metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-1,4-Bis(1,2,4-triazol-1-ylmeth­yl)benzene]­bis­­[aqua­(pyridine-2,6-di­carboxyl­ato)copper(II)] monohydrate

aCollege of Chemical Engineering, Hebei United University, Tangshan 063009, People's Republic of China, and bQian'an College, Hebei United University, Tangshan 063009, People's Republic of China
*Correspondence e-mail: tsdgying@126.com

(Received 7 June 2011; accepted 13 June 2011; online 18 June 2011)

The title compound, [Cu2(C7H3NO4)2(C12H12N6)(H2O)2]·H2O, displays a discrete dinuclear structure, in which the central CuII atom is five-coordinated in a distorted square-based pyramidal coordination geometry and the flexible ligand 1,4-bis­(1,2,4-triazol-1-ylmeth­yl)benzene adopts a bis-monodentate bridging mode linking the CuII atoms. It is further assembled by O—H⋯O hydrogen-bond inter­actions involving both the coordinated and uncoordinated water molecules. The latter exhibits half-occupancy.

Related literature

For the versatile conformations of the flexible 1,4-bis­(1,2,4- triazol-1-yl-meth­yl)benzene ligand and related complexes, see: Arion et al. (2003[Arion, V. B., Reisner, E., Fremuth, M., Jakupec, M. A., Keppler, B. K., Kukushkin, V. Y. & Pombeiro, A. J. (2003). Inorg. Chem. 42, 6024-6031.]); Peng et al. (2004[Peng, Y. F., Li, B. Z., Zhou, J. H., Li, B. L. & Zhang, Y. (2004). Chin. J. Struct. Chem. 23, 985-988.], 2006[Peng, Y. F., Ge, H. Y., Li, B. L. & Zhang, Y. (2006). Cryst. Growth Des. 6, 994-998.]); Meng et al. (2004[Meng, X., Song, Y., Hou, H., Han, H., Xiao, B., Fan, Y. & Zhu, Y. (2004). Inorg. Chem. 43, 3528-3536.]); Li et al. (2005[Li, B. L., Peng, Y. F., Li, B. Z. & Zhang, Y. (2005). Chem. Commun. 18, 2333-2335.]); Lin & Dong (2007[Lin, J. & Dong, G.-Y. (2007). Acta Cryst. E63, m1944.]); Ding et al. (2009[Ding, B., Liu, Y.-Y., Huang, Y.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des. 9, 593-601.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H3NO4)2(C12H12N6)(H2O)2]·H2O

  • Mr = 751.63

  • Monoclinic, P 21 /c

  • a = 4.9017 (4) Å

  • b = 10.3022 (9) Å

  • c = 30.178 (3) Å

  • β = 93.541 (1)°

  • V = 1521.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.881, Tmax = 0.901

  • 7340 measured reflections

  • 2678 independent reflections

  • 2256 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.161

  • S = 1.06

  • 2678 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 1.40 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WA⋯O2Wi 0.85 2.15 2.920 (5) 151
O2W—H2WB⋯O2Wii 0.85 1.96 2.807 (5) 179
O1W—H1WA⋯O4iii 0.83 1.93 2.746 (5) 168
O1W—H1WB⋯O3iv 0.86 1.86 2.692 (5) 164
Symmetry codes: (i) -x+2, -y+2, -z; (ii) -x+1, -y+2, -z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,4-bis(1,2,4-triazol-1-ylmethyl)benzene (btx=1,4-bis(1,2,4-triazol-1-ylmethyl)benzene) is a ditriazole-containing bridge ligand, in which the flexible nature of spacers allows the ligands to bend and rotate when coordinating to metal centers so as to conform the coordination geometries of metal ions.(Arion, et al., 2003; Peng, et al., 2004, 2006; Meng, et al., 2004; Li et al., 2005;Lin et al. 2007; Ding, et al. 2009) To further understand the coordination behavior of this ligand, we report herein the crystal structure of the title compound,(I).

The asymmetric unit of (I) contains one copperII,one 2,6-pyridinedicarboxylato, one half btx ligand, one coordination water molecule and one half free water molecule. The copper center is five-coordinated in distorted square-based pyramidal coordination geometry. As show in Fig.1, selected geometric parameters see table 1.Each copperII is coordinated by one tridentate dipicolinato ligands via their carboxylate and nitrogen donors.(Cu1—N1= 1.908 (3); Cu1—O1=2.007 (3); Cu(1)—O(3)= 2.048 (3) Å) another one (Cu1—N4=1.951 (3) Å) from btx ligand together with one water molecule (Cu1—O1W = 2.217 (4) Å).Two carboxylate oxygen atoms and two nitrogen atoms define a quadrangle equatorial plane, and the water oxygen atom occupies the apical position. Each btx ligand bridges two copper atoms related by a twofold axis into dinuclear structure. The dihedral angle between the imidazole and phenyl rings is 70.0 (4)° in same btx ligang. It is noteworthy that there exist strong hydrogen-bonding interaction(table 2) involving the carboxy group oxygen atoms of dipicolinato ligands as well as coordinated and free water molecules,this may further stabilize the crytal structure.

Related literature top

For the versatile conformations of the flexible 1,4-bis(1,2,4- triazol-1-yl-methyl)benzene ligand and related complexes, see: Arion et al. (2003); Peng et al. (2004, 2006); Meng et al. (2004); Li et al. (2005); Lin & Dong (2007); Ding et al. (2009).

Experimental top

A mixture of Cu(NO3)2 3H2O(120.5 mg, 0.5 mmol), 2,6-Pyridinedicarboxylic acid (167 mg, 1 mmol),NaOH(80 mg, 2 mm mol), btx (60 mg, 0.5 mmol) and water (12 ml) was sealed in a 25 ml teflon-lined stainless steel reactor and heated to 413 K for 72 h. The reaction was cooled to room temperature over a period of 24 h. Blue prism crystals of 1 suitable for X-ray difraction analysis were obtained with a yield of 37%(based btx)

Refinement top

H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(parent atom).Water H atoms were located in Fourier difference maps and isotropically.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Fig. 1. The part molecular structure of (I), showing displacement ellipsoids at the 30% probability level for atoms [symmetry code: (i) -x, -y + 3, -z)
[µ-1,4-Bis(1,2,4-triazol-1-ylmethyl)benzene]bis[aqua(pyridine-2,6- dicarboxylato)copper(II)] monohydrate top
Crystal data top
[Cu2(C7H3NO4)2(C12H12N6)(H2O)2]·H2OF(000) = 764
Mr = 751.63Dx = 1.641 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3568 reflections
a = 4.9017 (4) Åθ = 22.3–3.6°
b = 10.3022 (9) ŵ = 1.47 mm1
c = 30.178 (3) ÅT = 298 K
β = 93.541 (1)°Prism, blue
V = 1521.0 (2) Å30.20 × 0.15 × 0.11 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2678 independent reflections
Radiation source: fine–focus sealed tube2256 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.881, Tmax = 0.901k = 1212
7340 measured reflectionsl = 3527
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1045P)2 + 1.8845P]
where P = (Fo2 + 2Fc2)/3
2678 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 1.40 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu2(C7H3NO4)2(C12H12N6)(H2O)2]·H2OV = 1521.0 (2) Å3
Mr = 751.63Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.9017 (4) ŵ = 1.47 mm1
b = 10.3022 (9) ÅT = 298 K
c = 30.178 (3) Å0.20 × 0.15 × 0.11 mm
β = 93.541 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2678 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2256 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.901Rint = 0.029
7340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.06Δρmax = 1.40 e Å3
2678 reflectionsΔρmin = 0.40 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.08344 (10)0.98034 (5)0.149509 (16)0.0318 (2)
O30.1809 (6)0.9403 (3)0.19769 (10)0.0376 (7)
O10.3528 (6)0.9508 (3)0.10311 (10)0.0392 (7)
N10.1905 (7)0.8071 (3)0.16460 (11)0.0300 (8)
C70.1409 (9)0.8318 (4)0.21771 (14)0.0328 (9)
O40.2555 (7)0.7960 (3)0.25024 (11)0.0469 (8)
N40.0779 (7)1.1422 (3)0.12697 (12)0.0346 (8)
C20.3801 (9)0.7519 (4)0.14164 (14)0.0335 (9)
C30.4592 (10)0.6261 (4)0.15103 (16)0.0419 (11)
H30.59170.58590.13500.050*
C60.0697 (8)0.7462 (4)0.19736 (13)0.0309 (9)
O20.6818 (8)0.8113 (4)0.08671 (12)0.0565 (10)
C110.1952 (9)1.4310 (5)0.02197 (15)0.0415 (11)
C10.4833 (9)0.8436 (4)0.10695 (14)0.0358 (10)
C50.1422 (10)0.6216 (4)0.20832 (16)0.0417 (11)
H50.06130.57870.23120.050*
C120.0882 (11)1.3819 (5)0.01557 (17)0.0486 (12)
H120.14731.30160.02660.058*
C40.3384 (10)0.5605 (5)0.18465 (17)0.0453 (11)
H40.38900.47540.19140.054*
O1W0.3552 (8)1.0793 (4)0.20033 (14)0.0698 (13)
N20.2780 (8)1.2853 (4)0.08451 (13)0.0439 (10)
C130.1072 (11)1.5492 (5)0.03729 (17)0.0492 (12)
H130.17881.58410.06250.059*
C100.4037 (11)1.3552 (6)0.04620 (19)0.0576 (15)
H10A0.54111.41440.05620.069*
H10B0.49421.29360.02590.069*
C90.1903 (11)1.1643 (5)0.08746 (16)0.0465 (12)
H90.20641.10370.06460.056*
N30.2233 (16)1.3460 (5)0.12323 (17)0.092 (2)
C80.1028 (17)1.2542 (6)0.14744 (19)0.080 (2)
H80.03981.26720.17680.096*
O2W0.746 (3)0.9295 (7)0.0049 (2)0.092 (4)0.50
H2WA0.91520.94720.00770.137*0.50
H2WB0.59660.97140.00180.137*0.50
H1WA0.32011.13700.21830.137*
H1WB0.51771.04750.20230.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0373 (4)0.0240 (3)0.0348 (4)0.0079 (2)0.0068 (2)0.00618 (19)
O30.0425 (17)0.0334 (16)0.0376 (16)0.0129 (14)0.0083 (13)0.0073 (14)
O10.0469 (18)0.0330 (16)0.0390 (17)0.0053 (14)0.0130 (14)0.0077 (13)
N10.0351 (19)0.0255 (17)0.0296 (18)0.0040 (14)0.0026 (14)0.0005 (14)
C70.037 (2)0.030 (2)0.033 (2)0.0001 (18)0.0042 (18)0.0012 (17)
O40.063 (2)0.0381 (18)0.0418 (18)0.0049 (16)0.0205 (16)0.0073 (15)
N40.042 (2)0.0274 (18)0.035 (2)0.0085 (15)0.0039 (15)0.0055 (15)
C20.038 (2)0.030 (2)0.032 (2)0.0025 (18)0.0025 (17)0.0045 (17)
C30.047 (3)0.031 (2)0.048 (3)0.013 (2)0.009 (2)0.003 (2)
C60.036 (2)0.026 (2)0.030 (2)0.0017 (17)0.0005 (17)0.0018 (17)
O20.063 (2)0.054 (2)0.056 (2)0.0176 (18)0.0296 (18)0.0073 (17)
C110.043 (3)0.038 (3)0.043 (3)0.010 (2)0.006 (2)0.015 (2)
C10.044 (3)0.031 (2)0.033 (2)0.0020 (19)0.0056 (19)0.0015 (17)
C50.051 (3)0.030 (2)0.044 (3)0.004 (2)0.008 (2)0.008 (2)
C120.062 (3)0.031 (2)0.051 (3)0.004 (2)0.003 (2)0.003 (2)
C40.056 (3)0.024 (2)0.056 (3)0.010 (2)0.008 (2)0.006 (2)
O1W0.049 (2)0.074 (3)0.083 (3)0.026 (2)0.0229 (19)0.046 (2)
N20.046 (2)0.041 (2)0.045 (2)0.0095 (18)0.0008 (17)0.0148 (18)
C130.066 (3)0.045 (3)0.037 (3)0.013 (3)0.007 (2)0.003 (2)
C100.049 (3)0.060 (3)0.063 (3)0.010 (3)0.004 (2)0.034 (3)
C90.068 (3)0.031 (2)0.040 (3)0.005 (2)0.005 (2)0.006 (2)
N30.173 (6)0.051 (3)0.049 (3)0.057 (4)0.007 (3)0.000 (2)
C80.155 (7)0.043 (3)0.039 (3)0.042 (4)0.015 (3)0.001 (2)
O2W0.235 (12)0.026 (4)0.017 (3)0.038 (5)0.034 (5)0.010 (3)
Geometric parameters (Å, º) top
Cu1—N11.908 (3)C11—C101.510 (7)
Cu1—N41.950 (3)C5—C41.384 (7)
Cu1—O12.006 (3)C5—H50.9300
Cu1—O32.048 (3)C12—C13i1.389 (7)
Cu1—O1W2.217 (4)C12—H120.9300
O3—C71.280 (5)C4—H40.9300
O1—C11.278 (5)O1W—H1WA0.8301
N1—C21.322 (5)O1W—H1WB0.8599
N1—C61.339 (5)N2—C91.319 (6)
C7—O41.218 (5)N2—N31.338 (6)
C7—C61.517 (6)N2—C101.466 (6)
N4—C91.302 (6)C13—C12i1.389 (7)
N4—C81.318 (7)C13—H130.9300
C2—C31.377 (6)C10—H10A0.9700
C2—C11.520 (6)C10—H10B0.9700
C3—C41.382 (7)C9—H90.9300
C3—H30.9300N3—C81.313 (7)
C6—C51.367 (6)C8—H80.9300
O2—C11.226 (5)O2W—H2WA0.8500
C11—C131.364 (8)O2W—H2WB0.8482
C11—C121.374 (7)
N1—Cu1—N4169.43 (16)O2—C1—C2118.8 (4)
N1—Cu1—O180.88 (13)O1—C1—C2114.4 (4)
N4—Cu1—O199.00 (14)C6—C5—C4118.7 (4)
N1—Cu1—O379.57 (13)C6—C5—H5120.6
N4—Cu1—O399.15 (13)C4—C5—H5120.6
O1—Cu1—O3159.60 (14)C11—C12—C13i120.7 (5)
N1—Cu1—O1W96.92 (16)C11—C12—H12119.7
N4—Cu1—O1W93.53 (15)C13i—C12—H12119.7
O1—Cu1—O1W99.18 (15)C3—C4—C5120.0 (4)
O3—Cu1—O1W88.91 (16)C3—C4—H4120.0
C7—O3—Cu1115.2 (3)C5—C4—H4120.0
C1—O1—Cu1114.5 (3)Cu1—O1W—H1WA129.9
C2—N1—C6122.9 (4)Cu1—O1W—H1WB112.7
C2—N1—Cu1118.0 (3)H1WA—O1W—H1WB117.2
C6—N1—Cu1119.1 (3)C9—N2—N3109.6 (4)
O4—C7—O3125.5 (4)C9—N2—C10129.6 (5)
O4—C7—C6120.6 (4)N3—N2—C10120.7 (4)
O3—C7—C6113.9 (3)C11—C13—C12i120.6 (5)
C9—N4—C8103.3 (4)C11—C13—H13119.7
C9—N4—Cu1127.5 (3)C12i—C13—H13119.7
C8—N4—Cu1129.2 (3)N2—C10—C11111.8 (4)
N1—C2—C3119.7 (4)N2—C10—H10A109.2
N1—C2—C1111.6 (4)C11—C10—H10A109.2
C3—C2—C1128.7 (4)N2—C10—H10B109.2
C2—C3—C4118.9 (4)C11—C10—H10B109.2
C2—C3—H3120.6H10A—C10—H10B107.9
C4—C3—H3120.6N4—C9—N2110.2 (4)
N1—C6—C5119.9 (4)N4—C9—H9124.9
N1—C6—C7111.7 (3)N2—C9—H9124.9
C5—C6—C7128.5 (4)C8—N3—N2102.0 (5)
C13—C11—C12118.7 (5)N3—C8—N4114.9 (5)
C13—C11—C10120.4 (5)N3—C8—H8122.5
C12—C11—C10120.9 (5)N4—C8—H8122.5
O2—C1—O1126.7 (4)H2WA—O2W—H2WB137.0
Symmetry code: (i) x, y+3, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O2Wii0.852.152.920 (5)151
O2W—H2WB···O2Wiii0.851.962.807 (5)179
O1W—H1WA···O4iv0.831.932.746 (5)168
O1W—H1WB···O3v0.861.862.692 (5)164
Symmetry codes: (ii) x+2, y+2, z; (iii) x+1, y+2, z; (iv) x, y+1/2, z+1/2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C7H3NO4)2(C12H12N6)(H2O)2]·H2O
Mr751.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)4.9017 (4), 10.3022 (9), 30.178 (3)
β (°) 93.541 (1)
V3)1521.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.20 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.881, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
7340, 2678, 2256
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.161, 1.06
No. of reflections2678
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.40, 0.40

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O2Wi0.852.1472.920 (5)151.00
O2W—H2WB···O2Wii0.851.9592.807 (5)179.11
O1W—H1WA···O4iii0.831.9282.746 (5)167.54
O1W—H1WB···O3iv0.861.8592.692 (5)163.64
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+2, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z.
 

Acknowledgements

The authors thank Hebei United University for supporting this work.

References

First citationArion, V. B., Reisner, E., Fremuth, M., Jakupec, M. A., Keppler, B. K., Kukushkin, V. Y. & Pombeiro, A. J. (2003). Inorg. Chem. 42, 6024–6031.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, B., Liu, Y.-Y., Huang, Y.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des. 9, 593–601.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, B. L., Peng, Y. F., Li, B. Z. & Zhang, Y. (2005). Chem. Commun. 18, 2333–2335.  Web of Science CSD CrossRef Google Scholar
First citationLin, J. & Dong, G.-Y. (2007). Acta Cryst. E63, m1944.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeng, X., Song, Y., Hou, H., Han, H., Xiao, B., Fan, Y. & Zhu, Y. (2004). Inorg. Chem. 43, 3528–3536.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPeng, Y. F., Ge, H. Y., Li, B. L. & Zhang, Y. (2006). Cryst. Growth Des. 6, 994–998.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeng, Y. F., Li, B. Z., Zhou, J. H., Li, B. L. & Zhang, Y. (2004). Chin. J. Struct. Chem. 23, 985–988.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds