the C=N—O stretching of the oxime. The peak at 513 cm-1 could be attributed to cobalt(III)-nitrogen stretching (Bline et al.,1958). The 1H NMR spectrum of the complex in DMSO-d6 shows a sharp intense singlet at 2.4 p.p.m. corresponding to methyl protons of the dimethylglyoximate. A singlet at 3.2 p.p.m. may be due to methyl protons of axial 4-methylpyridine ligand. The oxime –OH proton resonates at 8.28 p.p.m.. The two doublets at 8.07 and 7.4 p.p.m. correspond to pyridine ring protons at 2 & 6 and 3 & 5 positions, respectively of 4-methylpyridine at the axial position of the complex (Silverstein et al.,1984).
All the hydrogen atoms were identified from the difference electron density peak and fixed accordingly. The H atom bound to methyl C atoms were constrained to riding atoms wit d(C—H) = 0.96Å and Uiso(H) = 1.5Uequ(C). and the hydrogen atoms bound to aromatic carbon were constrained to riding atoms with d(C—H) = 0.93Å and Uiso(H) =1.2Uequ(C).The posotion of the hydrogen atom bound to the hydroxyl group was identified from the difference in the
and restrained to a distance of d(O2—H2) = 0.90 (1) Å. The lattice solvent water O5 is left as anisotropically refined without the hydrogen being fixed but the water hydrogen is included in the chemical formula.Data collection: APEX2 (Bruker, 2008); cell
APEX2 and SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The ORTEP representation of the complex drawn at 30% probability level with the atom labelling scheme. | |
Fig. 2. Packing of complex in the unit cell. |
[Co(C4H7N2O2)2Cl(C6H7N)]·0.5H2O | Dx = 1.512 Mg m−3 |
Mr = 425.74 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 5528 reflections |
a = 8.330 (5) Å | θ = 2.6–28.2° |
b = 14.365 (5) Å | µ = 1.09 mm−1 |
c = 15.634 (5) Å | T = 293 K |
V = 1870.8 (14) Å3 | Block, brown |
Z = 4 | 0.25 × 0.20 × 0.20 mm |
F(000) = 880 |
Bruker SMART APEXII CCD diffractometer | 4642 independent reflections |
Radiation source: fine-focus sealed tube | 4143 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω and ϕ scans | θmax = 28.4°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker 2008) | h = −10→10 |
Tmin = 0.772, Tmax = 0.811 | k = −19→18 |
10519 measured reflections | l = −20→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0405P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
4642 reflections | Δρmax = 0.40 e Å−3 |
248 parameters | Δρmin = −0.38 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 1983 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.014 (13) |
[Co(C4H7N2O2)2Cl(C6H7N)]·0.5H2O | V = 1870.8 (14) Å3 |
Mr = 425.74 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.330 (5) Å | µ = 1.09 mm−1 |
b = 14.365 (5) Å | T = 293 K |
c = 15.634 (5) Å | 0.25 × 0.20 × 0.20 mm |
Bruker SMART APEXII CCD diffractometer | 4642 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker 2008) | 4143 reflections with I > 2σ(I) |
Tmin = 0.772, Tmax = 0.811 | Rint = 0.028 |
10519 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.077 | Δρmax = 0.40 e Å−3 |
S = 1.02 | Δρmin = −0.38 e Å−3 |
4642 reflections | Absolute structure: Flack (1983), 1983 Friedel pairs |
248 parameters | Absolute structure parameter: 0.014 (13) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.7398 (3) | 0.39874 (18) | 0.25266 (16) | 0.0398 (5) | |
C2 | 0.7058 (3) | 0.49050 (18) | 0.28872 (15) | 0.0408 (6) | |
C3 | 0.8891 (3) | 0.3435 (2) | 0.2701 (2) | 0.0643 (9) | |
H3A | 0.8637 | 0.2783 | 0.2702 | 0.097* | |
H3B | 0.9319 | 0.3608 | 0.3249 | 0.097* | |
H3C | 0.9672 | 0.3560 | 0.2265 | 0.097* | |
C4 | 0.8147 (4) | 0.5421 (3) | 0.3478 (2) | 0.0741 (10) | |
H4A | 0.7709 | 0.6026 | 0.3591 | 0.111* | |
H4B | 0.9185 | 0.5485 | 0.3218 | 0.111* | |
H4C | 0.8248 | 0.5083 | 0.4005 | 0.111* | |
C5 | 0.1881 (3) | 0.40417 (17) | 0.08949 (15) | 0.0406 (6) | |
C6 | 0.1538 (3) | 0.49521 (17) | 0.12558 (16) | 0.0392 (5) | |
C7 | 0.0753 (4) | 0.3542 (3) | 0.0314 (2) | 0.0759 (10) | |
H7A | 0.0627 | 0.3891 | −0.0206 | 0.114* | |
H7B | −0.0270 | 0.3477 | 0.0589 | 0.114* | |
H7C | 0.1177 | 0.2937 | 0.0183 | 0.114* | |
C8 | 0.0047 (3) | 0.5485 (3) | 0.1072 (2) | 0.0644 (9) | |
H8A | 0.0054 | 0.6055 | 0.1393 | 0.097* | |
H8B | −0.0870 | 0.5121 | 0.1232 | 0.097* | |
H8C | −0.0004 | 0.5625 | 0.0472 | 0.097* | |
C9 | 0.2872 (3) | 0.43850 (15) | 0.35158 (13) | 0.0331 (4) | |
H9 | 0.2853 | 0.5030 | 0.3467 | 0.040* | |
C10 | 0.2280 (3) | 0.39842 (16) | 0.42473 (15) | 0.0387 (5) | |
H10 | 0.1854 | 0.4358 | 0.4677 | 0.046* | |
C11 | 0.2313 (3) | 0.30297 (17) | 0.43490 (15) | 0.0376 (5) | |
C12 | 0.2910 (3) | 0.25176 (16) | 0.36721 (16) | 0.0376 (5) | |
H12 | 0.2935 | 0.1871 | 0.3707 | 0.045* | |
C13 | 0.3464 (3) | 0.29497 (15) | 0.29503 (15) | 0.0351 (5) | |
H13 | 0.3846 | 0.2588 | 0.2501 | 0.042* | |
C14 | 0.1738 (4) | 0.2569 (2) | 0.51559 (18) | 0.0596 (8) | |
H14A | 0.0587 | 0.2530 | 0.5148 | 0.089* | |
H14B | 0.2075 | 0.2928 | 0.5641 | 0.089* | |
H14C | 0.2184 | 0.1954 | 0.5193 | 0.089* | |
N1 | 0.6300 (2) | 0.36941 (12) | 0.20091 (12) | 0.0341 (4) | |
N2 | 0.5693 (3) | 0.52355 (12) | 0.26275 (11) | 0.0349 (4) | |
N3 | 0.3268 (3) | 0.37229 (13) | 0.11255 (12) | 0.0346 (4) | |
N4 | 0.2679 (2) | 0.52672 (12) | 0.17406 (12) | 0.0334 (4) | |
N5 | 0.3474 (2) | 0.38848 (11) | 0.28726 (11) | 0.0269 (4) | |
O1 | 0.6426 (2) | 0.28837 (12) | 0.15990 (12) | 0.0484 (4) | |
O2 | 0.5187 (3) | 0.60675 (11) | 0.28888 (12) | 0.0476 (5) | |
O3 | 0.3788 (3) | 0.29032 (14) | 0.08378 (12) | 0.0524 (5) | |
O4 | 0.2592 (2) | 0.61073 (11) | 0.21081 (12) | 0.0483 (5) | |
Cl1 | 0.56856 (8) | 0.51419 (4) | 0.07531 (4) | 0.04044 (14) | |
Co1 | 0.44843 (3) | 0.447668 (17) | 0.188051 (17) | 0.02570 (8) | |
O5 | 0.8676 (9) | 0.1476 (5) | 0.1002 (5) | 0.117 (2) | 0.50 |
H3 | 0.4797 (19) | 0.288 (2) | 0.104 (2) | 0.066 (11)* | |
H2 | 0.426 (3) | 0.621 (3) | 0.261 (2) | 0.087 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0293 (12) | 0.0521 (14) | 0.0381 (12) | −0.0008 (10) | −0.0037 (10) | 0.0140 (11) |
C2 | 0.0345 (12) | 0.0535 (14) | 0.0345 (12) | −0.0124 (11) | −0.0104 (10) | 0.0099 (10) |
C3 | 0.0362 (14) | 0.080 (2) | 0.076 (2) | 0.0095 (14) | −0.0095 (14) | 0.0267 (18) |
C4 | 0.069 (2) | 0.090 (2) | 0.0638 (19) | −0.023 (2) | −0.0352 (17) | 0.0010 (18) |
C5 | 0.0370 (13) | 0.0506 (13) | 0.0341 (12) | −0.0111 (11) | −0.0101 (10) | 0.0045 (10) |
C6 | 0.0277 (12) | 0.0510 (13) | 0.0388 (12) | 0.0003 (11) | −0.0027 (10) | 0.0144 (10) |
C7 | 0.071 (2) | 0.089 (2) | 0.068 (2) | −0.024 (2) | −0.0365 (18) | −0.0029 (18) |
C8 | 0.0343 (14) | 0.087 (2) | 0.0724 (19) | 0.0160 (14) | −0.0032 (13) | 0.0242 (18) |
C9 | 0.0363 (11) | 0.0300 (10) | 0.0331 (10) | −0.0003 (9) | 0.0018 (9) | −0.0065 (9) |
C10 | 0.0412 (13) | 0.0441 (12) | 0.0309 (10) | −0.0013 (10) | 0.0052 (11) | −0.0101 (10) |
C11 | 0.0328 (12) | 0.0482 (13) | 0.0317 (11) | −0.0059 (10) | −0.0030 (10) | 0.0040 (10) |
C12 | 0.0405 (13) | 0.0306 (10) | 0.0415 (12) | 0.0002 (10) | 0.0020 (11) | 0.0042 (9) |
C13 | 0.0402 (12) | 0.0278 (9) | 0.0372 (12) | 0.0029 (9) | 0.0023 (10) | −0.0032 (8) |
C14 | 0.067 (2) | 0.0712 (18) | 0.0405 (16) | −0.0139 (16) | 0.0089 (15) | 0.0088 (14) |
N1 | 0.0303 (9) | 0.0373 (9) | 0.0348 (10) | 0.0051 (7) | 0.0020 (8) | 0.0029 (8) |
N2 | 0.0413 (11) | 0.0320 (8) | 0.0312 (9) | −0.0089 (9) | −0.0018 (9) | −0.0001 (7) |
N3 | 0.0401 (12) | 0.0355 (9) | 0.0283 (9) | −0.0036 (8) | −0.0025 (8) | −0.0054 (7) |
N4 | 0.0344 (10) | 0.0315 (8) | 0.0343 (10) | 0.0049 (7) | 0.0001 (8) | 0.0037 (7) |
N5 | 0.0273 (9) | 0.0251 (7) | 0.0282 (8) | 0.0018 (7) | −0.0005 (7) | −0.0013 (6) |
O1 | 0.0480 (10) | 0.0418 (8) | 0.0553 (11) | 0.0150 (8) | 0.0079 (9) | −0.0052 (8) |
O2 | 0.0639 (13) | 0.0307 (7) | 0.0482 (10) | −0.0095 (8) | −0.0048 (9) | −0.0084 (7) |
O3 | 0.0678 (13) | 0.0433 (9) | 0.0463 (11) | 0.0021 (9) | −0.0060 (10) | −0.0203 (8) |
O4 | 0.0586 (12) | 0.0314 (8) | 0.0549 (11) | 0.0134 (8) | 0.0025 (9) | −0.0017 (8) |
Cl1 | 0.0367 (3) | 0.0529 (3) | 0.0317 (2) | −0.0044 (3) | −0.0007 (3) | 0.0089 (2) |
Co1 | 0.02577 (13) | 0.02728 (12) | 0.02404 (12) | 0.00065 (11) | −0.00294 (11) | −0.00153 (10) |
O5 | 0.119 (5) | 0.121 (4) | 0.111 (5) | 0.036 (5) | 0.008 (4) | 0.015 (4) |
C1—N1 | 1.292 (3) | C9—H9 | 0.9300 |
C1—C2 | 1.461 (4) | C10—C11 | 1.381 (3) |
C1—C3 | 1.500 (3) | C10—H10 | 0.9300 |
C2—N2 | 1.297 (3) | C11—C12 | 1.382 (3) |
C2—C4 | 1.491 (4) | C11—C14 | 1.503 (3) |
C3—H3A | 0.9600 | C12—C13 | 1.368 (3) |
C3—H3B | 0.9600 | C12—H12 | 0.9300 |
C3—H3C | 0.9600 | C13—N5 | 1.349 (3) |
C4—H4A | 0.9600 | C13—H13 | 0.9300 |
C4—H4B | 0.9600 | C14—H14A | 0.9600 |
C4—H4C | 0.9600 | C14—H14B | 0.9600 |
C5—N3 | 1.294 (3) | C14—H14C | 0.9600 |
C5—C6 | 1.453 (4) | N1—O1 | 1.333 (3) |
C5—C7 | 1.491 (4) | N1—Co1 | 1.8951 (19) |
C6—N4 | 1.297 (3) | N2—O2 | 1.332 (3) |
C6—C8 | 1.487 (4) | N2—Co1 | 1.8885 (19) |
C7—H7A | 0.9600 | N3—O3 | 1.333 (3) |
C7—H7B | 0.9600 | N3—Co1 | 1.8953 (19) |
C7—H7C | 0.9600 | N4—O4 | 1.339 (2) |
C8—H8A | 0.9600 | N4—Co1 | 1.897 (2) |
C8—H8B | 0.9600 | N5—Co1 | 1.9589 (18) |
C8—H8C | 0.9600 | O2—H2 | 0.907 (10) |
C9—N5 | 1.334 (3) | O3—H3 | 0.900 (10) |
C9—C10 | 1.372 (3) | Cl1—Co1 | 2.2408 (8) |
O1···O5 | 2.911 (8) | O5···O3i | 3.013 (7) |
N1—C1—C2 | 113.5 (2) | C13—C12—C11 | 120.8 (2) |
N1—C1—C3 | 121.9 (3) | C13—C12—H12 | 119.6 |
C2—C1—C3 | 124.6 (2) | C11—C12—H12 | 119.6 |
N2—C2—C1 | 112.3 (2) | N5—C13—C12 | 121.9 (2) |
N2—C2—C4 | 123.0 (3) | N5—C13—H13 | 119.1 |
C1—C2—C4 | 124.7 (3) | C12—C13—H13 | 119.1 |
C1—C3—H3A | 109.5 | C11—C14—H14A | 109.5 |
C1—C3—H3B | 109.5 | C11—C14—H14B | 109.5 |
H3A—C3—H3B | 109.5 | H14A—C14—H14B | 109.5 |
C1—C3—H3C | 109.5 | C11—C14—H14C | 109.5 |
H3A—C3—H3C | 109.5 | H14A—C14—H14C | 109.5 |
H3B—C3—H3C | 109.5 | H14B—C14—H14C | 109.5 |
C2—C4—H4A | 109.5 | C1—N1—O1 | 122.0 (2) |
C2—C4—H4B | 109.5 | C1—N1—Co1 | 115.98 (16) |
H4A—C4—H4B | 109.5 | O1—N1—Co1 | 122.00 (15) |
C2—C4—H4C | 109.5 | C2—N2—O2 | 120.7 (2) |
H4A—C4—H4C | 109.5 | C2—N2—Co1 | 116.73 (17) |
H4B—C4—H4C | 109.5 | O2—N2—Co1 | 122.61 (17) |
N3—C5—C6 | 112.7 (2) | C5—N3—O3 | 120.6 (2) |
N3—C5—C7 | 124.2 (3) | C5—N3—Co1 | 116.65 (17) |
C6—C5—C7 | 123.1 (3) | O3—N3—Co1 | 122.76 (18) |
N4—C6—C5 | 113.4 (2) | C6—N4—O4 | 121.7 (2) |
N4—C6—C8 | 123.0 (3) | C6—N4—Co1 | 116.06 (16) |
C5—C6—C8 | 123.6 (2) | O4—N4—Co1 | 122.21 (15) |
C5—C7—H7A | 109.5 | C9—N5—C13 | 117.81 (19) |
C5—C7—H7B | 109.5 | C9—N5—Co1 | 121.65 (14) |
H7A—C7—H7B | 109.5 | C13—N5—Co1 | 120.40 (15) |
C5—C7—H7C | 109.5 | N2—O2—H2 | 109 (2) |
H7A—C7—H7C | 109.5 | N3—O3—H3 | 103 (2) |
H7B—C7—H7C | 109.5 | N2—Co1—N1 | 81.44 (9) |
C6—C8—H8A | 109.5 | N2—Co1—N3 | 179.57 (9) |
C6—C8—H8B | 109.5 | N1—Co1—N3 | 98.84 (9) |
H8A—C8—H8B | 109.5 | N2—Co1—N4 | 98.54 (9) |
C6—C8—H8C | 109.5 | N1—Co1—N4 | 179.31 (9) |
H8A—C8—H8C | 109.5 | N3—Co1—N4 | 81.17 (9) |
H8B—C8—H8C | 109.5 | N2—Co1—N5 | 89.43 (8) |
N5—C9—C10 | 122.5 (2) | N1—Co1—N5 | 90.09 (8) |
N5—C9—H9 | 118.7 | N3—Co1—N5 | 90.89 (8) |
C10—C9—H9 | 118.7 | N4—Co1—N5 | 90.60 (8) |
C9—C10—C11 | 120.4 (2) | N2—Co1—Cl1 | 90.12 (6) |
C9—C10—H10 | 119.8 | N1—Co1—Cl1 | 88.85 (7) |
C11—C10—H10 | 119.8 | N3—Co1—Cl1 | 89.57 (7) |
C10—C11—C12 | 116.6 (2) | N4—Co1—Cl1 | 90.46 (6) |
C10—C11—C14 | 121.9 (2) | N5—Co1—Cl1 | 178.90 (6) |
C12—C11—C14 | 121.5 (2) | ||
N1—C1—C2—N2 | 1.4 (3) | C2—N2—Co1—Cl1 | −90.64 (17) |
C3—C1—C2—N2 | 179.3 (2) | O2—N2—Co1—Cl1 | 89.93 (16) |
N1—C1—C2—C4 | −177.8 (3) | C1—N1—Co1—N2 | 2.65 (17) |
C3—C1—C2—C4 | 0.1 (4) | O1—N1—Co1—N2 | −178.23 (18) |
N3—C5—C6—N4 | −0.3 (3) | C1—N1—Co1—N3 | −177.67 (17) |
C7—C5—C6—N4 | −179.6 (2) | O1—N1—Co1—N3 | 1.44 (18) |
N3—C5—C6—C8 | 178.2 (2) | C1—N1—Co1—N4 | 91 (8) |
C7—C5—C6—C8 | −1.1 (4) | O1—N1—Co1—N4 | −89 (8) |
N5—C9—C10—C11 | 1.1 (4) | C1—N1—Co1—N5 | −86.76 (17) |
C9—C10—C11—C12 | −2.2 (4) | O1—N1—Co1—N5 | 92.35 (17) |
C9—C10—C11—C14 | 177.4 (2) | C1—N1—Co1—Cl1 | 92.94 (17) |
C10—C11—C12—C13 | 1.3 (4) | O1—N1—Co1—Cl1 | −87.94 (17) |
C14—C11—C12—C13 | −178.4 (2) | C5—N3—Co1—N2 | −50 (13) |
C11—C12—C13—N5 | 0.9 (4) | O3—N3—Co1—N2 | 130 (13) |
C2—C1—N1—O1 | 177.96 (19) | C5—N3—Co1—N1 | 179.18 (17) |
C3—C1—N1—O1 | 0.0 (3) | O3—N3—Co1—N1 | −0.80 (19) |
C2—C1—N1—Co1 | −2.9 (3) | C5—N3—Co1—N4 | −1.52 (17) |
C3—C1—N1—Co1 | 179.11 (19) | O3—N3—Co1—N4 | 178.50 (19) |
C1—C2—N2—O2 | −179.79 (19) | C5—N3—Co1—N5 | 88.95 (18) |
C4—C2—N2—O2 | −0.5 (4) | O3—N3—Co1—N5 | −91.03 (18) |
C1—C2—N2—Co1 | 0.8 (3) | C5—N3—Co1—Cl1 | −92.05 (17) |
C4—C2—N2—Co1 | −180.0 (2) | O3—N3—Co1—Cl1 | 87.97 (18) |
C6—C5—N3—O3 | −178.62 (19) | C6—N4—Co1—N2 | −178.99 (16) |
C7—C5—N3—O3 | 0.7 (4) | O4—N4—Co1—N2 | 2.02 (18) |
C6—C5—N3—Co1 | 1.4 (3) | C6—N4—Co1—N1 | 92 (8) |
C7—C5—N3—Co1 | −179.3 (2) | O4—N4—Co1—N1 | −87 (8) |
C5—C6—N4—O4 | 178.05 (19) | C6—N4—Co1—N3 | 1.33 (16) |
C8—C6—N4—O4 | −0.4 (3) | O4—N4—Co1—N3 | −177.66 (18) |
C5—C6—N4—Co1 | −0.9 (3) | C6—N4—Co1—N5 | −89.47 (17) |
C8—C6—N4—Co1 | −179.41 (19) | O4—N4—Co1—N5 | 91.53 (17) |
C10—C9—N5—C13 | 1.1 (3) | C6—N4—Co1—Cl1 | 90.82 (16) |
C10—C9—N5—Co1 | −174.48 (18) | O4—N4—Co1—Cl1 | −88.17 (16) |
C12—C13—N5—C9 | −2.1 (4) | C9—N5—Co1—N2 | 47.81 (18) |
C12—C13—N5—Co1 | 173.54 (18) | C13—N5—Co1—N2 | −127.67 (19) |
C2—N2—Co1—N1 | −1.82 (17) | C9—N5—Co1—N1 | 129.25 (18) |
O2—N2—Co1—N1 | 178.75 (18) | C13—N5—Co1—N1 | −46.23 (18) |
C2—N2—Co1—N3 | −133 (13) | C9—N5—Co1—N3 | −131.90 (18) |
O2—N2—Co1—N3 | 47 (13) | C13—N5—Co1—N3 | 52.61 (18) |
C2—N2—Co1—N4 | 178.87 (17) | C9—N5—Co1—N4 | −50.73 (18) |
O2—N2—Co1—N4 | −0.56 (18) | C13—N5—Co1—N4 | 133.79 (18) |
C2—N2—Co1—N5 | 88.36 (17) | C9—N5—Co1—Cl1 | 114 (3) |
O2—N2—Co1—N5 | −91.07 (17) | C13—N5—Co1—Cl1 | −62 (3) |
Symmetry code: (i) x+1/2, −y+1/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1 | 0.90 (1) | 1.61 (1) | 2.499 (3) | 168 (3) |
O2—H2···O4 | 0.91 (1) | 1.60 (2) | 2.483 (3) | 162 (4) |
Experimental details
Crystal data | |
Chemical formula | [Co(C4H7N2O2)2Cl(C6H7N)]·0.5H2O |
Mr | 425.74 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 8.330 (5), 14.365 (5), 15.634 (5) |
V (Å3) | 1870.8 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.09 |
Crystal size (mm) | 0.25 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker 2008) |
Tmin, Tmax | 0.772, 0.811 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10519, 4642, 4143 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.077, 1.02 |
No. of reflections | 4642 |
No. of parameters | 248 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.40, −0.38 |
Absolute structure | Flack (1983), 1983 Friedel pairs |
Absolute structure parameter | 0.014 (13) |
Computer programs: APEX2 (Bruker, 2008), APEX2 and SAINT-Plus (Bruker, 2008), SAINT-Plus and XPREP (Bruker, 2008), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).
O1···O5 | 2.911 (8) | O5···O3i | 3.013 (7) |
Symmetry code: (i) x+1/2, −y+1/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1 | 0.900 (10) | 1.611 (13) | 2.499 (3) | 168 (3) |
O2—H2···O4 | 0.907 (10) | 1.604 (15) | 2.483 (3) | 162 (4) |
Acknowledgements
The authors are thankful to Rev. Fr B. Jeyaraj, SJ, Principal, Loyola College, for providing the necessary facilities and the head, SAIF, IIT Madras, Chennai, India, for recording the 1H NMR spectra and for the X-ray data collection
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bline, R. & Hadzi, D. (1958). J. Chem. Soc. 36, 45. Google Scholar
Brown, K. L. (2005). Chem. Rev. 105, 2075–2149. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2008). APEX2, SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dayalan, A. & Vijayaraghavan, V. R. (2001). Indian J. Chem. Sect. A, 40, 959–964. Google Scholar
Dolphin, D. (1982). Editor. B12, Vols. 1 and 2. New York: Wiley. Google Scholar
Dutta, G., Kumar, K. & Gupta, B. D. (2009). Organometallics, 28, 3485–3491. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gupta, B. D., Vijaikanth, V. & Singh, V. (2004). Organometallics, 23, 2069–2079. Web of Science CSD CrossRef CAS Google Scholar
Kavitha, T., Revathi, C., Hemalatha, M., Dayalan, A. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o114. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Randaccio, L., Bresciani-Pahor, N., Zangrando, E. & Marzilli, L. G. (1989). Chem. Soc. Rev. 18, 225–250. CrossRef CAS Google Scholar
Reemers, S. & Englert, U. (2002). Inorg. Chem. Commun. 5, 829–831. Web of Science CSD CrossRef CAS Google Scholar
Revathi, C., Dayalan, A. & SethuSankar, K. (2009). Acta Cryst. E65, m795–m796. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Schrauzer, G. N. & Windgassen, R. J. (1966). Chem. Ber. 99, 602–610. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Silverstein, R. M. & Bassler, G. C. (1984). Spectrometric Identification of Organic Compounds, 2nd ed., pp. 458–465. New York: John Wiley and Sons. Google Scholar
Toscano, P. J., Swider, S., Marzilli, L. G., Phor, N. B. & Randaccio, L. (1983). Inorg. Chem. 22, 3416–3421. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cobaloximes have been used extensively as structural and functional mimics for vitamin-B12 (Brown, 2005 and Randaccio et al., 1989).Their chemical properties have been widely studied (Schrauzer et al.,1966).The two aspects of cobaloxime chemistry are their (a) inertness with respect to ligand exchange making them to serve as ideal system for studies relating to electron transfer reactions and (b)crystal parameters.The distance between glyoximato oxygen atoms in these complexes amount to 2.4–2.6 Å, a distance range of considerable interest for strong intra molecular hydrogen bonding (Reemers et al., 2002).Compared to cobalamins, cobaloximes have shorter Co—N axial bond distance. It is known that coenzymes are related to number of 1,2-intra molecular rearrangement reactions (Dolphin et al.,1982).Most of the recent studies on cobaloximes have been focused on their structure–property relationships (Gupta et al., 2004 and Dutta et al., 2009).
In this title complex, the coordination about the CoIII ion is slightly distorted octahedral (Revathi et al., 2009 and Kavitha et al., 2008) with the 4-methylpyridine and chloride ligands occupying the axial positions and the two dimethylglyoximato ligands occupying the equatorial sites. The bite angles N1—Co—N2 and N3—Co—N4 of the ligand are 81.45 (8)0 and 81.17 (8)°, respectively.The coordinated chloride and the pyridine ring nitrogen are collinear with cobalt(III) froming an axial bond angle [N5—Co—Cl] = 178.89 (5)° and are perpendicular to the equatorial plane.The two glyoximate moiteies are linked together by strong inter molecular hydrogen bonding.