organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Nitroso-2,4,6,8-tetra­phenyl-3,7-di­aza­bi­cyclo­[3.3.1]nonan-9-one

aDepartment of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143 701, Republic of Korea
*Correspondence e-mail: sampath@konkuk.ac.kr

(Received 11 April 2011; accepted 8 June 2011; online 18 June 2011)

In the title compound, C31H27N3O2, the two piperidine rings fused to each other each adopt a slightly distorted chair conformation. The phenyl rings on the N-unsubstituted piperidine ring occupy an equatorial position, while those on the N-nitroso-substituted piperidine ring are in axial positions. The NO group is approximately coplanar with the piperidine ring with a maximum deviation of 0.048 (4) Å. The dihedral angles between the mean planes of the axially and equatorially oriented phenyl rings are 27.7 (1) and 31.9 (1)°, respectively. Mol­ecular packing is stabilized by weak inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For piperidine ring conformations, see: Hofer (1976[Hofer, O. (1976). Topics in Stereochemistry, edited by N. L. Allinger & E. L. Eliel, p. 9. New York: John Wiley & Sons.]); Ramalingam et al. (1979[Ramalingam, K., Berlin, K. D., Sathyamurthy, N. & Sivakumar, R. (1979). J. Org. Chem. 44, 471-477.]); Mulekar & Berlin (1989[Mulekar, S. V. & Berlin, K. D. (1989). J. Org. Chem. 54, 4758-4767.]); Pandiarajan et al. (1991[Pandiarajan, K., Sekar, R., Anantharaman, R., Ramalingam, U. & Marko, D. (1991). Indian J. Chem. Sect. B, 30, 490-493.]); Rogers & Woodbrey (1962[Rogers, M. J. & Woodbrey, J. C. (1962). J. Phys. Chem. 66, 540-546.]). For related structures, see: Hemalatha & Nagarajan (2010[Hemalatha, T. & Nagarajan, S. (2010). J. Mol. Struct. 963, 111-114.]); Sampath et al. (2005[Sampath, N., Ponnuswamy, M. N. & Nethaji, M. (2005). Mol. Cryst. Liq. Cryst. 442, 31-39.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis of the title compound, see: Noller & Baliah (1948[Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.]).

[Scheme 1]

Experimental

Crystal data
  • C31H27N3O2

  • Mr = 473.56

  • Monoclinic, P 21 /c

  • a = 18.723 (4) Å

  • b = 8.8319 (17) Å

  • c = 15.806 (3) Å

  • β = 104.728 (3)°

  • V = 2527.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.26 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • 19483 measured reflections

  • 5385 independent reflections

  • 3235 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.187

  • S = 1.06

  • 5385 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C31–C36 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O3 0.93 2.94 3.607 (1) 130
C20—H20⋯O1 0.93 2.79 3.622 (4) 150
C24—H24⋯O2 0.93 2.64 3.276 (5) 126
C36—H36⋯O3 0.93 2.80 3.415 (9) 125
C17—H17⋯O1i 0.93 2.66 3.311 (4) 128
C22—H22⋯O1ii 0.93 2.74 3.579 (5) 150
C32—H32⋯O2iii 0.93 2.43 3.127 (6) 132
C34—H34⋯O3iv 0.93 2.24 2.878 (1) 125
C29—H29⋯Cg1v 0.93 2.87 3.677 146
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The piperidine ring system offers a wide variety of conformational flexibility such as chair, boat and twisted boat conformations (Hofer, 1976). However, both the chair and slightly distorted chair conformations are found to be the most favored (Ramalingam et al., 1979; Mulekar & Berlin, 1989). N-nitroso piperidine compounds have been shown to occupy both axial and equatorial positions with the mean plane of the N—NO2 group being coplanar to the mean plane of the piperidine ring (Hemalatha & Nagarajan, 2010; Sampath et al., 2005). The phenyl rings tend to occupy equatorial positions when the N—NO2 group orients itself perpendicular to the piperidine ring to avoid steric hindrance. π-electron delocalization on the N—N—O group, which restricts the free rotation of N—N bond, results in orientations that are planar (syn; Pandiarajan et al., 1991) or perpendicular (anti; Rogers & Woodbrey, 1962) with respect to the piperidine ring. In 2,6-diphenyl-3-methyl-N-nitrosopiperidin- 4-one (Hemalatha & Nagarajan, 2010) the nitroso group shows both syn and anti conformations while the piperidine ring displays a boat conformation which may influence the phenyl rings to occupy axial and equitorial positions with respect to the piperidine ring.

In the title compound both piperidine rings adopt a slightly distorted chair conformation (Cremer & Pople, 1975) with puckering parameters parameters Q, θ and ϕ of 0.538 (3) Å, 18.0 (3)°, 142.8 (1)° [N-substituted piperidine ring (N1/C2/C8/C9/C7/C6)] and 0.657 (2) Å, 173.2 (3)° and 51.0 (2)° [N-free piperidine ring (N4/C5/C7/C9/C8/C3)], respectively (Fig. 1). For an ideal chair θ has a value of 0 or 180°. In the N-substituted piperidine ring (N1/C2/C8/C9/C7/C6) the N atom displays sp2 hybridization, as evidenced by sum of angles around the N1 atom being nearly equal to 360° [C2/N1/C6 = 122.0 (2)°, C2/N1/N2 = 123.2 (3)° and C6/N1/N2 = 114.8 (3)°]}.

Phenyl rings C13–C18 and C19–C24 are substituted axially in the N—NO2 piperidine ring. Torsion angles for phenyl ring C13–C18 {C6/N1/C2/C13 = 79.7 (3)°; C9/C8/C2/C13 = -69.2 (3)°} and for phenyl ring C19–C24 [C2/N1/C6/C19 = -88.8 (3)°; C9/C7/C6/C19 = 84.1 (3)°}] support this observation. The dihedral angle between these phenyl rings is 27.7 (1)°. Phenyl rings C25–C30 and C31–C36 are oriented equatorially to the piperidine ring. Torsion angles for phenyl ring C25–C30 [C3/N4/C5/C25 = 172.9 (2)°, C9/C7/C5/C25 = -171.7 (2)°] and C31–C36 [C9/C8/C3/C31 = 178.8 (2)°, C5/N4/C3/C31 = -176.2 (2)°] support this observation. The dihedral angle between these phenyl rings is 31.9 (1)°. Molecular packing is stabilized by weak C—H···O intra and intermolecular interactions and weak C—H···π intermolecular interactions (Table 1, Fig. 2).

Related literature top

For piperidine ring conformations, see: Hofer (1976); Ramalingam et al. (1979); Mulekar & Berlin (1989); Pandiarajan et al. (1991); Rogers & Woodbrey (1962). For related structures, see: Hemalatha & Nagarajan (2010); Sampath et al. (2005). For puckering parameters, see: Cremer & Pople (1975). For the synthesis of the title compound, see: Noller & Baliah (1948). Three references have been added to this section - please check they are in the correct places for their subjects.

Experimental top

Noller & Baliah (1948) developed a novel method to synthesize piperidin-4-one derivatives by the Mannich condensation reaction using respective aldehydes and ketones with ammonium acetate in the ratio of [2:1:1], respectively. The title compound was synthesized using benzaldehyde (0.2 M), acetone (0.1) and ammonium acetate (0.1M) added to pure ethanol and heated on a hot plate up to the boiling range. The resulting product of diazabicyclic[3.3.1]nonan-9-one was separated out and treated with an equimolar (1:1) quantity of NaNO2/HCl/80% ethanol and kept at 80° C for 4 h with vigorous stirring. The resuling title compound was separated out and crystals were grown using acetonitrile as the solvent.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H, 0.97 Å for methylene, 0.96 Å for methyl H atoms and N—H = 0.86 Å. The Uiso parameters for H atoms were constraned to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq of the carrier atom for the remaining H atoms.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SMART (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title molecule with the atom numbering scheme. Displacement ellipsoid are drawn at 30% probability level. H atoms were removed for clarity.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis. Dashed lines indicate weak C—H···O intra and intermolecular interactions.
3-Nitroso-2,4,6,8-tetraphenyl-3,7-diazabicyclo[3.3.1]nonan-9-one top
Crystal data top
C31H27N3O2F(000) = 1000
Mr = 473.56Dx = 1.244 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19483 reflections
a = 18.723 (4) Åθ = 2.3–27.7°
b = 8.8319 (17) ŵ = 0.08 mm1
c = 15.806 (3) ÅT = 293 K
β = 104.728 (3)°Block, yellow
V = 2527.8 (8) Å30.26 × 0.23 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3235 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 27.7°, θmin = 2.3°
ω scansh = 2321
19483 measured reflectionsk = 1110
5385 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0715P)2 + 0.6524P]
where P = (Fo2 + 2Fc2)/3
5385 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C31H27N3O2V = 2527.8 (8) Å3
Mr = 473.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.723 (4) ŵ = 0.08 mm1
b = 8.8319 (17) ÅT = 293 K
c = 15.806 (3) Å0.26 × 0.23 × 0.21 mm
β = 104.728 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3235 reflections with I > 2σ(I)
19483 measured reflectionsRint = 0.056
5385 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
5385 reflectionsΔρmin = 0.29 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.16505 (12)0.9901 (2)0.43401 (14)0.0741 (6)
O20.33486 (19)0.5848 (4)0.2575 (2)0.0838 (10)0.70
O30.3644 (5)0.5232 (10)0.3459 (6)0.093 (3)0.30
N10.27775 (12)0.6798 (2)0.34371 (15)0.0527 (6)
N20.32788 (19)0.5919 (4)0.3247 (3)0.0898 (11)
N40.35556 (12)0.9558 (2)0.38245 (13)0.0536 (6)
H40.39330.92590.36530.064*
C20.27407 (15)0.6783 (3)0.43486 (18)0.0516 (7)
H20.31920.62900.46870.062*
C30.34747 (15)0.9322 (3)0.47096 (17)0.0543 (7)
H30.34191.03220.49530.065*
C50.29317 (15)1.0350 (3)0.32634 (18)0.0545 (7)
H50.28621.12940.35580.065*
C60.22947 (14)0.7796 (3)0.27724 (17)0.0503 (7)
H60.25500.79610.23110.060*
C70.22234 (15)0.9354 (3)0.31808 (18)0.0540 (7)
H70.17990.98870.28090.065*
C80.27560 (15)0.8422 (3)0.46805 (18)0.0515 (7)
H80.26790.84040.52710.062*
C90.21246 (16)0.9267 (3)0.40905 (19)0.0549 (7)
C130.20946 (16)0.5843 (3)0.44686 (19)0.0580 (7)
C140.16836 (19)0.6217 (4)0.5048 (2)0.0810 (10)
H140.17860.71080.53700.097*
C150.1124 (2)0.5289 (5)0.5158 (3)0.1094 (14)
H150.08560.55620.55550.131*
C160.0954 (2)0.3983 (5)0.4698 (4)0.1124 (15)
H160.05720.33670.47740.135*
C170.1357 (2)0.3594 (4)0.4123 (3)0.0961 (13)
H170.12480.27010.38050.115*
C180.19191 (18)0.4497 (3)0.4006 (2)0.0742 (9)
H180.21870.42070.36110.089*
C190.15692 (15)0.7006 (3)0.23480 (17)0.0542 (7)
C200.09218 (17)0.7261 (4)0.2579 (2)0.0790 (10)
H200.09100.79700.30100.095*
C210.0286 (2)0.6478 (6)0.2178 (3)0.1031 (13)
H210.01460.66450.23520.124*
C220.0291 (2)0.5462 (5)0.1529 (3)0.1059 (14)
H220.01410.49590.12500.127*
C230.0928 (2)0.5184 (4)0.1291 (2)0.0902 (11)
H230.09340.44830.08530.108*
C240.15639 (18)0.5950 (4)0.1703 (2)0.0703 (9)
H240.19990.57480.15430.084*
C250.30623 (15)1.0759 (3)0.23874 (17)0.0511 (7)
C260.26664 (17)1.1952 (3)0.1924 (2)0.0643 (8)
H260.23241.24680.21510.077*
C270.27791 (18)1.2380 (3)0.1124 (2)0.0707 (9)
H270.25071.31710.08100.085*
C280.32896 (18)1.1636 (3)0.0797 (2)0.0661 (8)
H280.33721.19320.02650.079*
C290.36835 (16)1.0447 (3)0.12552 (18)0.0597 (8)
H290.40330.99440.10330.072*
C300.35600 (15)1.0001 (3)0.20431 (18)0.0562 (7)
H300.38170.91800.23420.067*
C310.41479 (15)0.8592 (3)0.53034 (17)0.0544 (7)
C320.42814 (19)0.8818 (4)0.6201 (2)0.0715 (9)
H320.39730.94570.64140.086*
C330.4857 (2)0.8118 (5)0.6777 (2)0.0869 (11)
H330.49320.82680.73760.104*
C340.53198 (19)0.7201 (4)0.6469 (3)0.0856 (11)
H340.57140.67290.68580.103*
C350.52064 (18)0.6971 (4)0.5588 (2)0.0773 (9)
H350.55250.63470.53810.093*
C360.46200 (17)0.7664 (3)0.5005 (2)0.0653 (8)
H360.45450.75010.44080.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0797 (15)0.0625 (13)0.0918 (15)0.0167 (12)0.0435 (12)0.0036 (11)
O20.084 (2)0.102 (3)0.073 (2)0.0220 (19)0.035 (2)0.008 (2)
O30.071 (6)0.098 (7)0.104 (7)0.057 (5)0.010 (5)0.026 (5)
N10.0479 (13)0.0444 (13)0.0656 (15)0.0035 (11)0.0142 (11)0.0147 (11)
N20.061 (2)0.080 (2)0.138 (3)0.0025 (17)0.043 (2)0.046 (2)
N40.0585 (14)0.0537 (13)0.0498 (13)0.0027 (11)0.0160 (11)0.0018 (10)
C20.0512 (16)0.0430 (15)0.0568 (16)0.0047 (12)0.0065 (12)0.0032 (12)
C30.0674 (19)0.0408 (15)0.0549 (17)0.0088 (13)0.0158 (14)0.0089 (12)
C50.0640 (18)0.0404 (14)0.0599 (17)0.0002 (13)0.0170 (14)0.0034 (13)
C60.0507 (16)0.0524 (16)0.0493 (15)0.0006 (13)0.0153 (12)0.0047 (12)
C70.0532 (17)0.0478 (16)0.0607 (17)0.0107 (13)0.0141 (13)0.0007 (13)
C80.0606 (17)0.0444 (15)0.0523 (16)0.0012 (13)0.0191 (13)0.0053 (12)
C90.0620 (18)0.0377 (14)0.0709 (19)0.0018 (13)0.0276 (15)0.0084 (13)
C130.0533 (18)0.0453 (16)0.0697 (19)0.0009 (13)0.0050 (15)0.0067 (14)
C140.075 (2)0.068 (2)0.108 (3)0.0119 (18)0.038 (2)0.0035 (19)
C150.087 (3)0.107 (3)0.147 (4)0.019 (3)0.053 (3)0.012 (3)
C160.074 (3)0.093 (3)0.162 (5)0.028 (2)0.017 (3)0.031 (3)
C170.079 (3)0.056 (2)0.132 (4)0.022 (2)0.012 (2)0.009 (2)
C180.073 (2)0.0497 (18)0.089 (2)0.0035 (16)0.0001 (17)0.0031 (16)
C190.0469 (16)0.0601 (17)0.0524 (16)0.0047 (13)0.0067 (13)0.0097 (14)
C200.0501 (19)0.103 (3)0.079 (2)0.0021 (18)0.0086 (16)0.004 (2)
C210.053 (2)0.148 (4)0.101 (3)0.005 (2)0.006 (2)0.023 (3)
C220.074 (3)0.123 (4)0.102 (3)0.043 (3)0.013 (2)0.024 (3)
C230.086 (3)0.089 (3)0.083 (2)0.032 (2)0.000 (2)0.005 (2)
C240.076 (2)0.069 (2)0.0625 (19)0.0207 (17)0.0114 (16)0.0060 (16)
C250.0558 (17)0.0409 (14)0.0543 (16)0.0061 (13)0.0098 (13)0.0000 (12)
C260.071 (2)0.0507 (17)0.073 (2)0.0058 (15)0.0221 (16)0.0036 (15)
C270.086 (2)0.0535 (18)0.072 (2)0.0068 (17)0.0191 (18)0.0160 (16)
C280.081 (2)0.0608 (19)0.0581 (18)0.0090 (17)0.0204 (16)0.0047 (15)
C290.0651 (19)0.0565 (18)0.0562 (18)0.0012 (15)0.0130 (14)0.0037 (14)
C300.0600 (18)0.0480 (16)0.0574 (17)0.0004 (14)0.0087 (14)0.0002 (13)
C310.0575 (18)0.0530 (16)0.0503 (16)0.0200 (14)0.0089 (13)0.0020 (13)
C320.075 (2)0.079 (2)0.0576 (19)0.0224 (18)0.0117 (17)0.0106 (16)
C330.080 (3)0.113 (3)0.056 (2)0.040 (2)0.0030 (19)0.004 (2)
C340.064 (2)0.096 (3)0.082 (3)0.028 (2)0.0077 (19)0.020 (2)
C350.061 (2)0.078 (2)0.088 (3)0.0081 (17)0.0083 (18)0.0080 (19)
C360.0650 (19)0.068 (2)0.0611 (18)0.0108 (17)0.0129 (16)0.0003 (16)
Geometric parameters (Å, º) top
O1—C91.198 (3)C17—H170.9300
O2—N21.106 (4)C18—H180.9300
O2—O31.471 (10)C19—C201.370 (4)
O3—N20.912 (7)C19—C241.380 (4)
N1—N21.310 (4)C20—C211.383 (5)
N1—C21.460 (3)C20—H200.9300
N1—C61.488 (3)C21—C221.365 (6)
N4—C51.454 (3)C21—H210.9300
N4—C31.460 (3)C22—C231.360 (5)
N4—H40.8600C22—H220.9300
C2—C131.518 (4)C23—C241.381 (4)
C2—C81.537 (3)C23—H230.9300
C2—H20.9800C24—H240.9300
C3—C311.511 (4)C25—C301.368 (4)
C3—C81.553 (4)C25—C261.385 (4)
C3—H30.9800C26—C271.387 (4)
C5—C251.510 (4)C26—H260.9300
C5—C71.569 (4)C27—C281.364 (4)
C5—H50.9800C27—H270.9300
C6—C191.522 (4)C28—C291.378 (4)
C6—C71.541 (4)C28—H280.9300
C6—H60.9800C29—C301.381 (4)
C7—C91.498 (4)C29—H290.9300
C7—H70.9800C30—H300.9300
C8—C91.505 (4)C31—C361.374 (4)
C8—H80.9800C31—C321.391 (4)
C13—C141.378 (4)C32—C331.369 (5)
C13—C181.390 (4)C32—H320.9300
C14—C151.376 (5)C33—C341.364 (5)
C14—H140.9300C33—H330.9300
C15—C161.357 (6)C34—C351.369 (5)
C15—H150.9300C34—H340.9300
C16—C171.365 (6)C35—C361.384 (4)
C16—H160.9300C35—H350.9300
C17—C181.370 (5)C36—H360.9300
N2—O3—O248.6 (5)C16—C17—C18121.2 (4)
N2—N1—C2115.9 (3)C16—C17—H17119.4
N2—N1—C6122.1 (3)C18—C17—H17119.4
C2—N1—C6122.0 (2)C17—C18—C13120.9 (4)
O3—N2—O293.1 (7)C17—C18—H18119.6
O3—N2—N1145.5 (9)C13—C18—H18119.6
O2—N2—N1121.4 (5)C20—C19—C24117.8 (3)
C5—N4—C3113.0 (2)C20—C19—C6123.9 (3)
C5—N4—H4123.5C24—C19—C6118.2 (3)
C3—N4—H4123.5C19—C20—C21120.9 (4)
N1—C2—C13111.5 (2)C19—C20—H20119.6
N1—C2—C8109.1 (2)C21—C20—H20119.6
C13—C2—C8114.7 (2)C22—C21—C20120.2 (4)
N1—C2—H2107.0C22—C21—H21119.9
C13—C2—H2107.0C20—C21—H21119.9
C8—C2—H2107.0C23—C22—C21120.1 (4)
N4—C3—C31112.5 (2)C23—C22—H22120.0
N4—C3—C8110.2 (2)C21—C22—H22120.0
C31—C3—C8112.3 (2)C22—C23—C24119.5 (4)
N4—C3—H3107.2C22—C23—H23120.3
C31—C3—H3107.2C24—C23—H23120.3
C8—C3—H3107.2C23—C24—C19121.6 (3)
N4—C5—C25112.5 (2)C23—C24—H24119.2
N4—C5—C7108.2 (2)C19—C24—H24119.2
C25—C5—C7112.9 (2)C30—C25—C26119.3 (3)
N4—C5—H5107.7C30—C25—C5122.2 (2)
C25—C5—H5107.7C26—C25—C5118.5 (3)
C7—C5—H5107.7C25—C26—C27120.3 (3)
N1—C6—C19110.7 (2)C25—C26—H26119.9
N1—C6—C7109.6 (2)C27—C26—H26119.9
C19—C6—C7115.5 (2)C28—C27—C26119.8 (3)
N1—C6—H6106.8C28—C27—H27120.1
C19—C6—H6106.8C26—C27—H27120.1
C7—C6—H6106.8C27—C28—C29120.1 (3)
C9—C7—C6113.7 (2)C27—C28—H28120.0
C9—C7—C5104.9 (2)C29—C28—H28120.0
C6—C7—C5112.0 (2)C28—C29—C30120.1 (3)
C9—C7—H7108.7C28—C29—H29120.0
C6—C7—H7108.7C30—C29—H29120.0
C5—C7—H7108.7C25—C30—C29120.4 (3)
C9—C8—C2108.2 (2)C25—C30—H30119.8
C9—C8—C3107.6 (2)C29—C30—H30119.8
C2—C8—C3115.7 (2)C36—C31—C32118.1 (3)
C9—C8—H8108.4C36—C31—C3123.3 (3)
C2—C8—H8108.4C32—C31—C3118.5 (3)
C3—C8—H8108.4C33—C32—C31121.4 (3)
O1—C9—C7125.1 (3)C33—C32—H32119.3
O1—C9—C8124.0 (3)C31—C32—H32119.3
C7—C9—C8110.6 (2)C34—C33—C32119.6 (3)
C14—C13—C18117.2 (3)C34—C33—H33120.2
C14—C13—C2123.3 (3)C32—C33—H33120.2
C18—C13—C2119.4 (3)C33—C34—C35120.2 (3)
C13—C14—C15120.9 (4)C33—C34—H34119.9
C13—C14—H14119.6C35—C34—H34119.9
C15—C14—H14119.6C34—C35—C36120.2 (3)
C16—C15—C14121.4 (4)C34—C35—H35119.9
C16—C15—H15119.3C36—C35—H35119.9
C14—C15—H15119.3C31—C36—C35120.4 (3)
C15—C16—C17118.4 (4)C31—C36—H36119.8
C15—C16—H16120.8C35—C36—H36119.8
C17—C16—H16120.8
O2—O3—N2—N1178.8 (13)C8—C2—C13—C18163.9 (2)
O3—O2—N2—N1179.2 (9)C18—C13—C14—C150.1 (5)
C2—N1—N2—O31.2 (14)C2—C13—C14—C15177.2 (3)
C6—N1—N2—O3178.9 (13)C13—C14—C15—C160.4 (6)
C2—N1—N2—O2179.8 (3)C14—C15—C16—C170.5 (7)
C6—N1—N2—O22.5 (5)C15—C16—C17—C180.2 (6)
N2—N1—C2—C13102.7 (3)C16—C17—C18—C130.2 (5)
C6—N1—C2—C1379.6 (3)C14—C13—C18—C170.4 (5)
N2—N1—C2—C8129.5 (3)C2—C13—C18—C17177.6 (3)
C6—N1—C2—C848.2 (3)N1—C6—C19—C2099.8 (3)
C5—N4—C3—C31176.2 (2)C7—C6—C19—C2025.5 (4)
C5—N4—C3—C857.7 (3)N1—C6—C19—C2479.0 (3)
C3—N4—C5—C25172.9 (2)C7—C6—C19—C24155.7 (3)
C3—N4—C5—C761.8 (3)C24—C19—C20—C210.2 (5)
N2—N1—C6—C1993.7 (3)C6—C19—C20—C21178.6 (3)
C2—N1—C6—C1988.8 (3)C19—C20—C21—C221.6 (6)
N2—N1—C6—C7137.7 (3)C20—C21—C22—C231.9 (6)
C2—N1—C6—C739.8 (3)C21—C22—C23—C240.7 (6)
N1—C6—C7—C942.0 (3)C22—C23—C24—C190.7 (5)
C19—C6—C7—C983.9 (3)C20—C19—C24—C230.9 (5)
N1—C6—C7—C576.7 (3)C6—C19—C24—C23179.8 (3)
C19—C6—C7—C5157.4 (2)N4—C5—C25—C3023.0 (3)
N4—C5—C7—C963.2 (3)C7—C5—C25—C3099.8 (3)
C25—C5—C7—C9171.7 (2)N4—C5—C25—C26156.5 (2)
N4—C5—C7—C660.6 (3)C7—C5—C25—C2680.7 (3)
C25—C5—C7—C664.6 (3)C30—C25—C26—C270.6 (4)
N1—C2—C8—C956.8 (3)C5—C25—C26—C27178.9 (3)
C13—C2—C8—C969.1 (3)C25—C26—C27—C280.9 (5)
N1—C2—C8—C363.9 (3)C26—C27—C28—C291.1 (5)
C13—C2—C8—C3170.1 (2)C27—C28—C29—C300.3 (4)
N4—C3—C8—C955.1 (3)C26—C25—C30—C292.0 (4)
C31—C3—C8—C9178.7 (2)C5—C25—C30—C29177.5 (2)
N4—C3—C8—C266.0 (3)C28—C29—C30—C251.8 (4)
C31—C3—C8—C260.3 (3)N4—C3—C31—C3627.2 (4)
C6—C7—C9—O1129.3 (3)C8—C3—C31—C3697.7 (3)
C5—C7—C9—O1108.0 (3)N4—C3—C31—C32155.5 (2)
C6—C7—C9—C857.3 (3)C8—C3—C31—C3279.5 (3)
C5—C7—C9—C865.3 (3)C36—C31—C32—C331.2 (4)
C2—C8—C9—O1122.8 (3)C3—C31—C32—C33176.2 (3)
C3—C8—C9—O1111.6 (3)C31—C32—C33—C341.2 (5)
C2—C8—C9—C763.8 (3)C32—C33—C34—C350.5 (5)
C3—C8—C9—C761.8 (3)C33—C34—C35—C360.2 (5)
N1—C2—C13—C14143.8 (3)C32—C31—C36—C350.5 (4)
C8—C2—C13—C1419.1 (4)C3—C31—C36—C35176.8 (3)
N1—C2—C13—C1839.2 (3)C34—C35—C36—C310.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C31–C36 benzene ring.
D—H···AD—HH···AD···AD—H···A
C18—H18···O30.932.943.607 (1)130
C20—H20···O10.932.793.622 (4)150
C24—H24···O20.932.643.276 (5)126
C36—H36···O30.932.803.415 (9)125
C17—H17···O1i0.932.663.311 (4)128
C22—H22···O1ii0.932.743.579 (5)150
C32—H32···O2iii0.932.433.127 (6)132
C34—H34···O3iv0.932.242.878 (1)125
C29—H29···Cg1v0.932.873.677146
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x, y+1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC31H27N3O2
Mr473.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.723 (4), 8.8319 (17), 15.806 (3)
β (°) 104.728 (3)
V3)2527.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19483, 5385, 3235
Rint0.056
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.187, 1.06
No. of reflections5385
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.29

Computer programs: SMART (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C31–C36 benzene ring.
D—H···AD—HH···AD···AD—H···A
C18—H18···O30.932.943.607 (1)130
C20—H20···O10.932.793.622 (4)150
C24—H24···O20.932.643.276 (5)126
C36—H36···O30.932.803.415 (9)125
C17—H17···O1i0.932.663.311 (4)128
C22—H22···O1ii0.932.743.579 (5)150
C32—H32···O2iii0.932.433.127 (6)132
C34—H34···O3iv0.932.242.878 (1)125
C29—H29···Cg1v0.932.873.677146
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x, y+1/2, z3/2.
 

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHemalatha, T. & Nagarajan, S. (2010). J. Mol. Struct. 963, 111–114.  CrossRef CAS Google Scholar
First citationHofer, O. (1976). Topics in Stereochemistry, edited by N. L. Allinger & E. L. Eliel, p. 9. New York: John Wiley & Sons.  Google Scholar
First citationMulekar, S. V. & Berlin, K. D. (1989). J. Org. Chem. 54, 4758–4767.  CrossRef CAS Web of Science Google Scholar
First citationNoller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPandiarajan, K., Sekar, R., Anantharaman, R., Ramalingam, U. & Marko, D. (1991). Indian J. Chem. Sect. B, 30, 490–493.  Google Scholar
First citationRamalingam, K., Berlin, K. D., Sathyamurthy, N. & Sivakumar, R. (1979). J. Org. Chem. 44, 471–477.  CrossRef CAS Google Scholar
First citationRogers, M. J. & Woodbrey, J. C. (1962). J. Phys. Chem. 66, 540–546.  CrossRef CAS Google Scholar
First citationSampath, N., Ponnuswamy, M. N. & Nethaji, M. (2005). Mol. Cryst. Liq. Cryst. 442, 31–39.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds