organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Bromo­meth­yl)adamantane

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic
*Correspondence e-mail: rvicha@ft.utb.cz

(Received 15 June 2011; accepted 17 June 2011; online 25 June 2011)

The title compound, C11H17Br, has crystallographically imposed mirror symmetry in the solid state with mol­ecules bis­ected by mirror planes parallel to the crystallographic ac plane (five C atoms, three H atoms and the Br atom lie on the mirror plane). The asymmetric unit contains one half-mol­ecule. The crystal packing is stabilized only via weak non-specific van der Waals inter­actions.

Related literature

For the synthetic procedure, see: Nordlander et al. (1966[Nordlander, J. E., Jindal, S. P., Schleyer, P. von R., Fort, R. C., Harper, J. J. Jr & Nicholas, R. D. (1966). J. Am. Chem. Soc. 88, 4475-4484.]). For the structure of a related non-polar adamantane derivate, see: Rouchal et al. (2010[Rouchal, M., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o1736.]).

[Scheme 1]

Experimental

Crystal data
  • C11H17Br

  • Mr = 229.16

  • Monoclinic, C 2/m

  • a = 10.7250 (3) Å

  • b = 7.0066 (3) Å

  • c = 13.4479 (4) Å

  • β = 101.801 (3)°

  • V = 989.19 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.10 mm−1

  • T = 120 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.480, Tmax = 1.000

  • 5102 measured reflections

  • 951 independent reflections

  • 900 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.048

  • S = 1.08

  • 951 reflections

  • 64 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is well known and widely used in chemistry of adamantane derivates as convenient source of 1-adamantylmethyl substituent (Nordlander et al., 1966). Although this compound is very easy to purify via crystallization or sublimation, it is prone to form soft thin plates. Due to this fact hand in hand with relatively low melting point (314–316 K), the crystal structure was not published yet. We successfully prepared sufficiently thick plates usable for XRD analyses via very slow partial evaporation of solvents from the solution of the title compound in DMF, petroleum ether, and ethyl acetate at room temperature. The molecule of the title compound contains the adamantane moiety consisting from three fused cyclohexane rings in classical chair conformation. The value of C—C—C angles varies within the range of 108.35 (6)–110.27 (12)°. No specific interactions, in addition to the van der Waals interactions, were observed to stabilize the packing of the molecules in the crystal.

Related literature top

For the synthetic procedure, see: Nordlander et al. (1966). For the structure of a related non-polar adamantane derivate, see: Rouchal et al. (2010).

Experimental top

The title compound was prepared according to slightly modified previously published procedure (Nordlander et al., 1966). The mixture of starting 1-adamantylmethanol (23.3 g, 0.14 mol), ZnBr2 (80.7 g, 0.36 mol), and azeotropic hydrobromic acid (412 cm3) was refluxed until the GC analyses showed complete disappearing of starting alcohol. Mixture was extracted with hexane:diethyl ether (1:1, v:v), collected organic portions were successively washed with 10% sodium bicarbonate solution and brine and dried over Na2SO4. The evaporation of solvent yielded of 26.5 g (83%) of pale yellow soft plates.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of of the title compound with atoms represented as 50% probability ellipsoids. Symmetry code used to generate the complete molecule: x, -y, z.
[Figure 2] Fig. 2. The unit cell viewed along the a-axis. H-atoms have been omitted for clarity.
1-(bromomethyl)adamantane top
Crystal data top
C11H17BrF(000) = 472
Mr = 229.16Dx = 1.539 Mg m3
Monoclinic, C2/mMelting point: 315 K
Hall symbol: -C 2yMo Kα radiation, λ = 0.71073 Å
a = 10.7250 (3) ÅCell parameters from 4311 reflections
b = 7.0066 (3) Åθ = 3.1–27.2°
c = 13.4479 (4) ŵ = 4.10 mm1
β = 101.801 (3)°T = 120 K
V = 989.19 (6) Å3Block, colourless
Z = 40.40 × 0.40 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
951 independent reflections
Radiation source: Enhance (Mo) X-ray Source900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 84
Tmin = 0.480, Tmax = 1.000l = 1515
5102 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.029P)2 + 0.8238P]
where P = (Fo2 + 2Fc2)/3
951 reflections(Δ/σ)max < 0.001
64 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C11H17BrV = 989.19 (6) Å3
Mr = 229.16Z = 4
Monoclinic, C2/mMo Kα radiation
a = 10.7250 (3) ŵ = 4.10 mm1
b = 7.0066 (3) ÅT = 120 K
c = 13.4479 (4) Å0.40 × 0.40 × 0.30 mm
β = 101.801 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
951 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
900 reflections with I > 2σ(I)
Tmin = 0.480, Tmax = 1.000Rint = 0.014
5102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.08Δρmax = 0.28 e Å3
951 reflectionsΔρmin = 0.29 e Å3
64 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.35255 (2)0.00000.046661 (18)0.02707 (11)
C10.1776 (2)0.00000.18798 (16)0.0146 (5)
C20.0362 (2)0.00000.19634 (17)0.0175 (5)
H2A0.00680.11440.16210.021*0.50
H2B0.00680.11440.16210.021*0.50
C30.0259 (2)0.00000.30840 (17)0.0188 (5)
H30.06600.00000.31300.023*
C40.09066 (14)0.1784 (3)0.36097 (12)0.0199 (4)
H4A0.08340.17940.43320.024*
H4B0.04830.29430.32790.024*
C50.23165 (14)0.1783 (3)0.35368 (12)0.0169 (4)
H50.27420.29480.38780.020*
C60.24109 (14)0.1789 (2)0.24137 (12)0.0163 (3)
H6A0.19880.29420.20770.020*
H6B0.33180.18240.23600.020*
C70.2966 (2)0.00000.40589 (17)0.0183 (5)
H7A0.38780.00000.40210.022*
H7B0.29080.00000.47840.022*
C80.1790 (2)0.00000.07521 (18)0.0202 (5)
H8A0.13290.11410.04350.024*0.50
H8B0.13290.11410.04350.024*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03772 (17)0.02270 (17)0.02531 (16)0.0000.01703 (11)0.000
C10.0154 (10)0.0148 (12)0.0125 (11)0.0000.0004 (8)0.000
C20.0128 (10)0.0162 (12)0.0204 (12)0.0000.0037 (9)0.000
C30.0106 (10)0.0236 (13)0.0214 (12)0.0000.0015 (9)0.000
C40.0163 (7)0.0228 (10)0.0203 (8)0.0031 (7)0.0034 (6)0.0032 (7)
C50.0148 (7)0.0176 (9)0.0173 (8)0.0026 (7)0.0010 (6)0.0046 (7)
C60.0157 (7)0.0145 (8)0.0178 (8)0.0012 (7)0.0014 (6)0.0001 (7)
C70.0132 (10)0.0273 (14)0.0135 (11)0.0000.0004 (8)0.000
C80.0230 (11)0.0195 (13)0.0167 (11)0.0000.0010 (9)0.000
Geometric parameters (Å, º) top
Br1—C81.975 (2)C4—H4A0.9900
C1—C81.520 (3)C4—H4B0.9900
C1—C61.533 (2)C5—C71.529 (2)
C1—C6i1.533 (2)C5—C61.534 (2)
C1—C21.544 (3)C5—H51.0000
C2—C31.533 (3)C6—H6A0.9900
C2—H2A0.9900C6—H6B0.9900
C2—H2B0.9900C7—C5i1.529 (2)
C3—C41.531 (2)C7—H7A0.9900
C3—C4i1.531 (2)C7—H7B0.9900
C3—H31.0000C8—H8A0.9900
C4—C51.535 (2)C8—H8B0.9900
C8—C1—C6111.91 (12)C7—C5—C6109.78 (14)
C8—C1—C6i111.91 (12)C7—C5—C4109.45 (14)
C6—C1—C6i109.67 (17)C6—C5—C4109.09 (12)
C8—C1—C2106.47 (17)C7—C5—H5109.5
C6—C1—C2108.36 (12)C6—C5—H5109.5
C6i—C1—C2108.36 (12)C4—C5—H5109.5
C3—C2—C1109.91 (17)C1—C6—C5110.28 (14)
C3—C2—H2A109.7C1—C6—H6A109.6
C1—C2—H2A109.7C5—C6—H6A109.6
C3—C2—H2B109.7C1—C6—H6B109.6
C1—C2—H2B109.7C5—C6—H6B109.6
H2A—C2—H2B108.2H6A—C6—H6B108.1
C4—C3—C4i109.48 (18)C5i—C7—C5109.57 (17)
C4—C3—C2109.69 (12)C5i—C7—H7A109.8
C4i—C3—C2109.69 (12)C5—C7—H7A109.8
C4—C3—H3109.3C5i—C7—H7B109.8
C4i—C3—H3109.3C5—C7—H7B109.8
C2—C3—H3109.3H7A—C7—H7B108.2
C3—C4—C5109.26 (14)C1—C8—Br1113.35 (15)
C3—C4—H4A109.8C1—C8—H8A108.9
C5—C4—H4A109.8Br1—C8—H8A108.9
C3—C4—H4B109.8C1—C8—H8B108.9
C5—C4—H4B109.8Br1—C8—H8B108.9
H4A—C4—H4B108.3H8A—C8—H8B107.7
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC11H17Br
Mr229.16
Crystal system, space groupMonoclinic, C2/m
Temperature (K)120
a, b, c (Å)10.7250 (3), 7.0066 (3), 13.4479 (4)
β (°) 101.801 (3)
V3)989.19 (6)
Z4
Radiation typeMo Kα
µ (mm1)4.10
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.480, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5102, 951, 900
Rint0.014
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.048, 1.08
No. of reflections951
No. of parameters64
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

 

Acknowledgements

The financial support of this work by the Czech Ministry of Education (project No. MSM 7088352101) and by the Inter­nal Founding Agency of Tomas Bata University in Zlin (project No. IGA/6/FT/11/D) is gratefully acknowledged.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNordlander, J. E., Jindal, S. P., Schleyer, P. von R., Fort, R. C., Harper, J. J. Jr & Nicholas, R. D. (1966). J. Am. Chem. Soc. 88, 4475–4484.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRouchal, M., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o1736.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds