organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Ethyl-1-methyl-3-(2-nitro­benzo­yl)thio­urea

aSchool of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia, and bFuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia
*Correspondence e-mail: mbkassim@ukm.my

(Received 20 June 2011; accepted 22 June 2011; online 30 June 2011)

In the title compound, C11H13N3O3S, the benzene ring is twisted relative to the amidic fragment, forming a dihedral angle of 27.26 (9)°. The thiono and carbonyl groups are trans with respect to the C—N bond. Inter­molecular N—H⋯S and C—H⋯O hydrogen bonds link the mol­ecules in the crystal structure.

Related literature

For the synthesis, see: Al-abbasi et al. (2010[Al-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, o2896.]). For related structures and background references, see: Shanmuga Sundara Raj et al. (1999[Shanmuga Sundara Raj, S., Puviarasan, K., Velmurugan, D., Jayanthi, G. & Fun, H.-K. (1999). Acta Cryst. C55, 1318-1320.]); Arslan et al. (2003[Arslan, H., Flörke, U. & Külcü, N. (2003). Acta Cryst. E59, o641-o642.]); Al-abbasi & Kassim (2011[Al-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for bond lengths in other substituted thio­ureas, see: Nasir et al. (2011[Nasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1218.]); Pérez et al. (2011[Pérez, H., Corrêa, R. S., Plutín, A. M., Álvarez, A. & Mascarenhas, Y. (2011). Acta Cryst. E67, o647.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13N3O3S

  • Mr = 267.30

  • Monoclinic, P 21 /n

  • a = 11.447 (2) Å

  • b = 7.8664 (15) Å

  • c = 15.159 (3) Å

  • β = 107.128 (4)°

  • V = 1304.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.55 × 0.38 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.874, Tmax = 0.949

  • 7105 measured reflections

  • 2294 independent reflections

  • 1971 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.06

  • 2294 reflections

  • 169 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.85 (2) 2.55 (2) 3.3828 (18) 167 (2)
C6—H6⋯O3ii 0.93 2.41 3.317 (3) 164
Symmetry codes: (i) -x+1, -y, -z; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, I, is a thiourea derivative analogous to our previously reported compounds (Al-abbasi & Kassim, 2011). Bond distances are similar to those usually found in other substituted thioureas [Nasir et al. (2011) & Pérez et al. (2011)]. The C–S and C–O exhibited the expected double-bond character. However, the C–N bond lengths are intermediate between a single and double, indicating a partial electron delocalization in the O1/C7/N1/C8/S1 fragment.

The phenyl ring is twisted due to the presence of the nitro group (O2O3N3) in ortho position. A rotation around C1—C7 bond makes the oxygen atom (O1) perpendicular to the phenyl ring mean planes and the torsion angles of C2C1C701 and C6C1C701 are -95.5 (2) and 86.5 (2)°, respectively. The dihedral angle between the mean planes of the thiourea (S1/N1/N2/C8/C9) and the phenyl ring (C1/C2/C3/C4/C5/C6/) plane is 27.56 (10)°. Other bond lengths and angles are in normal ranges (Allen et al. 1987).

The crystal structure is stabilized by the intermolecular N1—H1A···S1 and C5—H5A···O3 hydrogen bonds linking the molecules into a dimer resulting in a channel along [101] (Fig. 2).

Related literature top

For the synthetis, see: Al-abbasi et al. (2010). For related structures and background references, see: Shanmuga Sundara Raj et al. (1999); Arslan et al. (2003); Al-abbasi & Kassim (2011). For standard bond lengths, see: Allen et al. (1987) and for bond lengths in other substituted thioureas, see: Nasir et al. (2011); Pérez et al. (2011).

Experimental top

The title compound was prepared according to a previously reported procedure (Al-abbasi et al., 2010). A very pale browon colour crystal, suitable for X-ray crystallography, was obtained by a slow evaporation from ethanol solution at room temperature (yield 78%).

Refinement top

Hydrogen atom of the amide group was determined from the diffrence Fourrier map and N—H was initially fixed at 0.86(0.01) Å and allowed to be refined on the parent N atom with Uiso(H) = 1.2Ueq(N). All other H atoms were postioned geometrically with C—H bond lengths in the range 0.93 - 0.97 Å and refined in the riding model approximation with Uiso(H)=1.2Ueq(C,N), except for methyl group where Uiso(H)= 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the a-axis showing the intermolecular hydrogen bonds N1—H1A···S1 (-x + 1, -y, -z) and C6—H6···O3 (x, y + 1, z).
1-Ethyl-1-methyl-3-(2-nitrobenzoyl)thiourea top
Crystal data top
C11H13N3O3SF(000) = 560
Mr = 267.30Dx = 1.361 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4015 reflections
a = 11.447 (2) Åθ = 2.0–25.0°
b = 7.8664 (15) ŵ = 0.25 mm1
c = 15.159 (3) ÅT = 298 K
β = 107.128 (4)°Block, brown
V = 1304.5 (4) Å30.55 × 0.38 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2294 independent reflections
Radiation source: fine-focus sealed tube1971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.874, Tmax = 0.949k = 79
7105 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.065P)2 + 0.531P]
where P = (Fo2 + 2Fc2)/3
2294 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C11H13N3O3SV = 1304.5 (4) Å3
Mr = 267.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.447 (2) ŵ = 0.25 mm1
b = 7.8664 (15) ÅT = 298 K
c = 15.159 (3) Å0.55 × 0.38 × 0.21 mm
β = 107.128 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2294 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1971 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.949Rint = 0.020
7105 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.33 e Å3
2294 reflectionsΔρmin = 0.19 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.69163 (5)0.06431 (8)0.07382 (4)0.0575 (2)
O10.49702 (13)0.2128 (2)0.24893 (10)0.0608 (4)
O20.44396 (18)0.1541 (2)0.17973 (16)0.0811 (6)
O30.2858 (2)0.3156 (2)0.14610 (17)0.0984 (7)
N10.48480 (14)0.1814 (2)0.09706 (11)0.0435 (4)
N20.65025 (15)0.3643 (2)0.14053 (13)0.0528 (5)
N30.3344 (2)0.1771 (2)0.15678 (14)0.0612 (5)
C10.30487 (17)0.1334 (2)0.14682 (13)0.0401 (4)
C20.25371 (19)0.0265 (3)0.14295 (14)0.0459 (5)
C30.1301 (2)0.0513 (4)0.12710 (16)0.0636 (7)
H30.09840.16040.12580.076*
C40.0545 (2)0.0879 (4)0.11328 (18)0.0731 (8)
H40.02910.07350.10260.088*
C50.1024 (2)0.2479 (4)0.11526 (19)0.0728 (8)
H50.05070.34180.10500.087*
C60.2264 (2)0.2709 (3)0.13230 (16)0.0558 (6)
H60.25770.38030.13410.067*
C70.43942 (17)0.1743 (2)0.17127 (14)0.0433 (5)
C80.60936 (17)0.2138 (3)0.10694 (13)0.0441 (5)
C90.7795 (2)0.4114 (3)0.16004 (17)0.0607 (6)
H9A0.82920.30930.17100.073*
H9B0.80390.48010.21560.073*
C100.8020 (3)0.5099 (4)0.0808 (2)0.0793 (8)
H10A0.78970.43660.02820.119*
H10B0.88440.55180.09870.119*
H10C0.74610.60380.06510.119*
C110.5729 (2)0.5026 (3)0.1556 (2)0.0737 (8)
H11A0.49050.48530.11750.111*
H11B0.60280.60900.14000.111*
H11C0.57470.50420.21930.111*
H1A0.4498 (18)0.123 (3)0.0494 (11)0.051 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0395 (3)0.0708 (4)0.0647 (4)0.0004 (2)0.0194 (3)0.0241 (3)
O10.0506 (9)0.0857 (12)0.0461 (9)0.0004 (8)0.0142 (7)0.0123 (8)
O20.0695 (12)0.0584 (11)0.1181 (16)0.0213 (9)0.0318 (11)0.0114 (10)
O30.134 (2)0.0423 (10)0.1218 (18)0.0117 (11)0.0429 (15)0.0064 (10)
N10.0362 (8)0.0513 (10)0.0453 (9)0.0046 (7)0.0156 (7)0.0126 (8)
N20.0415 (9)0.0572 (11)0.0618 (11)0.0084 (8)0.0185 (8)0.0138 (9)
N30.0866 (15)0.0377 (10)0.0639 (12)0.0017 (10)0.0295 (11)0.0017 (8)
C10.0402 (10)0.0417 (10)0.0428 (10)0.0035 (8)0.0190 (8)0.0007 (8)
C20.0504 (11)0.0470 (11)0.0449 (11)0.0001 (9)0.0209 (9)0.0002 (8)
C30.0608 (14)0.0764 (17)0.0602 (14)0.0244 (13)0.0279 (12)0.0070 (12)
C40.0389 (12)0.118 (2)0.0658 (16)0.0025 (14)0.0213 (11)0.0029 (15)
C50.0510 (14)0.090 (2)0.0805 (18)0.0280 (14)0.0242 (12)0.0086 (14)
C60.0536 (12)0.0485 (12)0.0698 (14)0.0113 (10)0.0252 (11)0.0041 (10)
C70.0405 (10)0.0429 (11)0.0497 (11)0.0049 (8)0.0181 (9)0.0035 (8)
C80.0367 (10)0.0560 (12)0.0400 (10)0.0039 (9)0.0122 (8)0.0071 (8)
C90.0448 (12)0.0725 (15)0.0638 (14)0.0165 (11)0.0145 (10)0.0187 (12)
C100.0656 (16)0.0856 (19)0.090 (2)0.0134 (14)0.0287 (14)0.0004 (16)
C110.0675 (16)0.0533 (14)0.107 (2)0.0033 (12)0.0356 (15)0.0200 (14)
Geometric parameters (Å, º) top
S1—C81.674 (2)C3—H30.9300
O1—C71.206 (2)C4—C51.370 (4)
O2—N31.212 (3)C4—H40.9300
O3—N31.212 (3)C5—C61.378 (3)
N1—C71.372 (2)C5—H50.9300
N1—C81.412 (2)C6—H60.9300
N1—H1A0.849 (10)C9—C101.514 (4)
N2—C81.319 (3)C9—H9A0.9700
N2—C111.462 (3)C9—H9B0.9700
N2—C91.469 (3)C10—H10A0.9600
N3—C21.479 (3)C10—H10B0.9600
C1—C21.381 (3)C10—H10C0.9600
C1—C61.382 (3)C11—H11A0.9600
C1—C71.509 (3)C11—H11B0.9600
C2—C31.378 (3)C11—H11C0.9600
C3—C41.372 (4)
C7—N1—C8122.31 (16)C1—C6—H6119.6
C7—N1—H1A118.6 (15)O1—C7—N1124.04 (18)
C8—N1—H1A113.3 (15)O1—C7—C1121.22 (17)
C8—N2—C11124.45 (18)N1—C7—C1114.38 (17)
C8—N2—C9121.75 (18)N2—C8—N1115.81 (17)
C11—N2—C9113.66 (19)N2—C8—S1125.42 (15)
O3—N3—O2124.6 (2)N1—C8—S1118.75 (15)
O3—N3—C2117.3 (2)N2—C9—C10111.5 (2)
O2—N3—C2118.12 (18)N2—C9—H9A109.3
C2—C1—C6117.29 (18)C10—C9—H9A109.3
C2—C1—C7126.44 (17)N2—C9—H9B109.3
C6—C1—C7116.16 (18)C10—C9—H9B109.3
C3—C2—C1122.5 (2)H9A—C9—H9B108.0
C3—C2—N3118.5 (2)C9—C10—H10A109.5
C1—C2—N3118.97 (18)C9—C10—H10B109.5
C4—C3—C2118.9 (2)H10A—C10—H10B109.5
C4—C3—H3120.6C9—C10—H10C109.5
C2—C3—H3120.6H10A—C10—H10C109.5
C5—C4—C3120.0 (2)H10B—C10—H10C109.5
C5—C4—H4120.0N2—C11—H11A109.5
C3—C4—H4120.0N2—C11—H11B109.5
C4—C5—C6120.5 (2)H11A—C11—H11B109.5
C4—C5—H5119.8N2—C11—H11C109.5
C6—C5—H5119.8H11A—C11—H11C109.5
C5—C6—C1120.9 (2)H11B—C11—H11C109.5
C5—C6—H6119.6
C6—C1—C2—C31.2 (3)C8—N1—C7—O18.5 (3)
C7—C1—C2—C3174.71 (19)C8—N1—C7—C1178.37 (17)
C6—C1—C2—N3179.13 (19)C2—C1—C7—O195.5 (3)
C7—C1—C2—N35.0 (3)C6—C1—C7—O180.5 (3)
O3—N3—C2—C35.7 (3)C2—C1—C7—N191.2 (2)
O2—N3—C2—C3172.8 (2)C6—C1—C7—N192.9 (2)
O3—N3—C2—C1174.6 (2)C11—N2—C8—N18.5 (3)
O2—N3—C2—C16.9 (3)C9—N2—C8—N1176.06 (19)
C1—C2—C3—C41.0 (3)C11—N2—C8—S1170.1 (2)
N3—C2—C3—C4179.3 (2)C9—N2—C8—S15.4 (3)
C2—C3—C4—C50.1 (4)C7—N1—C8—N263.8 (3)
C3—C4—C5—C60.9 (4)C7—N1—C8—S1117.53 (18)
C4—C5—C6—C10.6 (4)C8—N2—C9—C1096.1 (3)
C2—C1—C6—C50.4 (3)C11—N2—C9—C1079.8 (3)
C7—C1—C6—C5175.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.85 (2)2.55 (2)3.3828 (18)167 (2)
C6—H6···O3ii0.932.413.317 (3)164
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H13N3O3S
Mr267.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.447 (2), 7.8664 (15), 15.159 (3)
β (°) 107.128 (4)
V3)1304.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.55 × 0.38 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.874, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
7105, 2294, 1971
Rint0.020
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.06
No. of reflections2294
No. of parameters169
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.850 (19)2.55 (2)3.3828 (18)166.8 (19)
C6—H6···O3ii0.932.413.317 (3)164
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia for UKM-GUP-BTT-07–30–190 and UKM-OUP-TK-16–73/2010 grants and sabbatical leave for MBK, and the Kementerian Pengajian Tinggi, Malaysia, for the UKM-ST-06-FRGS0111–2009 research fund. The authors acknowledge B. M. Yamin for the data collection and AAA also thanks the Libyan Ministry of Higher Education and Sabha University for her PhD scholarship.

References

First citationAl-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-abbasi, A. A., Yarmo, M. A. & Kassim, M. B. (2010). Acta Cryst. E66, o2896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArslan, H., Flörke, U. & Külcü, N. (2003). Acta Cryst. E59, o641–o642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPérez, H., Corrêa, R. S., Plutín, A. M., Álvarez, A. & Mascarenhas, Y. (2011). Acta Cryst. E67, o647.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShanmuga Sundara Raj, S., Puviarasan, K., Velmurugan, D., Jayanthi, G. & Fun, H.-K. (1999). Acta Cryst. C55, 1318–1320.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds