metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m851-m852

Chloridobis(di­methyl­glyoximato-κ2N,N′)(4-methyl­pyridine-κN)cobalt(III) hemihydrate

aDepartment of Chemistry, Loyola College (Autonomous), Chennai 600 034, India
*Correspondence e-mail: dayalan77@gmail.com

(Received 21 May 2011; accepted 26 May 2011; online 4 June 2011)

In the title complex, [Co(C4H7N2O2)2Cl(C6H7N)]·0.5H2O, the central CoIII ion, chelated by four N atoms of the two bidenate glyoximate ligands, exhibits a slightly distorted octa­hedral geometry. The axial positions are occupied by a chloride ion and the 4-methyl­pyridine N atom. Inter­molecular O—H⋯O hydrogen bonds link the mol­ecules in the crystal via the water mol­ecules, while the glyoximate ligands exhibit intra­molecular O—H⋯O hydrogen bonds.

Related literature

For similar structures, see: Revathi et al. (2009[Revathi, C., Dayalan, A. & SethuSankar, K. (2009). Acta Cryst. E65, m795-m796.]); Kavitha et al. (2008[Kavitha, T., Revathi, C., Hemalatha, M., Dayalan, A. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o114.]). For vitamin-B12 models, see: Brown et al. (2005[Brown, K. L. (2005). Chem. Rev. 105, 2075-2149.]); Randaccio et al. (1989[Randaccio, L., Bresciani-Pahor, N., Zangrando, E. & Marzilli, L. G. (1989). Chem. Soc. Rev. 18, 225-250.]). For structure–property relationships, see: Gupta et al. (2004[Gupta, B. D., Vijaikanth, V. & Singh, V. (2004). Organometallics, 23, 2069-2079.]); Dutta et al. (2009[Dutta, G., Kumar, K. & Gupta, B. D. (2009). Organometallics, 28, 3485-3491.]). For intra­molecular hydrogen bonding, see: Reemers & Englert (2002[Reemers, S. & Englert, U. (2002). Inorg. Chem. Commun. 5, 829-831.]); Dolphin (1982[Dolphin, D. (1982). Editor. B12, Vols. 1 and 2. New York: Wiley.]); For details of the synthesis, see: Ramesh et al. (2008[Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300-m301.]); Toscano et al. (1983[Toscano, P. J., Swider, S., Marzilli, L. G., Phor, N. B. & Randaccio, L. (1983). Inorg. Chem. 22, 3416-3421.]). For spectroscopic details, see: Dayalan & Vijayaraghavan (2001[Dayalan, A. & Vijayaraghavan, V. R. (2001). Indian J. Chem. Sect. A, 40, 959-964.]); Silverstein & Bassler (1984[Silverstein, R. M. & Bassler, G. C. (1984). Spectrometric Identification of Organic Compounds, 2nd ed., pp. 458-465. New York: John Wiley and Sons.]); Bline & Hadzi (1958[Bline, R. & Hadzi, D. (1958). J. Chem. Soc. 36, 45.]). For chemical properties of cobaloximes, see: Schrauzer & Windgassen (1966[Schrauzer, G. N. & Windgassen, R. J. (1966). Chem. Ber. 99, 602-610.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H7N2O2)2Cl(C6H7N)]·0.5H2O

  • Mr = 425.74

  • Orthorhombic, P 21 21 21

  • a = 8.330 (5) Å

  • b = 14.365 (5) Å

  • c = 15.634 (5) Å

  • V = 1870.8 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2008[Bruker (2008). APEX2, SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.772, Tmax = 0.811

  • 10519 measured reflections

  • 4642 independent reflections

  • 4143 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.02

  • 4642 reflections

  • 248 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1983 Friedel pairs

  • Flack parameter: 0.014 (13)

Table 1
Selected interatomic distances (Å)

O1⋯O5 2.911 (8)
O5⋯O3i 3.013 (7)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.90 (1) 1.61 (1) 2.499 (3) 168 (3)
O2—H2⋯O4 0.91 (1) 1.60 (2) 2.483 (3) 162 (4)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cobaloximes have been used extensively as structural and functional mimics for vitamin-B12 (Brown, 2005 and Randaccio et al., 1989).Their chemical properties have been widely studied (Schrauzer et al.,1966).The two aspects of cobaloxime chemistry are their (a) inertness with respect to ligand exchange making them to serve as ideal system for studies relating to electron transfer reactions and (b)crystal parameters.The distance between glyoximato oxygen atoms in these complexes amount to 2.4–2.6 Å, a distance range of considerable interest for strong intra molecular hydrogen bonding (Reemers et al., 2002).Compared to cobalamins, cobaloximes have shorter Co—N axial bond distance. It is known that coenzymes are related to number of 1,2-intra molecular rearrangement reactions (Dolphin et al.,1982).Most of the recent studies on cobaloximes have been focused on their structure–property relationships (Gupta et al., 2004 and Dutta et al., 2009).

In this title complex, the coordination about the CoIII ion is slightly distorted octahedral (Revathi et al., 2009 and Kavitha et al., 2008) with the 4-methylpyridine and chloride ligands occupying the axial positions and the two dimethylglyoximato ligands occupying the equatorial sites. The bite angles N1—Co—N2 and N3—Co—N4 of the ligand are 81.45 (8)0 and 81.17 (8)°, respectively.The coordinated chloride and the pyridine ring nitrogen are collinear with cobalt(III) froming an axial bond angle [N5—Co—Cl] = 178.89 (5)° and are perpendicular to the equatorial plane.The two glyoximate moiteies are linked together by strong inter molecular hydrogen bonding.

Related literature top

For similar structures, see: Revathi et al. (2009); Kavitha et al. (2008). For vitamin-B12 models, see: Brown et al. (2005); Randaccio et al. (1989). For structure–property relationships, see: Gupta et al. (2004); Dutta et al. (2009). For intramolecular hydrogen bonding, see: Reemers & Englert (2002); Dolphin (1982); For details of the synthesis, see: Ramesh et al. (2008); Toscano et al. (1983). For spectroscopic details, see: Dayalan & Vijayaraghavan (2001); Silverstein & Bassler (1984); Bline & Hadzi (1958). For chemical properties of cobaloximes, see: Schrauzer & Windgassen(1966).

Experimental top

The complex was prepared by the literature method (Schrauzer et al.,1966) using H[Co(dmgH)2 Cl2] as the starting material (Ramesh et al.,2008). The dichloro cobaloxime was mixed with 4-methylpyridine in 1:1 molar ratio in about 60 ml of ethanol and allowed to stir for 3 hrs. The resulting brown coloured complex was filtered,washed with absolute ethanol followed by ether and dried over vacuum desicator. Crystals of the complex were grown in ethanol by slow evaporation method. The complex was characterized by UV, IR and H1NMR spectra. A moderately intense band around 250 nm may be ascribed to π- π* transition of the dmgH - group. A shoulder around 330 nm may be due to the ligand to metal charge transfer transition, LMCT (Dayalan et al., 2001). The C=N stretching vibration of the oxime in its complex was observed at 1580 cm-1 and the intra molecular hydrogen bonded –OH around 3450 cm-1. A moderate peak at 1094 cm-1 may be assigned to the C=N—O stretching of the oxime. The peak at 513 cm-1 could be attributed to cobalt(III)-nitrogen stretching (Bline et al.,1958). The 1H NMR spectrum of the complex in DMSO-d6 shows a sharp intense singlet at 2.4 p.p.m. corresponding to methyl protons of the dimethylglyoximate. A singlet at 3.2 p.p.m. may be due to methyl protons of axial 4-methylpyridine ligand. The oxime –OH proton resonates at 8.28 p.p.m.. The two doublets at 8.07 and 7.4 p.p.m. correspond to pyridine ring protons at 2 & 6 and 3 & 5 positions, respectively of 4-methylpyridine at the axial position of the complex (Silverstein et al.,1984).

Refinement top

All the hydrogen atoms were identified from the difference electron density peak and fixed accordingly. The H atom bound to methyl C atoms were constrained to riding atoms wit d(C—H) = 0.96Å and Uiso(H) = 1.5Uequ(C). and the hydrogen atoms bound to aromatic carbon were constrained to riding atoms with d(C—H) = 0.93Å and Uiso(H) =1.2Uequ(C).The posotion of the hydrogen atom bound to the hydroxyl group was identified from the difference in the electron density map and restrained to a distance of d(O2—H2) = 0.90 (1) Å. The lattice solvent water O5 is left as anisotropically refined without the hydrogen being fixed but the water hydrogen is included in the chemical formula.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP representation of the complex drawn at 30% probability level with the atom labelling scheme.
[Figure 2] Fig. 2. Packing of complex in the unit cell.
Chloridobis(dimethylglyoximato-κ2N,N')(4-methylpyridine- κN)cobalt(III) hemihydrate top
Crystal data top
[Co(C4H7N2O2)2Cl(C6H7N)]·0.5H2ODx = 1.512 Mg m3
Mr = 425.74Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5528 reflections
a = 8.330 (5) Åθ = 2.6–28.2°
b = 14.365 (5) ŵ = 1.09 mm1
c = 15.634 (5) ÅT = 293 K
V = 1870.8 (14) Å3Block, brown
Z = 40.25 × 0.20 × 0.20 mm
F(000) = 880
Data collection top
Bruker SMART APEXII CCD
diffractometer
4642 independent reflections
Radiation source: fine-focus sealed tube4143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker 2008)
h = 1010
Tmin = 0.772, Tmax = 0.811k = 1918
10519 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0405P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4642 reflectionsΔρmax = 0.40 e Å3
248 parametersΔρmin = 0.38 e Å3
2 restraintsAbsolute structure: Flack (1983), 1983 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.014 (13)
Crystal data top
[Co(C4H7N2O2)2Cl(C6H7N)]·0.5H2OV = 1870.8 (14) Å3
Mr = 425.74Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.330 (5) ŵ = 1.09 mm1
b = 14.365 (5) ÅT = 293 K
c = 15.634 (5) Å0.25 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4642 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2008)
4143 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 0.811Rint = 0.028
10519 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077Δρmax = 0.40 e Å3
S = 1.02Δρmin = 0.38 e Å3
4642 reflectionsAbsolute structure: Flack (1983), 1983 Friedel pairs
248 parametersAbsolute structure parameter: 0.014 (13)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7398 (3)0.39874 (18)0.25266 (16)0.0398 (5)
C20.7058 (3)0.49050 (18)0.28872 (15)0.0408 (6)
C30.8891 (3)0.3435 (2)0.2701 (2)0.0643 (9)
H3A0.86370.27830.27020.097*
H3B0.93190.36080.32490.097*
H3C0.96720.35600.22650.097*
C40.8147 (4)0.5421 (3)0.3478 (2)0.0741 (10)
H4A0.77090.60260.35910.111*
H4B0.91850.54850.32180.111*
H4C0.82480.50830.40050.111*
C50.1881 (3)0.40417 (17)0.08949 (15)0.0406 (6)
C60.1538 (3)0.49521 (17)0.12558 (16)0.0392 (5)
C70.0753 (4)0.3542 (3)0.0314 (2)0.0759 (10)
H7A0.06270.38910.02060.114*
H7B0.02700.34770.05890.114*
H7C0.11770.29370.01830.114*
C80.0047 (3)0.5485 (3)0.1072 (2)0.0644 (9)
H8A0.00540.60550.13930.097*
H8B0.08700.51210.12320.097*
H8C0.00040.56250.04720.097*
C90.2872 (3)0.43850 (15)0.35158 (13)0.0331 (4)
H90.28530.50300.34670.040*
C100.2280 (3)0.39842 (16)0.42473 (15)0.0387 (5)
H100.18540.43580.46770.046*
C110.2313 (3)0.30297 (17)0.43490 (15)0.0376 (5)
C120.2910 (3)0.25176 (16)0.36721 (16)0.0376 (5)
H120.29350.18710.37070.045*
C130.3464 (3)0.29497 (15)0.29503 (15)0.0351 (5)
H130.38460.25880.25010.042*
C140.1738 (4)0.2569 (2)0.51559 (18)0.0596 (8)
H14A0.05870.25300.51480.089*
H14B0.20750.29280.56410.089*
H14C0.21840.19540.51930.089*
N10.6300 (2)0.36941 (12)0.20091 (12)0.0341 (4)
N20.5693 (3)0.52355 (12)0.26275 (11)0.0349 (4)
N30.3268 (3)0.37229 (13)0.11255 (12)0.0346 (4)
N40.2679 (2)0.52672 (12)0.17406 (12)0.0334 (4)
N50.3474 (2)0.38848 (11)0.28726 (11)0.0269 (4)
O10.6426 (2)0.28837 (12)0.15990 (12)0.0484 (4)
O20.5187 (3)0.60675 (11)0.28888 (12)0.0476 (5)
O30.3788 (3)0.29032 (14)0.08378 (12)0.0524 (5)
O40.2592 (2)0.61073 (11)0.21081 (12)0.0483 (5)
Cl10.56856 (8)0.51419 (4)0.07531 (4)0.04044 (14)
Co10.44843 (3)0.447668 (17)0.188051 (17)0.02570 (8)
O50.8676 (9)0.1476 (5)0.1002 (5)0.117 (2)0.50
H30.4797 (19)0.288 (2)0.104 (2)0.066 (11)*
H20.426 (3)0.621 (3)0.261 (2)0.087 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0293 (12)0.0521 (14)0.0381 (12)0.0008 (10)0.0037 (10)0.0140 (11)
C20.0345 (12)0.0535 (14)0.0345 (12)0.0124 (11)0.0104 (10)0.0099 (10)
C30.0362 (14)0.080 (2)0.076 (2)0.0095 (14)0.0095 (14)0.0267 (18)
C40.069 (2)0.090 (2)0.0638 (19)0.023 (2)0.0352 (17)0.0010 (18)
C50.0370 (13)0.0506 (13)0.0341 (12)0.0111 (11)0.0101 (10)0.0045 (10)
C60.0277 (12)0.0510 (13)0.0388 (12)0.0003 (11)0.0027 (10)0.0144 (10)
C70.071 (2)0.089 (2)0.068 (2)0.024 (2)0.0365 (18)0.0029 (18)
C80.0343 (14)0.087 (2)0.0724 (19)0.0160 (14)0.0032 (13)0.0242 (18)
C90.0363 (11)0.0300 (10)0.0331 (10)0.0003 (9)0.0018 (9)0.0065 (9)
C100.0412 (13)0.0441 (12)0.0309 (10)0.0013 (10)0.0052 (11)0.0101 (10)
C110.0328 (12)0.0482 (13)0.0317 (11)0.0059 (10)0.0030 (10)0.0040 (10)
C120.0405 (13)0.0306 (10)0.0415 (12)0.0002 (10)0.0020 (11)0.0042 (9)
C130.0402 (12)0.0278 (9)0.0372 (12)0.0029 (9)0.0023 (10)0.0032 (8)
C140.067 (2)0.0712 (18)0.0405 (16)0.0139 (16)0.0089 (15)0.0088 (14)
N10.0303 (9)0.0373 (9)0.0348 (10)0.0051 (7)0.0020 (8)0.0029 (8)
N20.0413 (11)0.0320 (8)0.0312 (9)0.0089 (9)0.0018 (9)0.0001 (7)
N30.0401 (12)0.0355 (9)0.0283 (9)0.0036 (8)0.0025 (8)0.0054 (7)
N40.0344 (10)0.0315 (8)0.0343 (10)0.0049 (7)0.0001 (8)0.0037 (7)
N50.0273 (9)0.0251 (7)0.0282 (8)0.0018 (7)0.0005 (7)0.0013 (6)
O10.0480 (10)0.0418 (8)0.0553 (11)0.0150 (8)0.0079 (9)0.0052 (8)
O20.0639 (13)0.0307 (7)0.0482 (10)0.0095 (8)0.0048 (9)0.0084 (7)
O30.0678 (13)0.0433 (9)0.0463 (11)0.0021 (9)0.0060 (10)0.0203 (8)
O40.0586 (12)0.0314 (8)0.0549 (11)0.0134 (8)0.0025 (9)0.0017 (8)
Cl10.0367 (3)0.0529 (3)0.0317 (2)0.0044 (3)0.0007 (3)0.0089 (2)
Co10.02577 (13)0.02728 (12)0.02404 (12)0.00065 (11)0.00294 (11)0.00153 (10)
O50.119 (5)0.121 (4)0.111 (5)0.036 (5)0.008 (4)0.015 (4)
Geometric parameters (Å, º) top
C1—N11.292 (3)C9—H90.9300
C1—C21.461 (4)C10—C111.381 (3)
C1—C31.500 (3)C10—H100.9300
C2—N21.297 (3)C11—C121.382 (3)
C2—C41.491 (4)C11—C141.503 (3)
C3—H3A0.9600C12—C131.368 (3)
C3—H3B0.9600C12—H120.9300
C3—H3C0.9600C13—N51.349 (3)
C4—H4A0.9600C13—H130.9300
C4—H4B0.9600C14—H14A0.9600
C4—H4C0.9600C14—H14B0.9600
C5—N31.294 (3)C14—H14C0.9600
C5—C61.453 (4)N1—O11.333 (3)
C5—C71.491 (4)N1—Co11.8951 (19)
C6—N41.297 (3)N2—O21.332 (3)
C6—C81.487 (4)N2—Co11.8885 (19)
C7—H7A0.9600N3—O31.333 (3)
C7—H7B0.9600N3—Co11.8953 (19)
C7—H7C0.9600N4—O41.339 (2)
C8—H8A0.9600N4—Co11.897 (2)
C8—H8B0.9600N5—Co11.9589 (18)
C8—H8C0.9600O2—H20.907 (10)
C9—N51.334 (3)O3—H30.900 (10)
C9—C101.372 (3)Cl1—Co12.2408 (8)
O1···O52.911 (8)O5···O3i3.013 (7)
N1—C1—C2113.5 (2)C13—C12—C11120.8 (2)
N1—C1—C3121.9 (3)C13—C12—H12119.6
C2—C1—C3124.6 (2)C11—C12—H12119.6
N2—C2—C1112.3 (2)N5—C13—C12121.9 (2)
N2—C2—C4123.0 (3)N5—C13—H13119.1
C1—C2—C4124.7 (3)C12—C13—H13119.1
C1—C3—H3A109.5C11—C14—H14A109.5
C1—C3—H3B109.5C11—C14—H14B109.5
H3A—C3—H3B109.5H14A—C14—H14B109.5
C1—C3—H3C109.5C11—C14—H14C109.5
H3A—C3—H3C109.5H14A—C14—H14C109.5
H3B—C3—H3C109.5H14B—C14—H14C109.5
C2—C4—H4A109.5C1—N1—O1122.0 (2)
C2—C4—H4B109.5C1—N1—Co1115.98 (16)
H4A—C4—H4B109.5O1—N1—Co1122.00 (15)
C2—C4—H4C109.5C2—N2—O2120.7 (2)
H4A—C4—H4C109.5C2—N2—Co1116.73 (17)
H4B—C4—H4C109.5O2—N2—Co1122.61 (17)
N3—C5—C6112.7 (2)C5—N3—O3120.6 (2)
N3—C5—C7124.2 (3)C5—N3—Co1116.65 (17)
C6—C5—C7123.1 (3)O3—N3—Co1122.76 (18)
N4—C6—C5113.4 (2)C6—N4—O4121.7 (2)
N4—C6—C8123.0 (3)C6—N4—Co1116.06 (16)
C5—C6—C8123.6 (2)O4—N4—Co1122.21 (15)
C5—C7—H7A109.5C9—N5—C13117.81 (19)
C5—C7—H7B109.5C9—N5—Co1121.65 (14)
H7A—C7—H7B109.5C13—N5—Co1120.40 (15)
C5—C7—H7C109.5N2—O2—H2109 (2)
H7A—C7—H7C109.5N3—O3—H3103 (2)
H7B—C7—H7C109.5N2—Co1—N181.44 (9)
C6—C8—H8A109.5N2—Co1—N3179.57 (9)
C6—C8—H8B109.5N1—Co1—N398.84 (9)
H8A—C8—H8B109.5N2—Co1—N498.54 (9)
C6—C8—H8C109.5N1—Co1—N4179.31 (9)
H8A—C8—H8C109.5N3—Co1—N481.17 (9)
H8B—C8—H8C109.5N2—Co1—N589.43 (8)
N5—C9—C10122.5 (2)N1—Co1—N590.09 (8)
N5—C9—H9118.7N3—Co1—N590.89 (8)
C10—C9—H9118.7N4—Co1—N590.60 (8)
C9—C10—C11120.4 (2)N2—Co1—Cl190.12 (6)
C9—C10—H10119.8N1—Co1—Cl188.85 (7)
C11—C10—H10119.8N3—Co1—Cl189.57 (7)
C10—C11—C12116.6 (2)N4—Co1—Cl190.46 (6)
C10—C11—C14121.9 (2)N5—Co1—Cl1178.90 (6)
C12—C11—C14121.5 (2)
N1—C1—C2—N21.4 (3)C2—N2—Co1—Cl190.64 (17)
C3—C1—C2—N2179.3 (2)O2—N2—Co1—Cl189.93 (16)
N1—C1—C2—C4177.8 (3)C1—N1—Co1—N22.65 (17)
C3—C1—C2—C40.1 (4)O1—N1—Co1—N2178.23 (18)
N3—C5—C6—N40.3 (3)C1—N1—Co1—N3177.67 (17)
C7—C5—C6—N4179.6 (2)O1—N1—Co1—N31.44 (18)
N3—C5—C6—C8178.2 (2)C1—N1—Co1—N491 (8)
C7—C5—C6—C81.1 (4)O1—N1—Co1—N489 (8)
N5—C9—C10—C111.1 (4)C1—N1—Co1—N586.76 (17)
C9—C10—C11—C122.2 (4)O1—N1—Co1—N592.35 (17)
C9—C10—C11—C14177.4 (2)C1—N1—Co1—Cl192.94 (17)
C10—C11—C12—C131.3 (4)O1—N1—Co1—Cl187.94 (17)
C14—C11—C12—C13178.4 (2)C5—N3—Co1—N250 (13)
C11—C12—C13—N50.9 (4)O3—N3—Co1—N2130 (13)
C2—C1—N1—O1177.96 (19)C5—N3—Co1—N1179.18 (17)
C3—C1—N1—O10.0 (3)O3—N3—Co1—N10.80 (19)
C2—C1—N1—Co12.9 (3)C5—N3—Co1—N41.52 (17)
C3—C1—N1—Co1179.11 (19)O3—N3—Co1—N4178.50 (19)
C1—C2—N2—O2179.79 (19)C5—N3—Co1—N588.95 (18)
C4—C2—N2—O20.5 (4)O3—N3—Co1—N591.03 (18)
C1—C2—N2—Co10.8 (3)C5—N3—Co1—Cl192.05 (17)
C4—C2—N2—Co1180.0 (2)O3—N3—Co1—Cl187.97 (18)
C6—C5—N3—O3178.62 (19)C6—N4—Co1—N2178.99 (16)
C7—C5—N3—O30.7 (4)O4—N4—Co1—N22.02 (18)
C6—C5—N3—Co11.4 (3)C6—N4—Co1—N192 (8)
C7—C5—N3—Co1179.3 (2)O4—N4—Co1—N187 (8)
C5—C6—N4—O4178.05 (19)C6—N4—Co1—N31.33 (16)
C8—C6—N4—O40.4 (3)O4—N4—Co1—N3177.66 (18)
C5—C6—N4—Co10.9 (3)C6—N4—Co1—N589.47 (17)
C8—C6—N4—Co1179.41 (19)O4—N4—Co1—N591.53 (17)
C10—C9—N5—C131.1 (3)C6—N4—Co1—Cl190.82 (16)
C10—C9—N5—Co1174.48 (18)O4—N4—Co1—Cl188.17 (16)
C12—C13—N5—C92.1 (4)C9—N5—Co1—N247.81 (18)
C12—C13—N5—Co1173.54 (18)C13—N5—Co1—N2127.67 (19)
C2—N2—Co1—N11.82 (17)C9—N5—Co1—N1129.25 (18)
O2—N2—Co1—N1178.75 (18)C13—N5—Co1—N146.23 (18)
C2—N2—Co1—N3133 (13)C9—N5—Co1—N3131.90 (18)
O2—N2—Co1—N347 (13)C13—N5—Co1—N352.61 (18)
C2—N2—Co1—N4178.87 (17)C9—N5—Co1—N450.73 (18)
O2—N2—Co1—N40.56 (18)C13—N5—Co1—N4133.79 (18)
C2—N2—Co1—N588.36 (17)C9—N5—Co1—Cl1114 (3)
O2—N2—Co1—N591.07 (17)C13—N5—Co1—Cl162 (3)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.90 (1)1.61 (1)2.499 (3)168 (3)
O2—H2···O40.91 (1)1.60 (2)2.483 (3)162 (4)

Experimental details

Crystal data
Chemical formula[Co(C4H7N2O2)2Cl(C6H7N)]·0.5H2O
Mr425.74
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.330 (5), 14.365 (5), 15.634 (5)
V3)1870.8 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2008)
Tmin, Tmax0.772, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
10519, 4642, 4143
Rint0.028
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.02
No. of reflections4642
No. of parameters248
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.38
Absolute structureFlack (1983), 1983 Friedel pairs
Absolute structure parameter0.014 (13)

Computer programs: APEX2 (Bruker, 2008), APEX2 and SAINT-Plus (Bruker, 2008), SAINT-Plus and XPREP (Bruker, 2008), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Selected interatomic distances (Å) top
O1···O52.911 (8)O5···O3i3.013 (7)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.900 (10)1.611 (13)2.499 (3)168 (3)
O2—H2···O40.907 (10)1.604 (15)2.483 (3)162 (4)
 

Acknowledgements

The authors are thankful to Rev. Fr B. Jeyaraj, SJ, Principal, Loyola College, for providing the necessary facilities and the head, SAIF, IIT Madras, Chennai, India, for recording the 1H NMR spectra and for the X-ray data collection

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBline, R. & Hadzi, D. (1958). J. Chem. Soc. 36, 45.  Google Scholar
First citationBrown, K. L. (2005). Chem. Rev. 105, 2075–2149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDayalan, A. & Vijayaraghavan, V. R. (2001). Indian J. Chem. Sect. A, 40, 959–964.  Google Scholar
First citationDolphin, D. (1982). Editor. B12, Vols. 1 and 2. New York: Wiley.  Google Scholar
First citationDutta, G., Kumar, K. & Gupta, B. D. (2009). Organometallics, 28, 3485–3491.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGupta, B. D., Vijaikanth, V. & Singh, V. (2004). Organometallics, 23, 2069–2079.  Web of Science CSD CrossRef CAS Google Scholar
First citationKavitha, T., Revathi, C., Hemalatha, M., Dayalan, A. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRamesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRandaccio, L., Bresciani-Pahor, N., Zangrando, E. & Marzilli, L. G. (1989). Chem. Soc. Rev. 18, 225–250.  CrossRef CAS Google Scholar
First citationReemers, S. & Englert, U. (2002). Inorg. Chem. Commun. 5, 829–831.  Web of Science CSD CrossRef CAS Google Scholar
First citationRevathi, C., Dayalan, A. & SethuSankar, K. (2009). Acta Cryst. E65, m795–m796.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchrauzer, G. N. & Windgassen, R. J. (1966). Chem. Ber. 99, 602–610.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilverstein, R. M. & Bassler, G. C. (1984). Spectrometric Identification of Organic Compounds, 2nd ed., pp. 458–465. New York: John Wiley and Sons.  Google Scholar
First citationToscano, P. J., Swider, S., Marzilli, L. G., Phor, N. B. & Randaccio, L. (1983). Inorg. Chem. 22, 3416–3421.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m851-m852
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds