metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{Bis[2-(di­phenyl­phosphan­yl)eth­yl]phenyl­phosphane-κ3P,P′,P′′}[(Z)-8-mesityl­cyclo­oct-4-en-1-yl]platinum(II) tetra­fluorido­borate di­chloro­methane disolvate

aDepartment of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA, and bDepartment of Chemistry, Queens University, Kingston, Ontario K7L 3N6, Canada
*Correspondence e-mail: shubinzhao@hotmail.com, mgagne@unc.edu

(Received 14 June 2011; accepted 17 June 2011; online 25 June 2011)

In the title ionic compound, [Pt(C17H23)(C34H33P3)](BF4)·2CH2Cl2, the PtII atom adopts a square-planar coordination geometry with the large (Z)-8-mesityl­cyclo­oct-4-en-1-yl group occupying the fourth coordination site. The (triphos)Pt moiety and the mesityl group are attached to the cyclo­oct-4-ene motif at the 1- and 8-position in a syn configuration. The (BF4) anion and one of the dichloromethane solvate molecules each are disordered over two sets of sites.

Related literature

For structures of similar triphos-chelating PtII-alkyl compounds, see: Koh & Gagné (2004[Koh, J. H. & Gagné, M. R. (2004). Angew. Chem. Int. Ed. 43, 3459-3461.]); Feducia & Gagné (2008[Feducia, J. A. & Gagné, M. R. (2008). J. Am. Chem. Soc. 130, 592-599.]); Sokol et al. (2011[Sokol, J. G., Korapala, C. S., White, P. S., Becker, J. J. & Gagné, M. R. (2011). Angew. Chem. Int. Ed. 50, 5658-5661.]). For structures of compounds incoporating cyclooctadiene (COD) and also generated via coordination-triggered bond metal-carbon migratory insertion reactions, see: Lin et al. (2009[Lin, B.-L., Bhattacharyya, K. X., Labinger, J. A. & Bercaw, J. E. (2009). Organometallics, 28, 4400-4405.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C17H23)(C34H33P3)](BF4)·2CH2Cl2

  • Mr = 1213.62

  • Triclinic, [P \overline 1]

  • a = 10.1347 (2) Å

  • b = 14.0808 (3) Å

  • c = 19.8975 (4) Å

  • α = 69.485 (1)°

  • β = 77.798 (1)°

  • γ = 87.516 (1)°

  • V = 2597.84 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.05 mm−1

  • T = 180 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (XSHELL; Bruker, 1999)[Bruker (1999). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.516, Tmax = 0.750

  • 18596 measured reflections

  • 10061 independent reflections

  • 9410 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.053

  • S = 1.01

  • 10061 reflections

  • 655 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—C1 2.166 (2)
Pt1—P3 2.2906 (7)
Pt1—P2 2.2995 (6)
Pt1—P1 2.3289 (6)
C1—Pt1—P3 90.04 (7)
C1—Pt1—P2 174.01 (7)
P3—Pt1—P2 83.98 (2)
C1—Pt1—P1 102.75 (7)
P3—Pt1—P1 153.18 (2)
P2—Pt1—P1 82.86 (2)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: XPREP (Bruker, 2005[Bruker (2005). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Migratory insertion of metal-carbon (M—C) bond into alkenes is the cornerstone of many transition-metal catalyzed C—C bond forming processes such as Ziegler-Natta polymerization and the palladium catalyzed Heck type couplings. Mechanistically, a migratory insertion process involves incipient development of a bond between the metal and an alkene carbon via a planar four-center transition state, which qualitatively renders the β-carbon positively charged with the carbon bound to the metal being negatively charged, and subsequent carbon migration from the metal to the β-carbon to formally furnish both a new C—C and a new M—C bond. The strength of the M—C bond significantly affects the kinetics of the insertion process, with the reaction rate drastically decreasing with increasing M—C bond strength. M—C bonds for the third-row late transition metals especially Ir and Pt are reluctant towards migratory insertion reactions because of their high bond strength. In contrast to the ease of Ni—C and Pd—C in participating migratory insertions, to our knowledge, examples for their heavier congener Pt remain exceptionally rare, with the reaction generating the title compound herein representing a rather intriguing case of Pt—C migratory insertion reactions enabled by ligand coordination.

The structure of the cationic moiety of the title compound is shown in Fig. 1, with selected bond length and angles listed in Table 1. The PtII center is four-coordinate, with triphos acting as a tridentate ligand and the large 8-mesitylcyclooct-4Z-en-1-yl group occupying the 4t h coordination site of the Pt center. The Pt1—C1 bond is measured to be 2.166 (2) Å in length, similar to previously reported triphos-chelating PtII-alkyl compounds [Koh et al. (2004); Feducia et al. (2008); Sokol et al. (2011)]. The three Pt—P bonds all show a bond length around 2.3 Å, with P2—Pt1—P1 and P3—Pt1—P2 bond angles being 82.86 (2)o and 83.98 (2)o, respectively. While the C1—C2 bond shows a length [1.553 (3) Å] common for a C—C single bond, the C5—C6 bond exhibits a length [1.328 (4) Å] most typical for a C=C double bond. It is also clear that the mesityl group and the Pt moiety are cis-to each other while both attaching to the cyclooct-4Z-ene motif. This configuration is in good agreement with the mechanistically predicted Pt-mesityl to COD migratory insertion product.

One of the unit cell packing diagrams for the title compound is shown in Fig. 2. The solvent molecules and the BF4- anion reside in small cavities created by columns of the staked cationic PtII moiety.

Related literature top

For structures of similar triphos-chelating PtII-alkyl compounds, see: Koh & Gagné (2004); Feducia & Gagné (2008); Sokol et al. (2011). For structures of compounds incoporating COD and also generated via coordination-triggered bond metal-carbon migratory insertion reactions, see: Lin et al. (2009).

Experimental top

The title compound was obtained unexpectedly while attempting to synthesize [(triphos)Pt-mesityl](BF4) via the ligand metathesis reaction between triphos and (COD)Pt(mesityl)(I): A mixture of triphos (0.15 g, 0.28 mmol) and (COD)Pt(mesityl)(I) (0.15 g, 0.27 mmol) in 5 ml dry CH2Cl2 was stirred under N2 for 2 h at room temperature. An aqueous solution of NaBF4 (0.25 g, 2.3 mmol, in 5 ml H2O) was added, the resulting mixture was stirred for 15 min. After separation of the organic layer, extraction with CH2Cl2 (5 ml x 2) and removal of the solvent, the residue was purified by flash chromatography on silica gel using CH2Cl2/MeNO2 (1: 1) as the eluent to afford the title compound as a white solid (40% yield). Colorless crystals were obtained by slow evaporation of a CH2Cl2/hexanes mixed solution.

Refinement top

All non-hydrogen atoms were refined anisotropically. The BF4- anion was disordered, wherein the disordered fluoride atoms were refined in parts, each with their corresponding occupancy. The chloride atom of one methylene chloride molecule was disordered in two parts, each assigned 50% occupancy. The H atoms on C1 and C17 were located from difference Fourier maps and refined with H as riding atom (Uiso = 1.2(C)). All the other H atoms were placed in geometrically calculated positions, with C—H = 0.95 (aromatic), 0.99 (CH2), and 0.98 (CH3) Å, and refined as riding atoms, with Uiso(H) = 1.5UeqC (CH3) or 1.2UeqC (other C), and the methyl groups were refined with AFIX 137, which allowed the rotation of the methyl groups whilst keeping the C—H distances and X—C—H angles fixed. The two hydrogen atoms of the disordered methylene chloride molecule were not added.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: XPREP (Bruker, 2005) and SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of the cationic moiety of the title compound (The solvent molecules, BF4- anion and H atoms except those on the C1 and C2 atoms are omitted for clarity; Displacement ellipsoids for non-H atoms are shown at the 30% probability level.)
[Figure 2] Fig. 2. The packing of unit cell of the title compound, viewed down the a axis.
[Figure 3] Fig. 3. The formation of the title compound.
{Bis[2-(diphenylphosphanyl)ethyl]phenylphosphane- κ3P,P',P''}[(Z)-8-mesitylcyclooct-4-en-1- yl]platinum(II) tetrafluoridoborate dichloromethane disolvate top
Crystal data top
[Pt(C17H23)(C34H33P3)](BF4)·2CH2Cl2Z = 2
Mr = 1213.62F(000) = 1220
Triclinic, P1Dx = 1.551 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1347 (2) ÅCell parameters from 9914 reflections
b = 14.0808 (3) Åθ = 2.6–27.1°
c = 19.8975 (4) ŵ = 3.05 mm1
α = 69.485 (1)°T = 180 K
β = 77.798 (1)°Block, colourless
γ = 87.516 (1)°0.25 × 0.15 × 0.10 mm
V = 2597.84 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
10061 independent reflections
Radiation source: fine-focus sealed X-ray tube9410 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(XSHELL; Bruker, 1999)
h = 1212
Tmin = 0.516, Tmax = 0.750k = 1717
18596 measured reflectionsl = 2324
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0239P)2 + 2.7018P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max = 0.005
S = 1.01Δρmax = 0.85 e Å3
10061 reflectionsΔρmin = 0.69 e Å3
655 parameters
Crystal data top
[Pt(C17H23)(C34H33P3)](BF4)·2CH2Cl2γ = 87.516 (1)°
Mr = 1213.62V = 2597.84 (9) Å3
Triclinic, P1Z = 2
a = 10.1347 (2) ÅMo Kα radiation
b = 14.0808 (3) ŵ = 3.05 mm1
c = 19.8975 (4) ÅT = 180 K
α = 69.485 (1)°0.25 × 0.15 × 0.10 mm
β = 77.798 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
10061 independent reflections
Absorption correction: multi-scan
(XSHELL; Bruker, 1999)
9410 reflections with I > 2σ(I)
Tmin = 0.516, Tmax = 0.750Rint = 0.017
18596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022655 parameters
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.85 e Å3
10061 reflectionsΔρmin = 0.69 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.364017 (9)0.651864 (7)0.711204 (5)0.01904 (4)
P10.42946 (6)0.61844 (5)0.60245 (4)0.02073 (13)
P20.22872 (7)0.50870 (5)0.74564 (4)0.02289 (13)
P30.20832 (6)0.68965 (5)0.79913 (4)0.02262 (13)
C10.4774 (3)0.79079 (19)0.68775 (14)0.0221 (5)
H10.441 (3)0.813 (2)0.7254 (17)0.026*
C20.6308 (2)0.79102 (19)0.68731 (14)0.0224 (5)
H2A0.65140.86290.68090.027*
C30.7286 (3)0.7752 (2)0.62203 (14)0.0259 (5)
H3A0.70070.71180.61710.031*
H3B0.82000.76560.63320.031*
C40.7375 (3)0.8624 (2)0.54734 (15)0.0302 (6)
H4A0.82110.85530.51350.036*
H4B0.66030.85410.52640.036*
C50.7376 (3)0.9684 (2)0.54929 (16)0.0339 (6)
H5A0.82171.00510.53070.041*
C60.6334 (3)1.0164 (2)0.57396 (16)0.0335 (6)
H6A0.65451.08310.57070.040*
C70.4881 (3)0.9829 (2)0.60610 (17)0.0335 (6)
H7A0.43401.02930.57300.040*
H7B0.46380.99480.65330.040*
C80.4391 (3)0.87384 (19)0.62101 (16)0.0271 (6)
H8A0.33950.87280.62790.033*
H8B0.47600.85620.57680.033*
C90.6651 (2)0.7307 (2)0.76218 (14)0.0242 (5)
C100.6741 (3)0.7831 (2)0.80972 (15)0.0297 (6)
C110.7080 (3)0.7320 (2)0.87765 (16)0.0349 (7)
H11A0.71690.76930.90810.042*
C120.7289 (3)0.6290 (2)0.90191 (15)0.0342 (7)
C130.7188 (3)0.5779 (2)0.85512 (15)0.0312 (6)
H13A0.73190.50690.87090.037*
C140.6903 (3)0.6261 (2)0.78569 (15)0.0257 (5)
C150.6463 (4)0.8949 (2)0.79106 (19)0.0422 (8)
H15A0.65630.91600.83180.063*
H15B0.55410.90680.78290.063*
H15C0.71060.93410.74650.063*
C160.7627 (4)0.5752 (3)0.97645 (17)0.0485 (8)
H16A0.77300.50280.98430.073*
H16B0.68970.58371.01470.073*
H16C0.84730.60420.97850.073*
C170.6909 (3)0.5620 (2)0.73902 (17)0.0293 (6)
H17A0.618 (3)0.578 (2)0.7116 (16)0.030 (8)*
H17B0.771 (3)0.576 (2)0.7019 (18)0.037 (8)*
H17C0.688 (3)0.489 (3)0.7679 (19)0.044 (9)*
C180.3175 (3)0.68603 (19)0.54202 (15)0.0252 (5)
C190.2125 (3)0.7407 (2)0.56691 (16)0.0289 (6)
H19A0.20670.74990.61250.035*
C200.1164 (3)0.7816 (2)0.52517 (18)0.0365 (7)
H20A0.04440.81820.54250.044*
C210.1251 (3)0.7695 (2)0.45872 (18)0.0407 (8)
H21A0.05870.79730.43060.049*
C220.2300 (3)0.7168 (2)0.43277 (17)0.0400 (7)
H22A0.23690.71000.38630.048*
C230.3246 (3)0.6742 (2)0.47465 (16)0.0317 (6)
H23A0.39520.63650.45740.038*
C240.5955 (3)0.6261 (2)0.54362 (14)0.0239 (5)
C250.6344 (3)0.7048 (2)0.47624 (15)0.0279 (6)
H25A0.57320.75660.45990.034*
C260.7627 (3)0.7073 (2)0.43301 (16)0.0345 (7)
H26A0.78860.76080.38720.041*
C270.8521 (3)0.6326 (2)0.45636 (17)0.0364 (7)
H27A0.93890.63420.42630.044*
C280.8159 (3)0.5556 (2)0.52315 (18)0.0350 (7)
H28A0.87850.50500.53950.042*
C290.6880 (3)0.5517 (2)0.56672 (15)0.0277 (6)
H29A0.66340.49800.61250.033*
C300.3756 (3)0.4858 (2)0.62265 (15)0.0266 (6)
H30A0.37900.47360.57620.032*
H30B0.43740.43870.64990.032*
C310.2312 (3)0.4662 (2)0.66878 (15)0.0278 (6)
H31A0.20600.39310.68680.033*
H31B0.16650.50450.63910.033*
C320.2708 (3)0.3995 (2)0.81810 (15)0.0270 (6)
C330.3937 (3)0.3991 (3)0.83828 (18)0.0408 (7)
H33A0.45250.45750.81610.049*
C340.4312 (4)0.3140 (3)0.8906 (2)0.0556 (10)
H34A0.51690.31320.90300.067*
C350.3443 (4)0.2307 (3)0.92476 (19)0.0538 (10)
H35A0.36890.17290.96160.065*
C360.2227 (4)0.2311 (3)0.9056 (2)0.0518 (9)
H36A0.16290.17340.92960.062*
C370.1850 (3)0.3137 (2)0.85200 (19)0.0419 (7)
H37A0.10110.31220.83830.050*
C380.0578 (3)0.5398 (2)0.78013 (17)0.0305 (6)
H38A0.01820.58470.73920.037*
H38B0.00010.47730.80550.037*
C390.0671 (3)0.5937 (2)0.83370 (16)0.0306 (6)
H39A0.07900.54260.88080.037*
H39B0.01890.62750.84330.037*
C400.1355 (3)0.8110 (2)0.75747 (15)0.0269 (6)
C410.0349 (3)0.8185 (2)0.71767 (17)0.0360 (7)
H41A0.00000.75910.71430.043*
C420.0139 (4)0.9122 (3)0.6832 (2)0.0483 (8)
H42A0.08150.91730.65570.058*
C430.0352 (4)0.9987 (3)0.6887 (2)0.0534 (9)
H43A0.00091.06290.66510.064*
C440.1336 (3)0.9921 (2)0.7284 (2)0.0461 (8)
H44A0.16671.05160.73240.055*
C450.1838 (3)0.8990 (2)0.76225 (17)0.0341 (6)
H45A0.25220.89480.78920.041*
C460.2372 (3)0.6987 (2)0.88357 (15)0.0271 (6)
C470.3603 (3)0.6794 (3)0.90346 (16)0.0360 (7)
H47A0.43450.66260.87210.043*
C480.3752 (3)0.6848 (3)0.96998 (19)0.0516 (9)
H48A0.46020.67170.98380.062*
C490.2688 (4)0.7088 (3)1.01592 (19)0.0529 (9)
H49A0.28020.71231.06120.064*
C500.1450 (3)0.7277 (3)0.99613 (18)0.0478 (9)
H50A0.07080.74361.02810.057*
C510.1286 (3)0.7238 (3)0.93033 (17)0.0406 (7)
H51A0.04370.73800.91650.049*
C520.4898 (4)0.1369 (3)0.7821 (2)0.0539 (9)
H52A0.51040.18280.80680.065*
H52B0.57510.10610.76640.065*
C530.8544 (7)0.0658 (5)0.8821 (4)0.133 (3)
Cl10.37441 (11)0.04042 (7)0.84446 (6)0.0616 (2)
Cl20.42619 (14)0.20709 (9)0.70494 (6)0.0783 (3)
Cl40.68482 (18)0.04661 (11)0.93024 (9)0.1038 (5)
Cl3A0.9758 (7)0.0097 (5)0.9226 (4)0.136 (2)0.50
Cl3B0.9361 (5)0.0391 (4)0.9105 (3)0.1094 (18)0.50
B10.8670 (5)0.3112 (3)0.7387 (2)0.0478 (10)
F10.9055 (3)0.40045 (19)0.68343 (13)0.0780 (8)
F20.8778 (3)0.3169 (2)0.80450 (13)0.0756 (7)
F3A0.9454 (17)0.2390 (16)0.7191 (13)0.073 (7)0.50
F4A0.736 (2)0.2949 (17)0.7474 (12)0.116 (9)0.50
F4B0.773 (2)0.2428 (19)0.7456 (9)0.085 (9)0.25
F3B1.001 (2)0.2496 (18)0.7311 (11)0.059 (4)0.25
F4C0.718 (3)0.321 (2)0.7325 (14)0.053 (4)0.25
F3C0.892 (3)0.229 (3)0.724 (2)0.063 (10)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01793 (5)0.01961 (5)0.02047 (5)0.00080 (3)0.00418 (4)0.00782 (4)
P10.0213 (3)0.0208 (3)0.0212 (3)0.0009 (2)0.0047 (3)0.0083 (3)
P20.0208 (3)0.0230 (3)0.0253 (3)0.0031 (2)0.0028 (3)0.0097 (3)
P30.0196 (3)0.0257 (3)0.0247 (3)0.0008 (3)0.0041 (3)0.0117 (3)
C10.0222 (13)0.0201 (12)0.0254 (13)0.0010 (10)0.0051 (10)0.0096 (10)
C20.0209 (12)0.0213 (12)0.0273 (13)0.0019 (10)0.0075 (10)0.0096 (10)
C30.0226 (13)0.0273 (13)0.0285 (14)0.0016 (10)0.0059 (11)0.0102 (11)
C40.0284 (14)0.0328 (15)0.0290 (14)0.0009 (11)0.0059 (11)0.0100 (12)
C50.0337 (15)0.0294 (15)0.0323 (15)0.0088 (12)0.0079 (12)0.0013 (12)
C60.0378 (16)0.0211 (13)0.0392 (16)0.0064 (12)0.0131 (13)0.0035 (12)
C70.0341 (15)0.0214 (13)0.0426 (17)0.0012 (11)0.0113 (13)0.0064 (12)
C80.0224 (13)0.0232 (13)0.0357 (15)0.0009 (10)0.0099 (11)0.0078 (12)
C90.0173 (12)0.0292 (14)0.0267 (13)0.0004 (10)0.0049 (10)0.0103 (11)
C100.0261 (14)0.0361 (15)0.0302 (14)0.0023 (11)0.0071 (11)0.0153 (12)
C110.0277 (14)0.0538 (19)0.0306 (15)0.0048 (13)0.0087 (12)0.0226 (14)
C120.0210 (13)0.0525 (19)0.0258 (14)0.0046 (12)0.0046 (11)0.0104 (13)
C130.0227 (13)0.0359 (15)0.0306 (15)0.0059 (11)0.0063 (11)0.0063 (12)
C140.0178 (12)0.0288 (14)0.0295 (14)0.0010 (10)0.0037 (10)0.0097 (11)
C150.054 (2)0.0409 (18)0.0455 (18)0.0078 (15)0.0188 (16)0.0277 (15)
C160.0440 (19)0.067 (2)0.0310 (17)0.0090 (17)0.0102 (14)0.0120 (16)
C170.0277 (15)0.0259 (14)0.0361 (16)0.0049 (11)0.0101 (13)0.0117 (12)
C180.0245 (13)0.0233 (13)0.0279 (13)0.0049 (10)0.0093 (11)0.0062 (11)
C190.0249 (13)0.0285 (14)0.0301 (14)0.0042 (11)0.0069 (11)0.0048 (11)
C200.0260 (14)0.0308 (15)0.0473 (18)0.0015 (12)0.0140 (13)0.0030 (13)
C210.0384 (17)0.0337 (16)0.0470 (19)0.0077 (13)0.0265 (15)0.0006 (14)
C220.0501 (19)0.0383 (17)0.0349 (16)0.0088 (14)0.0200 (15)0.0094 (14)
C230.0370 (16)0.0305 (15)0.0303 (15)0.0040 (12)0.0115 (12)0.0107 (12)
C240.0235 (13)0.0265 (13)0.0252 (13)0.0030 (10)0.0046 (10)0.0132 (11)
C250.0303 (14)0.0284 (14)0.0278 (14)0.0034 (11)0.0072 (11)0.0118 (11)
C260.0343 (16)0.0421 (17)0.0273 (14)0.0148 (13)0.0014 (12)0.0150 (13)
C270.0260 (14)0.0503 (19)0.0406 (17)0.0085 (13)0.0012 (13)0.0287 (15)
C280.0256 (14)0.0413 (17)0.0468 (18)0.0024 (12)0.0072 (13)0.0263 (15)
C290.0285 (14)0.0293 (14)0.0290 (14)0.0005 (11)0.0051 (11)0.0151 (12)
C300.0301 (14)0.0242 (13)0.0272 (14)0.0020 (11)0.0037 (11)0.0120 (11)
C310.0304 (14)0.0261 (14)0.0289 (14)0.0057 (11)0.0052 (11)0.0118 (11)
C320.0275 (14)0.0276 (14)0.0246 (13)0.0001 (11)0.0006 (11)0.0102 (11)
C330.0376 (17)0.0434 (18)0.0396 (17)0.0019 (14)0.0121 (14)0.0095 (14)
C340.057 (2)0.065 (2)0.047 (2)0.0164 (19)0.0282 (18)0.0140 (19)
C350.076 (3)0.045 (2)0.0346 (18)0.0196 (19)0.0116 (18)0.0080 (15)
C360.060 (2)0.0298 (17)0.047 (2)0.0019 (15)0.0071 (17)0.0016 (15)
C370.0360 (17)0.0326 (16)0.0477 (19)0.0037 (13)0.0001 (14)0.0071 (14)
C380.0209 (13)0.0307 (14)0.0414 (16)0.0024 (11)0.0040 (12)0.0155 (13)
C390.0222 (13)0.0315 (15)0.0361 (15)0.0027 (11)0.0015 (11)0.0131 (12)
C400.0241 (13)0.0302 (14)0.0273 (14)0.0046 (11)0.0058 (11)0.0113 (11)
C410.0313 (15)0.0393 (17)0.0430 (17)0.0066 (13)0.0147 (13)0.0180 (14)
C420.0439 (19)0.053 (2)0.054 (2)0.0157 (16)0.0250 (17)0.0181 (17)
C430.060 (2)0.0373 (18)0.058 (2)0.0160 (16)0.0229 (19)0.0054 (16)
C440.0474 (19)0.0296 (16)0.060 (2)0.0017 (14)0.0139 (17)0.0121 (15)
C450.0308 (15)0.0337 (15)0.0403 (17)0.0033 (12)0.0097 (13)0.0147 (13)
C460.0262 (13)0.0321 (14)0.0251 (13)0.0025 (11)0.0056 (11)0.0126 (11)
C470.0254 (14)0.057 (2)0.0309 (15)0.0034 (13)0.0047 (12)0.0226 (14)
C480.0297 (16)0.097 (3)0.0416 (19)0.0082 (17)0.0117 (14)0.038 (2)
C490.048 (2)0.089 (3)0.0355 (18)0.0103 (19)0.0132 (16)0.0370 (19)
C500.0402 (18)0.075 (2)0.0351 (17)0.0151 (17)0.0045 (14)0.0312 (17)
C510.0294 (15)0.061 (2)0.0366 (17)0.0130 (14)0.0082 (13)0.0247 (16)
C520.057 (2)0.050 (2)0.054 (2)0.0027 (17)0.0147 (18)0.0151 (18)
C530.116 (5)0.085 (4)0.142 (6)0.015 (4)0.023 (5)0.026 (4)
Cl10.0693 (6)0.0494 (5)0.0631 (6)0.0019 (4)0.0001 (5)0.0236 (5)
Cl20.0985 (9)0.0721 (7)0.0616 (6)0.0003 (6)0.0329 (6)0.0105 (5)
Cl40.1268 (13)0.0818 (9)0.0925 (10)0.0043 (8)0.0232 (9)0.0167 (8)
Cl3A0.125 (3)0.149 (6)0.100 (3)0.026 (3)0.029 (3)0.005 (3)
Cl3B0.137 (4)0.077 (2)0.079 (3)0.017 (3)0.027 (3)0.0152 (17)
B10.059 (3)0.050 (2)0.035 (2)0.010 (2)0.0051 (18)0.0167 (18)
F10.0911 (19)0.0644 (15)0.0529 (14)0.0143 (13)0.0148 (13)0.0077 (12)
F20.107 (2)0.0828 (17)0.0497 (13)0.0007 (15)0.0303 (13)0.0300 (12)
F3A0.086 (19)0.058 (5)0.075 (6)0.021 (12)0.018 (11)0.024 (4)
F4A0.057 (8)0.17 (2)0.131 (14)0.045 (11)0.005 (8)0.071 (13)
F4B0.089 (19)0.121 (18)0.042 (7)0.062 (15)0.020 (9)0.014 (9)
F3B0.050 (11)0.062 (8)0.059 (9)0.012 (7)0.007 (7)0.017 (6)
F4C0.050 (9)0.073 (9)0.058 (7)0.003 (6)0.023 (6)0.043 (7)
F3C0.08 (2)0.058 (14)0.073 (16)0.041 (17)0.040 (18)0.044 (14)
Geometric parameters (Å, º) top
Pt1—C12.166 (2)C25—C261.393 (4)
Pt1—P32.2906 (7)C25—H25A0.9500
Pt1—P22.2995 (6)C26—C271.377 (4)
Pt1—P12.3289 (6)C26—H26A0.9500
P1—C241.819 (3)C27—C281.376 (4)
P1—C181.822 (3)C27—H27A0.9500
P1—C301.849 (3)C28—C291.390 (4)
P2—C321.810 (3)C28—H28A0.9500
P2—C381.818 (3)C29—H29A0.9500
P2—C311.822 (3)C30—C311.533 (4)
P3—C461.813 (3)C30—H30A0.9900
P3—C401.819 (3)C30—H30B0.9900
P3—C391.856 (3)C31—H31A0.9900
C1—C81.540 (4)C31—H31B0.9900
C1—C21.553 (3)C32—C331.387 (4)
C1—H10.91 (3)C32—C371.393 (4)
C2—C31.536 (4)C33—C341.385 (5)
C2—C91.539 (4)C33—H33A0.9500
C2—H2A1.0000C34—C351.376 (6)
C3—C41.549 (4)C34—H34A0.9500
C3—H3A0.9900C35—C361.364 (6)
C3—H3B0.9900C35—H35A0.9500
C4—C51.506 (4)C36—C371.379 (5)
C4—H4A0.9900C36—H36A0.9500
C4—H4B0.9900C37—H37A0.9500
C5—C61.328 (4)C38—C391.529 (4)
C5—H5A0.9500C38—H38A0.9900
C6—C71.501 (4)C38—H38B0.9900
C6—H6A0.9500C39—H39A0.9900
C7—C81.542 (4)C39—H39B0.9900
C7—H7A0.9900C40—C451.392 (4)
C7—H7B0.9900C40—C411.397 (4)
C8—H8A0.9900C41—C421.382 (4)
C8—H8B0.9900C41—H41A0.9500
C9—C101.407 (4)C42—C431.382 (5)
C9—C141.410 (4)C42—H42A0.9500
C10—C111.399 (4)C43—C441.378 (5)
C10—C151.513 (4)C43—H43A0.9500
C11—C121.381 (4)C44—C451.379 (4)
C11—H11A0.9500C44—H44A0.9500
C12—C131.382 (4)C45—H45A0.9500
C12—C161.515 (4)C46—C471.375 (4)
C13—C141.395 (4)C46—C511.401 (4)
C13—H13A0.9500C47—C481.391 (4)
C14—C171.504 (4)C47—H47A0.9500
C15—H15A0.9800C48—C491.371 (5)
C15—H15B0.9800C48—H48A0.9500
C15—H15C0.9800C49—C501.381 (5)
C16—H16A0.9800C49—H49A0.9500
C16—H16B0.9800C50—C511.374 (4)
C16—H16C0.9800C50—H50A0.9500
C17—H17A0.98 (3)C51—H51A0.9500
C17—H17B0.95 (3)C52—Cl21.746 (4)
C17—H17C0.99 (3)C52—Cl11.760 (4)
C18—C191.393 (4)C52—H52A0.9900
C18—C231.394 (4)C52—H52B0.9900
C19—C201.389 (4)C53—Cl3B1.641 (9)
C19—H19A0.9500C53—Cl3A1.731 (10)
C20—C211.376 (5)C53—Cl41.763 (7)
C20—H20A0.9500B1—F3C1.29 (4)
C21—C221.384 (5)B1—F4A1.32 (2)
C21—H21A0.9500B1—F4B1.34 (2)
C22—C231.383 (4)B1—F11.354 (5)
C22—H22A0.9500B1—F21.368 (4)
C23—H23A0.9500B1—F3A1.376 (19)
C24—C291.396 (4)B1—F4C1.53 (3)
C24—C251.397 (4)B1—F3B1.59 (2)
C1—Pt1—P390.04 (7)C25—C24—P1122.2 (2)
C1—Pt1—P2174.01 (7)C26—C25—C24120.1 (3)
P3—Pt1—P283.98 (2)C26—C25—H25A119.9
C1—Pt1—P1102.75 (7)C24—C25—H25A119.9
P3—Pt1—P1153.18 (2)C27—C26—C25120.3 (3)
P2—Pt1—P182.86 (2)C27—C26—H26A119.8
C24—P1—C18106.08 (12)C25—C26—H26A119.8
C24—P1—C30101.49 (12)C28—C27—C26120.1 (3)
C18—P1—C30100.41 (12)C28—C27—H27A119.9
C24—P1—Pt1130.38 (8)C26—C27—H27A119.9
C18—P1—Pt1107.54 (9)C27—C28—C29120.2 (3)
C30—P1—Pt1107.03 (9)C27—C28—H28A119.9
C32—P2—C38106.12 (13)C29—C28—H28A119.9
C32—P2—C31105.75 (13)C28—C29—C24120.5 (3)
C38—P2—C31109.85 (13)C28—C29—H29A119.8
C32—P2—Pt1115.85 (9)C24—C29—H29A119.8
C38—P2—Pt1107.51 (9)C31—C30—P1109.29 (18)
C31—P2—Pt1111.56 (9)C31—C30—H30A109.8
C46—P3—C40102.55 (12)P1—C30—H30A109.8
C46—P3—C39101.85 (13)C31—C30—H30B109.8
C40—P3—C39106.10 (13)P1—C30—H30B109.8
C46—P3—Pt1126.74 (9)H30A—C30—H30B108.3
C40—P3—Pt1109.43 (9)C30—C31—P2106.77 (18)
C39—P3—Pt1108.43 (9)C30—C31—H31A110.4
C8—C1—C2113.4 (2)P2—C31—H31A110.4
C8—C1—Pt1109.26 (16)C30—C31—H31B110.4
C2—C1—Pt1121.68 (17)P2—C31—H31B110.4
C8—C1—H1102.5 (18)H31A—C31—H31B108.6
C2—C1—H1102.5 (18)C33—C32—C37119.1 (3)
Pt1—C1—H1105.0 (18)C33—C32—P2119.4 (2)
C3—C2—C9113.8 (2)C37—C32—P2121.5 (2)
C3—C2—C1117.6 (2)C34—C33—C32120.3 (3)
C9—C2—C1113.7 (2)C34—C33—H33A119.9
C3—C2—H2A103.0C32—C33—H33A119.9
C9—C2—H2A103.0C35—C34—C33120.0 (3)
C1—C2—H2A103.0C35—C34—H34A120.0
C2—C3—C4115.4 (2)C33—C34—H34A120.0
C2—C3—H3A108.4C36—C35—C34119.8 (3)
C4—C3—H3A108.4C36—C35—H35A120.1
C2—C3—H3B108.4C34—C35—H35A120.1
C4—C3—H3B108.4C35—C36—C37121.1 (3)
H3A—C3—H3B107.5C35—C36—H36A119.4
C5—C4—C3116.0 (2)C37—C36—H36A119.4
C5—C4—H4A108.3C36—C37—C32119.6 (3)
C3—C4—H4A108.3C36—C37—H37A120.2
C5—C4—H4B108.3C32—C37—H37A120.2
C3—C4—H4B108.3C39—C38—P2107.08 (18)
H4A—C4—H4B107.4C39—C38—H38A110.3
C6—C5—C4127.5 (3)P2—C38—H38A110.3
C6—C5—H5A116.3C39—C38—H38B110.3
C4—C5—H5A116.3P2—C38—H38B110.3
C5—C6—C7130.8 (3)H38A—C38—H38B108.6
C5—C6—H6A114.6C38—C39—P3113.01 (19)
C7—C6—H6A114.6C38—C39—H39A109.0
C6—C7—C8121.3 (2)P3—C39—H39A109.0
C6—C7—H7A107.0C38—C39—H39B109.0
C8—C7—H7A107.0P3—C39—H39B109.0
C6—C7—H7B107.0H39A—C39—H39B107.8
C8—C7—H7B107.0C45—C40—C41118.9 (3)
H7A—C7—H7B106.8C45—C40—P3120.1 (2)
C1—C8—C7116.1 (2)C41—C40—P3121.0 (2)
C1—C8—H8A108.3C42—C41—C40119.9 (3)
C7—C8—H8A108.3C42—C41—H41A120.0
C1—C8—H8B108.3C40—C41—H41A120.0
C7—C8—H8B108.3C41—C42—C43120.3 (3)
H8A—C8—H8B107.4C41—C42—H42A119.8
C10—C9—C14117.8 (2)C43—C42—H42A119.8
C10—C9—C2118.2 (2)C44—C43—C42120.2 (3)
C14—C9—C2123.9 (2)C44—C43—H43A119.9
C11—C10—C9120.3 (3)C42—C43—H43A119.9
C11—C10—C15117.2 (3)C43—C44—C45119.8 (3)
C9—C10—C15122.5 (3)C43—C44—H44A120.1
C12—C11—C10122.2 (3)C45—C44—H44A120.1
C12—C11—H11A118.9C44—C45—C40120.8 (3)
C10—C11—H11A118.9C44—C45—H45A119.6
C11—C12—C13117.1 (3)C40—C45—H45A119.6
C11—C12—C16121.0 (3)C47—C46—C51119.7 (3)
C13—C12—C16121.8 (3)C47—C46—P3122.1 (2)
C12—C13—C14122.9 (3)C51—C46—P3118.2 (2)
C12—C13—H13A118.5C46—C47—C48119.4 (3)
C14—C13—H13A118.5C46—C47—H47A120.3
C13—C14—C9119.6 (3)C48—C47—H47A120.3
C13—C14—C17117.0 (2)C49—C48—C47120.9 (3)
C9—C14—C17123.4 (2)C49—C48—H48A119.5
C10—C15—H15A109.5C47—C48—H48A119.5
C10—C15—H15B109.5C48—C49—C50119.7 (3)
H15A—C15—H15B109.5C48—C49—H49A120.1
C10—C15—H15C109.5C50—C49—H49A120.1
H15A—C15—H15C109.5C51—C50—C49120.2 (3)
H15B—C15—H15C109.5C51—C50—H50A119.9
C12—C16—H16A109.5C49—C50—H50A119.9
C12—C16—H16B109.5C50—C51—C46120.0 (3)
H16A—C16—H16B109.5C50—C51—H51A120.0
C12—C16—H16C109.5C46—C51—H51A120.0
H16A—C16—H16C109.5Cl2—C52—Cl1111.7 (2)
H16B—C16—H16C109.5Cl2—C52—H52A109.3
C14—C17—H17A112.7 (17)Cl1—C52—H52A109.3
C14—C17—H17B110.3 (19)Cl2—C52—H52B109.3
H17A—C17—H17B104 (3)Cl1—C52—H52B109.3
C14—C17—H17C112 (2)H52A—C52—H52B107.9
H17A—C17—H17C110 (3)Cl3B—C53—Cl4109.6 (4)
H17B—C17—H17C107 (3)Cl3A—C53—Cl4118.8 (4)
C19—C18—C23118.9 (3)F3C—B1—F1117 (2)
C19—C18—P1119.6 (2)F4A—B1—F1109.1 (10)
C23—C18—P1121.0 (2)F4B—B1—F1129.0 (9)
C20—C19—C18120.1 (3)F3C—B1—F2122 (2)
C20—C19—H19A120.0F4A—B1—F2103.0 (9)
C18—C19—H19A120.0F4B—B1—F2112.8 (8)
C21—C20—C19120.2 (3)F1—B1—F2110.9 (3)
C21—C20—H20A119.9F4A—B1—F3A113.7 (10)
C19—C20—H20A119.9F1—B1—F3A105.9 (10)
C20—C21—C22120.3 (3)F2—B1—F3A114.3 (10)
C20—C21—H21A119.9F3C—B1—F4C98.9 (18)
C22—C21—H21A119.9F1—B1—F4C93.6 (11)
C23—C22—C21119.8 (3)F2—B1—F4C109.0 (9)
C23—C22—H22A120.1F3A—B1—F4C121.0 (11)
C21—C22—H22A120.1F3C—B1—F3B48.0 (18)
C22—C23—C18120.6 (3)F4A—B1—F3B137.4 (11)
C22—C23—H23A119.7F4B—B1—F3B101.5 (14)
C18—C23—H23A119.7F1—B1—F3B100.6 (9)
C29—C24—C25118.7 (2)F2—B1—F3B93.8 (7)
C29—C24—P1119.1 (2)

Experimental details

Crystal data
Chemical formula[Pt(C17H23)(C34H33P3)](BF4)·2CH2Cl2
Mr1213.62
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)10.1347 (2), 14.0808 (3), 19.8975 (4)
α, β, γ (°)69.485 (1), 77.798 (1), 87.516 (1)
V3)2597.84 (9)
Z2
Radiation typeMo Kα
µ (mm1)3.05
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(XSHELL; Bruker, 1999)
Tmin, Tmax0.516, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
18596, 10061, 9410
Rint0.017
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.053, 1.01
No. of reflections10061
No. of parameters655
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.69

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), XPREP (Bruker, 2005) and SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Pt1—C12.166 (2)Pt1—P22.2995 (6)
Pt1—P32.2906 (7)Pt1—P12.3289 (6)
C1—Pt1—P390.04 (7)C1—Pt1—P1102.75 (7)
C1—Pt1—P2174.01 (7)P3—Pt1—P1153.18 (2)
P3—Pt1—P283.98 (2)P2—Pt1—P182.86 (2)
 

Acknowledgements

The NIH (GM-60578) and the Army Research Office Staff Research Program are thanked for their generous support. SBZ acknowledges the NSERC of Canada for a Postdoctoral Fellowship.

References

First citationBruker (1999). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeducia, J. A. & Gagné, M. R. (2008). J. Am. Chem. Soc. 130, 592–599.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoh, J. H. & Gagné, M. R. (2004). Angew. Chem. Int. Ed. 43, 3459–3461.  CrossRef CAS Google Scholar
First citationLin, B.-L., Bhattacharyya, K. X., Labinger, J. A. & Bercaw, J. E. (2009). Organometallics, 28, 4400–4405.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokol, J. G., Korapala, C. S., White, P. S., Becker, J. J. & Gagné, M. R. (2011). Angew. Chem. Int. Ed. 50, 5658–5661.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds