organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Di­methyl-4-(1-methyl-3-oxo-3-phenylprop-1-enyl­amino)-2-phenyl-1H-pyrazol-3(2H)-one

aDepartment of Basic Science, Tianjin Agriculturial College, Tianjin Jinjing Road No 22, Tianjin, 300384, People's Republic of China
*Correspondence e-mail: zhuhualing2004@126.com

(Received 22 May 2011; accepted 7 June 2011; online 11 June 2011)

In the title compound, C21H21N3O2, an intra­molecular N—H⋯O inter­action generates an S(6) ring, which stablizes the enamine–keto tautomer. The S(6) ring makes dihedral angles of 33.07 (7), 56.50 (8) and 38.59 (8)°, respectively, with the benzoyl­acetone benzene ring and the anti­pyrine pyrazole and benzene rings.

Related literature

For the anti­bacterial activity of Schiff bases, see: Zhang et al. (2008[Zhang, H. Q., Li, J.-Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990-993.]); Li et al. (2000[Li, J.-Z., Li, G. & Yu, W.-J. (2000). J. Rare Earths, 18, 233-236.]). For general background to anti­pyrine, see: Filho et al. (1998[Filho, V. C., Corr, A. R. & Vaz, Z. (1998). Farmaco. 53, 55-57.]); Bondock et al.(2008[Bondock, S., Rabie, R. & Etman, H. A. (2008). Eur. J. Med. Chem. 43, 2122-2129.]). For applications of 4-amino anti­pyrine Schiff bases, see: Meffin et al. (1977[Meffin, P. J., Williams, R. L. & Blaschke, T. F. (1977). J. Pharm. Sci. 1, 135-137.]); Omar et al. (2006[Omar, M. M., Mohamed, G. G. & Hindy, A. M. (2006). J. Therm. Anal. Calorim. 2, 315-325.]). For Schiff bases derived from aldehyde and 4-amino­anti­pyrine, see: Hay (2007[Hay, V. Z. (2007). Asian J. Chem. 1, 579-588.]); Raman et al. (2007[Raman, N., Dhaveethu, R. J. & Sakthve, L. A. (2007). J. Chem. Sci. 4, 303-310.]). For our previous work on anti­pyrine Schiff bases, see: Zhu et al. (2011[Zhu, H., Ban, L., Zhang, P., Zhao, X. & Ren, J. (2011). Acta Cryst. E67, o476-o477.]). For a related structure, see: Goh et al. (2009[Goh, J. H., Fun, H.-K., Nithinchandra,, Rai, N. S. & Kalluraya, B. (2009). Acta Cryst. E65, o3099-o3100.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N3O2

  • Mr = 347.41

  • Monoclinic, P 21 /c

  • a = 9.9418 (12) Å

  • b = 18.456 (3) Å

  • c = 10.1151 (14) Å

  • β = 104.361 (2)°

  • V = 1798.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.14 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2001[Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.983, Tmax = 0.988

  • 18576 measured reflections

  • 3160 independent reflections

  • 2910 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.180

  • S = 1.11

  • 3160 reflections

  • 242 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2 0.90 (1) 1.81 (2) 2.591 (3) 143 (3)

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2001[Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

4-amino antipyrine derivatives have been widely used in the analgesic, anti-bacterial and antitumor field and chemical analysis (Filho et al., 1998; Bondock et al., 2008). While 4-amino antipyrine Schiff bases have showed unique properties and application in the biological, clinical, pharmaceutical and analytical fields (Omar et al., 2006; Meffin et al., 1977). In recent years, more studies concern for the Schiff bases derived from aldehyde and 4-aminoantipyrine (Raman et al., 2007; Hay, 2007), while less concern for the compound derived from ketone and 4-aminoantiprine. In continuation of our studies on antipyrine schiff bases (Zhu et al., 2011), we herein report the crystal structure of the title compound. The molecular structure of the title compound is shown in Fig. 1. An intramolecular N—H···O interaction generates a six- membered ring, producing an S(6) ring (O2 N3 C12 C14 C15), which stablizing the enamine–keto form of the compound. The S(6) ring makes dihedral angles of 33.07 (7)°,56.55 (8)° and 38.59 (8)° with the benzene ring of benzoylacetone, the pyrazole ring and benzene ring of antipyrine,respectively. The bond lengths and angles agree well with those closely related pyrazole structures (Goh et al., 2009).

Related literature top

For the antibacterial activity of Schiff bases, see: Zhang et al. (2008); Li et al. (2000). For general background to antipyrine, see: Filho et al. (1998); Bondock et al.(2008). For applications of 4-amino antipyrine Schiff bases, see: Meffin et al. (1977); Omar et al. (2006). For Schiff bases derived from aldehyde and 4-aminoantipyrine, see: Hay (2007); Raman et al. (2007). For our previous work on antipyrine Schiff bases, see: Zhu et al. (2011). For a related structure, see: Goh et al. (2009).

Experimental top

The title compound was synthesized by refluxing the mixture of benzoylacetone(15m mol) and 4-antipyrine (15m mol) in ethanol (100 ml) over a steam bath for about 7 h, then the solution was cooled down to room temperature. After seven days, pale yellow block was obtained and dried in air. The product was recrystallized from ethanol which afforded pale yellow and acerate crystals suitable for X–ray analysis.

Refinement top

All H atoms were geometrically positioned and treated as riding on their parent atoms, with C—H = 0.93 Å for the aeomatic, 0.96 Å for the methyl H atoms and N—H= 0.90 Å with Uĩso~(H)= 1.2 U~eq~(Caromatic, N) or, 1.5U~eq~(Cmethyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radii.
1,5-Dimethyl-4-(1-methyl-3-oxo-3-phenylprop-1-enylamino)-2-phenyl-1H- pyrazol-3(2H)-one top
Crystal data top
C21H21N3O2F(000) = 736
Mr = 347.41Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.9418 (12) ÅCell parameters from 6064 reflections
b = 18.456 (3) Åθ = 2.1–28.2°
c = 10.1151 (14) ŵ = 0.08 mm1
β = 104.361 (2)°T = 113 K
V = 1798.0 (4) Å3Prism, colorless
Z = 40.20 × 0.18 × 0.14 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
3160 independent reflections
Radiation source: rotating anode2910 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.061
Detector resolution: 14.22 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω and ϕ scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
k = 2121
Tmin = 0.983, Tmax = 0.988l = 1212
18576 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0849P)2 + 1.0899P]
where P = (Fo2 + 2Fc2)/3
3160 reflections(Δ/σ)max < 0.001
242 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C21H21N3O2V = 1798.0 (4) Å3
Mr = 347.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9418 (12) ŵ = 0.08 mm1
b = 18.456 (3) ÅT = 113 K
c = 10.1151 (14) Å0.20 × 0.18 × 0.14 mm
β = 104.361 (2)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
3160 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
2910 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.988Rint = 0.061
18576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0691 restraint
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.20 e Å3
3160 reflectionsΔρmin = 0.24 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72095 (18)1.08766 (10)0.41989 (19)0.0284 (5)
O20.83461 (19)0.93727 (10)0.00431 (19)0.0291 (5)
N10.4862 (2)1.05874 (11)0.3514 (2)0.0249 (5)
N20.4038 (2)1.01384 (12)0.2496 (2)0.0263 (5)
N30.7420 (2)0.96481 (12)0.2169 (2)0.0268 (5)
C10.4275 (3)1.12584 (14)0.3815 (3)0.0248 (6)
C20.4802 (3)1.15799 (15)0.5078 (3)0.0287 (6)
H20.55521.13620.57220.034*
C30.4225 (3)1.22220 (16)0.5392 (3)0.0337 (7)
H3A0.45901.24480.62500.040*
C40.3118 (3)1.25348 (15)0.4457 (3)0.0352 (7)
H40.27191.29720.46790.042*
C50.2596 (3)1.22104 (15)0.3202 (3)0.0336 (7)
H50.18351.24260.25650.040*
C60.3173 (3)1.15733 (14)0.2864 (3)0.0278 (6)
H60.28221.13550.19960.033*
C70.6269 (3)1.04979 (14)0.3528 (3)0.0250 (6)
C80.6267 (3)0.99043 (14)0.2596 (3)0.0258 (6)
C90.4928 (3)0.97008 (14)0.2037 (3)0.0272 (6)
C100.4406 (3)0.91013 (15)0.1055 (3)0.0344 (7)
H10A0.40210.87160.15170.052*
H10B0.51740.89070.07130.052*
H10C0.36810.92870.02890.052*
C110.2724 (3)0.98719 (15)0.2733 (3)0.0284 (6)
H11A0.22000.96150.19190.043*
H11B0.21761.02820.29230.043*
H11C0.29200.95400.35140.043*
C120.8539 (3)0.92975 (14)0.2913 (3)0.0251 (6)
C130.8703 (3)0.92201 (16)0.4421 (3)0.0329 (7)
H13A0.87200.97010.48340.049*
H13B0.95730.89670.48270.049*
H13C0.79210.89420.45860.049*
C140.9500 (3)0.90044 (14)0.2283 (3)0.0260 (6)
H141.03050.87790.28330.031*
C150.9329 (3)0.90276 (13)0.0845 (3)0.0241 (6)
C161.0308 (3)0.86266 (13)0.0208 (3)0.0231 (6)
C171.0587 (3)0.88942 (14)0.0988 (3)0.0276 (6)
H171.01710.93340.13730.033*
C181.1466 (3)0.85217 (15)0.1615 (3)0.0307 (6)
H181.16600.87080.24230.037*
C191.2063 (3)0.78773 (15)0.1065 (3)0.0315 (7)
H191.26710.76250.14950.038*
C201.1783 (3)0.75975 (15)0.0104 (3)0.0340 (7)
H201.21870.71510.04700.041*
C211.0911 (3)0.79702 (15)0.0743 (3)0.0302 (6)
H211.07200.77790.15490.036*
H30.739 (3)0.9643 (18)0.1269 (13)0.046 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0287 (10)0.0262 (10)0.0321 (11)0.0030 (8)0.0107 (8)0.0034 (8)
O20.0313 (10)0.0288 (10)0.0290 (10)0.0064 (8)0.0107 (8)0.0013 (8)
N10.0244 (11)0.0230 (11)0.0274 (12)0.0019 (9)0.0068 (9)0.0039 (9)
N20.0253 (11)0.0255 (12)0.0288 (12)0.0008 (9)0.0078 (9)0.0028 (9)
N30.0276 (12)0.0285 (12)0.0265 (12)0.0038 (10)0.0105 (10)0.0011 (10)
C10.0270 (14)0.0192 (13)0.0326 (15)0.0021 (10)0.0158 (12)0.0006 (11)
C20.0259 (14)0.0302 (15)0.0309 (15)0.0011 (11)0.0087 (12)0.0048 (12)
C30.0321 (15)0.0335 (16)0.0380 (17)0.0029 (12)0.0136 (13)0.0089 (13)
C40.0361 (17)0.0240 (14)0.0487 (19)0.0034 (12)0.0167 (14)0.0051 (13)
C50.0345 (16)0.0280 (15)0.0411 (17)0.0083 (12)0.0146 (13)0.0072 (13)
C60.0318 (15)0.0261 (14)0.0276 (14)0.0019 (11)0.0113 (12)0.0021 (11)
C70.0261 (14)0.0251 (14)0.0269 (14)0.0021 (11)0.0123 (11)0.0038 (11)
C80.0320 (15)0.0248 (14)0.0233 (14)0.0019 (11)0.0123 (12)0.0020 (11)
C90.0322 (15)0.0243 (14)0.0258 (14)0.0045 (11)0.0084 (12)0.0010 (11)
C100.0371 (16)0.0311 (16)0.0349 (16)0.0001 (12)0.0085 (13)0.0100 (13)
C110.0237 (14)0.0307 (15)0.0317 (15)0.0005 (11)0.0086 (11)0.0029 (12)
C120.0269 (14)0.0210 (13)0.0292 (14)0.0009 (11)0.0102 (11)0.0022 (11)
C130.0348 (16)0.0391 (16)0.0267 (15)0.0043 (13)0.0112 (13)0.0003 (12)
C140.0247 (14)0.0277 (14)0.0260 (14)0.0011 (11)0.0068 (11)0.0030 (11)
C150.0237 (13)0.0198 (13)0.0304 (14)0.0016 (10)0.0095 (11)0.0011 (11)
C160.0222 (13)0.0220 (13)0.0249 (14)0.0005 (10)0.0053 (10)0.0022 (10)
C170.0272 (14)0.0243 (14)0.0306 (15)0.0014 (11)0.0058 (11)0.0007 (11)
C180.0285 (15)0.0377 (16)0.0282 (15)0.0047 (12)0.0116 (12)0.0060 (12)
C190.0275 (15)0.0324 (15)0.0352 (16)0.0028 (12)0.0089 (12)0.0087 (13)
C200.0344 (16)0.0284 (15)0.0404 (17)0.0090 (12)0.0117 (13)0.0008 (13)
C210.0350 (15)0.0258 (14)0.0326 (15)0.0028 (12)0.0135 (12)0.0031 (12)
Geometric parameters (Å, º) top
O1—C71.228 (3)C10—H10B0.9800
O2—C151.275 (3)C10—H10C0.9800
N1—C71.405 (3)C11—H11A0.9800
N1—N21.414 (3)C11—H11B0.9800
N1—C11.434 (3)C11—H11C0.9800
N2—C91.362 (3)C12—C141.383 (4)
N2—C111.470 (3)C12—C131.500 (4)
N3—C121.344 (3)C13—H13A0.9800
N3—C81.404 (3)C13—H13B0.9800
N3—H30.903 (10)C13—H13C0.9800
C1—C21.387 (4)C14—C151.423 (4)
C1—C61.394 (4)C14—H140.9500
C2—C31.387 (4)C15—C161.490 (3)
C2—H20.9500C16—C171.397 (4)
C3—C41.387 (4)C16—C211.399 (4)
C3—H3A0.9500C17—C181.383 (4)
C4—C51.384 (4)C17—H170.9500
C4—H40.9500C18—C191.383 (4)
C5—C61.388 (4)C18—H180.9500
C5—H50.9500C19—C201.380 (4)
C6—H60.9500C19—H190.9500
C7—C81.445 (4)C20—C211.386 (4)
C8—C91.364 (4)C20—H200.9500
C9—C101.492 (4)C21—H210.9500
C10—H10A0.9800
C7—N1—N2109.5 (2)H10B—C10—H10C109.5
C7—N1—C1123.8 (2)N2—C11—H11A109.5
N2—N1—C1117.9 (2)N2—C11—H11B109.5
C9—N2—N1106.7 (2)H11A—C11—H11B109.5
C9—N2—C11122.4 (2)N2—C11—H11C109.5
N1—N2—C11117.1 (2)H11A—C11—H11C109.5
C12—N3—C8128.0 (2)H11B—C11—H11C109.5
C12—N3—H3112 (2)N3—C12—C14120.0 (2)
C8—N3—H3119 (2)N3—C12—C13118.8 (2)
C2—C1—C6120.7 (2)C14—C12—C13121.2 (2)
C2—C1—N1119.0 (2)C12—C13—H13A109.5
C6—C1—N1120.3 (2)C12—C13—H13B109.5
C1—C2—C3119.6 (3)H13A—C13—H13B109.5
C1—C2—H2120.2C12—C13—H13C109.5
C3—C2—H2120.2H13A—C13—H13C109.5
C4—C3—C2120.2 (3)H13B—C13—H13C109.5
C4—C3—H3A119.9C12—C14—C15122.6 (2)
C2—C3—H3A119.9C12—C14—H14118.7
C5—C4—C3120.0 (3)C15—C14—H14118.7
C5—C4—H4120.0O2—C15—C14122.9 (2)
C3—C4—H4120.0O2—C15—C16116.9 (2)
C4—C5—C6120.6 (3)C14—C15—C16120.1 (2)
C4—C5—H5119.7C17—C16—C21118.9 (2)
C6—C5—H5119.7C17—C16—C15119.3 (2)
C5—C6—C1119.0 (3)C21—C16—C15121.7 (2)
C5—C6—H6120.5C18—C17—C16120.3 (3)
C1—C6—H6120.5C18—C17—H17119.8
O1—C7—N1124.0 (2)C16—C17—H17119.8
O1—C7—C8132.0 (2)C19—C18—C17120.0 (3)
N1—C7—C8104.0 (2)C19—C18—H18120.0
C9—C8—N3124.6 (2)C17—C18—H18120.0
C9—C8—C7108.8 (2)C20—C19—C18120.6 (3)
N3—C8—C7126.0 (2)C20—C19—H19119.7
N2—C9—C8110.2 (2)C18—C19—H19119.7
N2—C9—C10121.3 (2)C19—C20—C21119.7 (3)
C8—C9—C10128.5 (2)C19—C20—H20120.1
C9—C10—H10A109.5C21—C20—H20120.1
C9—C10—H10B109.5C20—C21—C16120.5 (3)
H10A—C10—H10B109.5C20—C21—H21119.8
C9—C10—H10C109.5C16—C21—H21119.8
H10A—C10—H10C109.5
C7—N1—N2—C98.9 (3)N1—N2—C9—C86.8 (3)
C1—N1—N2—C9157.7 (2)C11—N2—C9—C8145.8 (2)
C7—N1—N2—C11150.4 (2)N1—N2—C9—C10173.5 (2)
C1—N1—N2—C1160.8 (3)C11—N2—C9—C1034.6 (4)
C7—N1—C1—C258.8 (3)N3—C8—C9—N2168.8 (2)
N2—N1—C1—C2157.1 (2)C7—C8—C9—N22.3 (3)
C7—N1—C1—C6122.5 (3)N3—C8—C9—C1010.8 (5)
N2—N1—C1—C621.6 (3)C7—C8—C9—C10178.0 (3)
C6—C1—C2—C30.1 (4)C8—N3—C12—C14171.9 (3)
N1—C1—C2—C3178.8 (2)C8—N3—C12—C136.8 (4)
C1—C2—C3—C40.8 (4)N3—C12—C14—C152.9 (4)
C2—C3—C4—C50.7 (4)C13—C12—C14—C15175.8 (2)
C3—C4—C5—C60.2 (4)C12—C14—C15—O26.3 (4)
C4—C5—C6—C10.9 (4)C12—C14—C15—C16172.6 (2)
C2—C1—C6—C50.8 (4)O2—C15—C16—C1731.3 (3)
N1—C1—C6—C5177.9 (2)C14—C15—C16—C17149.8 (2)
N2—N1—C7—O1171.5 (2)O2—C15—C16—C21145.8 (3)
C1—N1—C7—O124.9 (4)C14—C15—C16—C2133.1 (4)
N2—N1—C7—C87.3 (3)C21—C16—C17—C181.2 (4)
C1—N1—C7—C8153.9 (2)C15—C16—C17—C18178.4 (2)
C12—N3—C8—C9121.4 (3)C16—C17—C18—C190.6 (4)
C12—N3—C8—C769.0 (4)C17—C18—C19—C200.4 (4)
O1—C7—C8—C9175.5 (3)C18—C19—C20—C210.8 (4)
N1—C7—C8—C93.1 (3)C19—C20—C21—C160.2 (4)
O1—C7—C8—N34.5 (5)C17—C16—C21—C200.8 (4)
N1—C7—C8—N3174.1 (2)C15—C16—C21—C20177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.90 (1)1.81 (2)2.591 (3)143 (3)

Experimental details

Crystal data
Chemical formulaC21H21N3O2
Mr347.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)9.9418 (12), 18.456 (3), 10.1151 (14)
β (°) 104.361 (2)
V3)1798.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.18 × 0.14
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2001)
Tmin, Tmax0.983, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
18576, 3160, 2910
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.180, 1.11
No. of reflections3160
No. of parameters242
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: CrystalClear (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.903 (10)1.81 (2)2.591 (3)143 (3)
 

Acknowledgements

The authors are grateful for financial support from the Spark Program Foundation of Science and Technology Department of China (research Nos. 09ZHXHNC07900 and 2010 GA610009).

References

First citationBondock, S., Rabie, R. & Etman, H. A. (2008). Eur. J. Med. Chem. 43, 2122–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFilho, V. C., Corr, A. R. & Vaz, Z. (1998). Farmaco. 53, 55–57.  Web of Science CrossRef PubMed Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra,, Rai, N. S. & Kalluraya, B. (2009). Acta Cryst. E65, o3099–o3100.  Google Scholar
First citationHay, V. Z. (2007). Asian J. Chem. 1, 579–588.  Google Scholar
First citationLi, J.-Z., Li, G. & Yu, W.-J. (2000). J. Rare Earths, 18, 233–236.  Google Scholar
First citationMeffin, P. J., Williams, R. L. & Blaschke, T. F. (1977). J. Pharm. Sci. 1, 135–137.  CrossRef Google Scholar
First citationOmar, M. M., Mohamed, G. G. & Hindy, A. M. (2006). J. Therm. Anal. Calorim. 2, 315–325.  CrossRef Google Scholar
First citationRaman, N., Dhaveethu, R. J. & Sakthve, L. A. (2007). J. Chem. Sci. 4, 303–310.  CrossRef Google Scholar
First citationRigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H. Q., Li, J.-Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990–993.  CrossRef CAS Google Scholar
First citationZhu, H., Ban, L., Zhang, P., Zhao, X. & Ren, J. (2011). Acta Cryst. E67, o476–o477.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds