organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2-{4-di­ethyl­amino-2-[(di­methyl­carbamo­thio­yl)­­oxy]benzyl­­idene}malonate

aThe Key Laboratory of Analytical Sciences, Ministry of Education, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China, and bDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: hzheng@xmu.edu.cn

(Received 20 April 2011; accepted 21 June 2011; online 30 June 2011)

In the title compound, C21H30N2O5S, the plane of the dimeth­yl–thio­carbamic group makes a dihedral angle of 78.41 (7)° with the central benzene ring. One of the carbonyl groups in the α,β-unsaturated malonate side chain makes a dihedral angle of 8.73 (10)° with the central benzene ring, while the other carbonyl group makes a dihedral angle of 81.52 (8)°.

Related literature

For related structures, see: Jiang & Wang (2009[Jiang, W. & Wang, W. (2009). Chem. Commun. pp. 3913-3915.]); Kim & Swager (2003[Kim, T. H. & Swager, T. M. (2003). Angew. Chem. Int. Ed. 42, 4803-4806.]). For hypochlorous acid probes, see: Sun et al. (2008[Sun, Z. N., Liu, F. Q., Chen, Y., Tam, P. K. H. & Yang, D. (2008). Org. Lett. 10, 2171-2174.]).

[Scheme 1]

Experimental

Crystal data
  • C21H30N2O5S

  • Mr = 422.53

  • Monoclinic, P 21 /c

  • a = 14.2704 (6) Å

  • b = 9.2716 (4) Å

  • c = 25.9206 (8) Å

  • β = 139.588 (1)°

  • V = 2223.30 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 173 K

  • 0.40 × 0.37 × 0.07 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.988

  • 25540 measured reflections

  • 5414 independent reflections

  • 4778 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.155

  • S = 1.18

  • 5414 reflections

  • 268 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Reactive oxygen species (ROS) are known to be essential to several biological functions and hypochlorous acid (HOCl) is one of the biologically important ROS. Therefore, the determination of hypochlorous acid is very important for biological research, but it is still a challenge for the design and synthesis of highly specific and sensitive probes for hypochlorous acid (Sun et al., 2008). We have therefore synthesized the title compound, and investigated its fluorescent spectral response to hypochlorous acid, and further experiments show that the title compound can react with hypochlorous acid, which result in a remarkable fluorescence enhancement. Therefore, the title compound can serve as a sensitive fluorescent probe for the determination of hypochlorous acid. The chemical structures of related compounds (Jiang & Wang, 2009; Kim, & Swager 2003) have been reported, yet the crystal structures have not been reported. The title compound was obtained by two steps of chemical reactions. An X-ray crystal structure determination of the molecular structure of title compound was carried out to determine its conformation.

In the molecular structure of title compound (Fig.1), the plane of dimethyl-thiocarbamic group with the central benzene ring make a dihedral angle of 78.41 (7)° (Brandenburg, 2011). In addition, one carbonyl group in the a,b-unsaturated malonate side chain, make a dihedral angle of 8.73 (10)° with central benzene ring. The other carbonyl group, however, with the central benzene ring make a dihedral angle of 81.52 (8)°. The structure is therefore a conjugate electron system with "push-pull" substituent pairs, and shows strong intramolecular charge transfer (ICT) effects.

Related literature top

For related structures, see: Jiang & Wang (2009); Kim & Swager (2003). For hypochlorous acid probes, see: Sun et al. (2008).

Experimental top

The title compound was obtained from a two step synthesis. First, the reaction of 4-(diethylamino) salicylaldehyde and dimethyl thiocarbamoyl chloride under potassium carbonate in a DMF solution gave dimethyl-thiocarbamic acid O-(5-diethylamino-2-formyl-phenyl) ester. This product was refluxed for 3 h with diethyl malonate under the catalysis of piperidine in acetonitrile. After removal of the solvent, the residue was purified by flash chromatography with dichloromethane / petroleum ether as eluent to afford the title compound in 35% yield. The title compound exhibits an absorption maximum at 400 nm and in addition it also displays a minimal fluorescence emission at 509 nm with maximum excitation at 403 nm. Single crystals were obtained by slow evaporation of a dichloromethane / petroleum ether (5/1, v/v).

Refinement top

The aromatic H atoms were generated geometrically (C—H 0.93, N—H 0.86 Å) and were allowed to ride on their parent atoms in the riding model approximations, with their displacement factors set to 1.2 times those of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound. Displacement ellipsoids are drawn at 50% probabability level.
Diethyl 2-{4-diethylamino-2-[(dimethylcarbamothioyl)oxy]benzylidene}malonate top
Crystal data top
C21H30N2O5SF(000) = 904
Mr = 422.53Dx = 1.262 Mg m3
Dm = 1.262 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6772 reflections
a = 14.2704 (6) Åθ = 2.4–28.0°
b = 9.2716 (4) ŵ = 0.18 mm1
c = 25.9206 (8) ÅT = 173 K
β = 139.588 (1)°Plate, yellow
V = 2223.30 (15) Å30.40 × 0.37 × 0.07 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
5414 independent reflections
Radiation source: fine-focus sealed tube4778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.8°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1919
Tmin = 0.932, Tmax = 0.988k = 1211
25540 measured reflectionsl = 3433
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0604P)2 + 1.2811P]
where P = (Fo2 + 2Fc2)/3
5414 reflections(Δ/σ)max < 0.001
268 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C21H30N2O5SV = 2223.30 (15) Å3
Mr = 422.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2704 (6) ŵ = 0.18 mm1
b = 9.2716 (4) ÅT = 173 K
c = 25.9206 (8) Å0.40 × 0.37 × 0.07 mm
β = 139.588 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
5414 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4778 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.988Rint = 0.037
25540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.18Δρmax = 0.39 e Å3
5414 reflectionsΔρmin = 0.29 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26921 (7)0.44597 (7)0.62902 (4)0.03779 (17)
O10.46394 (15)0.63622 (16)0.74213 (8)0.0260 (3)
O20.67228 (17)0.44354 (18)1.03491 (9)0.0376 (4)
O30.51195 (16)0.28130 (16)0.94122 (9)0.0295 (3)
O40.82337 (16)0.34284 (18)0.94609 (9)0.0350 (4)
O50.83126 (16)0.24105 (17)1.02732 (9)0.0320 (4)
N10.4991 (2)0.5538 (2)0.67853 (11)0.0308 (4)
N20.07452 (18)0.8351 (2)0.67478 (10)0.0281 (4)
C10.3890 (2)0.6452 (2)0.75718 (11)0.0229 (4)
C20.2706 (2)0.7321 (2)0.70888 (11)0.0248 (4)
H2A0.23890.77920.66510.030*
C30.1956 (2)0.7521 (2)0.72368 (11)0.0241 (4)
C40.2515 (2)0.6825 (2)0.79130 (11)0.0248 (4)
H4A0.20570.69630.80450.030*
C50.3701 (2)0.5958 (2)0.83781 (11)0.0244 (4)
H5A0.40330.54920.88220.029*
C60.4447 (2)0.5725 (2)0.82317 (11)0.0235 (4)
C70.4143 (2)0.5470 (2)0.68376 (12)0.0259 (4)
C80.4655 (3)0.4683 (3)0.61905 (15)0.0391 (6)
H8A0.43170.37270.61550.047*
H8B0.55240.45810.63420.047*
H8C0.38970.51650.56730.047*
C90.6294 (2)0.6407 (3)0.73122 (14)0.0372 (5)
H9A0.63520.70070.76470.045*
H9B0.62680.70270.69950.045*
H9C0.71410.57740.76500.045*
C100.0145 (2)0.9012 (2)0.60339 (12)0.0304 (5)
H10A0.09470.93530.61490.037*
H10B0.04350.98640.58920.037*
C110.0791 (3)0.8002 (3)0.53356 (13)0.0416 (6)
H11A0.11530.85000.48760.050*
H11B0.16090.76880.52050.050*
H11C0.02220.71600.54700.050*
C120.0149 (2)0.8433 (3)0.68272 (14)0.0352 (5)
H12A0.00610.75180.70580.042*
H12B0.11710.85360.62910.042*
C130.0234 (4)0.9656 (3)0.7337 (2)0.0611 (8)
H13A0.04640.97050.73280.073*
H13B0.02111.05620.71320.073*
H13C0.12060.95050.78840.073*
C140.5714 (2)0.4841 (2)0.86988 (11)0.0250 (4)
H14A0.60990.48500.85210.030*
C150.6448 (2)0.4009 (2)0.93361 (11)0.0248 (4)
C160.6132 (2)0.3805 (2)0.97606 (11)0.0259 (4)
C170.4749 (3)0.2533 (3)0.97892 (15)0.0389 (5)
H17A0.44300.34340.98260.047*
H17B0.55980.21531.03330.047*
C180.3562 (3)0.1456 (3)0.92939 (18)0.0491 (7)
H18A0.32390.12920.95140.059*
H18B0.39120.05470.92930.059*
H18C0.27530.18170.87480.059*
C190.7746 (2)0.3272 (2)0.96794 (12)0.0267 (4)
C200.9633 (3)0.1675 (3)1.06771 (14)0.0382 (5)
H20A1.03440.23751.08390.046*
H20B0.94280.09491.03210.046*
C211.0204 (3)0.0966 (4)1.13851 (18)0.0591 (8)
H21A1.11020.04571.16760.071*
H21B0.94910.02761.12170.071*
H21C1.04000.16961.17310.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0414 (3)0.0372 (3)0.0373 (3)0.0122 (3)0.0306 (3)0.0120 (2)
O10.0245 (7)0.0321 (8)0.0240 (7)0.0033 (6)0.0192 (6)0.0039 (6)
O20.0341 (8)0.0457 (10)0.0272 (8)0.0033 (7)0.0217 (7)0.0105 (7)
O30.0340 (8)0.0281 (8)0.0303 (7)0.0015 (6)0.0255 (7)0.0032 (6)
O40.0330 (8)0.0432 (9)0.0327 (8)0.0092 (7)0.0260 (7)0.0039 (7)
O50.0297 (8)0.0341 (8)0.0314 (8)0.0121 (6)0.0230 (7)0.0094 (6)
N10.0369 (10)0.0302 (9)0.0342 (9)0.0037 (8)0.0295 (9)0.0027 (8)
N20.0257 (8)0.0313 (9)0.0232 (8)0.0074 (7)0.0174 (7)0.0059 (7)
C10.0228 (9)0.0241 (9)0.0217 (9)0.0036 (8)0.0169 (8)0.0045 (8)
C20.0250 (9)0.0272 (10)0.0197 (9)0.0002 (8)0.0163 (8)0.0015 (8)
C30.0224 (9)0.0219 (9)0.0223 (9)0.0002 (7)0.0155 (8)0.0015 (7)
C40.0247 (9)0.0279 (10)0.0244 (9)0.0005 (8)0.0194 (9)0.0002 (8)
C50.0255 (9)0.0243 (10)0.0197 (9)0.0003 (8)0.0161 (8)0.0008 (8)
C60.0214 (9)0.0225 (10)0.0211 (9)0.0009 (7)0.0147 (8)0.0026 (7)
C70.0296 (10)0.0242 (10)0.0233 (9)0.0044 (8)0.0201 (9)0.0036 (8)
C80.0589 (16)0.0341 (12)0.0474 (14)0.0074 (11)0.0469 (14)0.0023 (10)
C90.0343 (12)0.0456 (14)0.0399 (12)0.0043 (10)0.0305 (11)0.0056 (11)
C100.0292 (10)0.0287 (10)0.0258 (10)0.0060 (9)0.0189 (9)0.0054 (8)
C110.0343 (12)0.0497 (15)0.0268 (11)0.0004 (11)0.0193 (10)0.0016 (10)
C120.0271 (10)0.0404 (13)0.0355 (11)0.0094 (10)0.0231 (10)0.0106 (10)
C130.084 (2)0.0569 (18)0.075 (2)0.0151 (17)0.069 (2)0.0026 (16)
C140.0229 (9)0.0252 (10)0.0229 (9)0.0020 (8)0.0164 (9)0.0042 (8)
C150.0219 (9)0.0240 (10)0.0207 (9)0.0010 (8)0.0141 (8)0.0050 (8)
C160.0220 (9)0.0239 (10)0.0205 (9)0.0069 (8)0.0130 (8)0.0021 (8)
C170.0528 (15)0.0358 (12)0.0456 (13)0.0028 (11)0.0423 (13)0.0016 (10)
C180.0492 (15)0.0507 (16)0.0628 (17)0.0013 (13)0.0469 (15)0.0011 (14)
C190.0253 (10)0.0251 (10)0.0232 (9)0.0005 (8)0.0167 (9)0.0052 (8)
C200.0327 (12)0.0415 (13)0.0354 (12)0.0169 (10)0.0246 (11)0.0096 (10)
C210.0573 (18)0.071 (2)0.0534 (17)0.0381 (16)0.0433 (16)0.0348 (15)
Geometric parameters (Å, º) top
S1—C71.645 (2)C9—H9C0.9800
O1—C71.358 (2)C10—C111.502 (3)
O1—C11.393 (2)C10—H10A0.9900
O2—C161.192 (2)C10—H10B0.9900
O3—C161.327 (3)C11—H11A0.9800
O3—C171.445 (3)C11—H11B0.9800
O4—C191.194 (3)C11—H11C0.9800
O5—C191.329 (3)C12—C131.493 (4)
O5—C201.451 (3)C12—H12A0.9900
N1—C71.317 (3)C12—H12B0.9900
N1—C91.450 (3)C13—H13A0.9800
N1—C81.452 (3)C13—H13B0.9800
N2—C31.360 (3)C13—H13C0.9800
N2—C121.441 (3)C14—C151.336 (3)
N2—C101.456 (3)C14—H14A0.9500
C1—C21.360 (3)C15—C191.476 (3)
C1—C61.394 (3)C15—C161.485 (3)
C2—C31.397 (3)C17—C181.484 (4)
C2—H2A0.9500C17—H17A0.9900
C3—C41.413 (3)C17—H17B0.9900
C4—C51.363 (3)C18—H18A0.9800
C4—H4A0.9500C18—H18B0.9800
C5—C61.394 (3)C18—H18C0.9800
C5—H5A0.9500C20—C211.478 (3)
C6—C141.439 (3)C20—H20A0.9900
C8—H8A0.9800C20—H20B0.9900
C8—H8B0.9800C21—H21A0.9800
C8—H8C0.9800C21—H21B0.9800
C9—H9A0.9800C21—H21C0.9800
C9—H9B0.9800
C7—O1—C1119.27 (16)C10—C11—H11C109.5
C16—O3—C17115.70 (17)H11A—C11—H11C109.5
C19—O5—C20115.40 (17)H11B—C11—H11C109.5
C7—N1—C9123.26 (19)N2—C12—C13113.5 (2)
C7—N1—C8119.8 (2)N2—C12—H12A108.9
C9—N1—C8116.97 (19)C13—C12—H12A108.9
C3—N2—C12122.11 (17)N2—C12—H12B108.9
C3—N2—C10121.58 (17)C13—C12—H12B108.9
C12—N2—C10115.53 (17)H12A—C12—H12B107.7
C2—C1—O1117.30 (17)C12—C13—H13A109.5
C2—C1—C6124.39 (18)C12—C13—H13B109.5
O1—C1—C6118.19 (17)H13A—C13—H13B109.5
C1—C2—C3120.01 (18)C12—C13—H13C109.5
C1—C2—H2A120.0H13A—C13—H13C109.5
C3—C2—H2A120.0H13B—C13—H13C109.5
N2—C3—C2120.95 (18)C15—C14—C6132.0 (2)
N2—C3—C4122.08 (18)C15—C14—H14A114.0
C2—C3—C4116.97 (18)C6—C14—H14A114.0
C5—C4—C3120.95 (18)C14—C15—C19117.09 (19)
C5—C4—H4A119.5C14—C15—C16126.51 (19)
C3—C4—H4A119.5C19—C15—C16116.33 (17)
C4—C5—C6122.88 (18)O2—C16—O3123.6 (2)
C4—C5—H5A118.6O2—C16—C15124.6 (2)
C6—C5—H5A118.6O3—C16—C15111.83 (17)
C1—C6—C5114.76 (17)O3—C17—C18107.4 (2)
C1—C6—C14119.08 (18)O3—C17—H17A110.2
C5—C6—C14126.15 (18)C18—C17—H17A110.2
N1—C7—O1110.20 (18)O3—C17—H17B110.2
N1—C7—S1126.16 (16)C18—C17—H17B110.2
O1—C7—S1123.64 (15)H17A—C17—H17B108.5
N1—C8—H8A109.5C17—C18—H18A109.5
N1—C8—H8B109.5C17—C18—H18B109.5
H8A—C8—H8B109.5H18A—C18—H18B109.5
N1—C8—H8C109.5C17—C18—H18C109.5
H8A—C8—H8C109.5H18A—C18—H18C109.5
H8B—C8—H8C109.5H18B—C18—H18C109.5
N1—C9—H9A109.5O4—C19—O5124.18 (19)
N1—C9—H9B109.5O4—C19—C15125.08 (19)
H9A—C9—H9B109.5O5—C19—C15110.74 (18)
N1—C9—H9C109.5O5—C20—C21106.9 (2)
H9A—C9—H9C109.5O5—C20—H20A110.3
H9B—C9—H9C109.5C21—C20—H20A110.3
N2—C10—C11113.09 (19)O5—C20—H20B110.3
N2—C10—H10A109.0C21—C20—H20B110.3
C11—C10—H10A109.0H20A—C20—H20B108.6
N2—C10—H10B109.0C20—C21—H21A109.5
C11—C10—H10B109.0C20—C21—H21B109.5
H10A—C10—H10B107.8H21A—C21—H21B109.5
C10—C11—H11A109.5C20—C21—H21C109.5
C10—C11—H11B109.5H21A—C21—H21C109.5
H11A—C11—H11B109.5H21B—C21—H21C109.5
C7—O1—C1—C281.3 (2)C1—O1—C7—S10.5 (3)
C7—O1—C1—C6102.6 (2)C3—N2—C10—C1182.5 (3)
O1—C1—C2—C3176.38 (17)C12—N2—C10—C1187.6 (2)
C6—C1—C2—C30.6 (3)C3—N2—C12—C1393.3 (3)
C12—N2—C3—C2172.1 (2)C10—N2—C12—C1396.7 (2)
C10—N2—C3—C22.7 (3)C1—C6—C14—C15178.1 (2)
C12—N2—C3—C47.9 (3)C5—C6—C14—C152.9 (4)
C10—N2—C3—C4177.31 (19)C6—C14—C15—C19178.4 (2)
C1—C2—C3—N2178.06 (19)C6—C14—C15—C161.6 (4)
C1—C2—C3—C42.0 (3)C17—O3—C16—O20.4 (3)
N2—C3—C4—C5177.70 (19)C17—O3—C16—C15179.54 (17)
C2—C3—C4—C52.3 (3)C14—C15—C16—O297.5 (3)
C3—C4—C5—C61.3 (3)C19—C15—C16—O279.4 (3)
C2—C1—C6—C50.6 (3)C14—C15—C16—O383.4 (3)
O1—C1—C6—C5175.20 (17)C19—C15—C16—O399.7 (2)
C2—C1—C6—C14179.70 (19)C16—O3—C17—C18177.37 (19)
O1—C1—C6—C143.9 (3)C20—O5—C19—O42.0 (3)
C4—C5—C6—C10.2 (3)C20—O5—C19—C15177.53 (17)
C4—C5—C6—C14179.26 (19)C14—C15—C19—O44.6 (3)
C9—N1—C7—O12.5 (3)C16—C15—C19—O4172.5 (2)
C8—N1—C7—O1179.18 (18)C14—C15—C19—O5175.81 (18)
C9—N1—C7—S1177.15 (17)C16—C15—C19—O57.0 (2)
C8—N1—C7—S11.1 (3)C19—O5—C20—C21171.3 (2)
C1—O1—C7—N1179.82 (16)

Experimental details

Crystal data
Chemical formulaC21H30N2O5S
Mr422.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.2704 (6), 9.2716 (4), 25.9206 (8)
β (°) 139.588 (1)
V3)2223.30 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.40 × 0.37 × 0.07
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.932, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
25540, 5414, 4778
Rint0.037
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.155, 1.18
No. of reflections5414
No. of parameters268
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.29

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011).

 

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 20675067) for supporting this work.

References

First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, W. & Wang, W. (2009). Chem. Commun. pp. 3913–3915.  CrossRef Google Scholar
First citationKim, T. H. & Swager, T. M. (2003). Angew. Chem. Int. Ed. 42, 4803–4806.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Z. N., Liu, F. Q., Chen, Y., Tam, P. K. H. & Yang, D. (2008). Org. Lett. 10, 2171–2174.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds