metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,4′-Di­chloro-2,2′-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methanyl­yl­idene)]diphenolato-κ4O,N,N′,O′}nickel(II)

aChemistry Department, Payame Noor University, Tehran 19395-4697, I. R. of Iran, bX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: hkargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 3 June 2011; accepted 12 June 2011; online 18 June 2011)

In the title compound, [Ni(C19H18Cl2N2O2)], the NiII atom shows a slightly distorted square-planar geometry. The dihedral angle between the mean planes of the coordination rings is 9.15 (12)° while the dihedral angle between the mean planes of the two aromatic rings is 3.48 (16)°. In the crystal, pairs of inter­molecular C—H⋯O hydrogen bonds link neighboring mol­ecules into a chain along the a axis. The crystal structure is further stabilized by ππ inter­actions [centroid–centroid distance = 3.883 (2) Å].

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to Schiff base metal complexes, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Blower (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.]); Elmali et al. (2000[Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423-424.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1895-o1896.]); Kargar et al. (2008[Kargar, H., Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, m1541-m1542.]); Rayati et al. (2011[Rayati, S., Ghaemi, A. & Notash, B. (2011). Acta Cryst. E67, m448.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C19H18Cl2N2O2)]

  • Mr = 435.96

  • Monoclinic, P 21 /n

  • a = 6.9781 (3) Å

  • b = 23.2517 (11) Å

  • c = 11.8395 (5) Å

  • β = 105.828 (3)°

  • V = 1848.16 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 296 K

  • 0.22 × 0.15 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.755, Tmax = 0.888

  • 14131 measured reflections

  • 3354 independent reflections

  • 2373 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.081

  • S = 1.02

  • 3354 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.97 2.44 3.266 (4) 143
C12—H12A⋯O2ii 0.97 2.49 3.346 (4) 148
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of the Schiff bases have been studied extensively, and NiII and Cu(II) complexes play a major role in both synthetic and structurel research (Elmali et al., 2000; Blower et al., 1998). In continuation of our work on Schiff base ligands and their metal complexes (Fun et al., 2008; Kargar et al., 2008), we determined the X-ray crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises one unit of the Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the previous structures (Kargar et al., 2008; Rayati et al., 2011). The geometry ground the NiII atom is a sligthly distorted square-planar which is coordinated by the N2O2 donor atoms of the desired potentially tetradenate Schiff base ligand. The dihedral angle between the mean planes of the coordination plane rings, O1–Ni1–N1 and O2–Ni1–N2, is 9.15 (12)°. The dihedral angle between the mean planes of the two aromatic rings is 3.48 (16)°.

The crystal structure is stabilized by pairs of intermolecular C—H···O hydrogen bonds which link neighboring molecules into a chain along the a-axis (Table 1, Fig. 2) and by ππ interactions [Cg1···Cg2ii = 3.883 (2) Å; Cg1 and Cg2 are the centroids of the C1–C6 and C14–C19 benzene rings].

Related literature top

For standard bond lengths, see: Allen et al. (1987). For background to Schiff base metal complexes, see: Granovski et al. (1993); Blower (1998); Elmali et al. (2000). For related structures see: Fun et al. (2008); Kargar et al. (2008); Rayati et al. (2011).

Experimental top

The title compound was synthesized by adding bis(5-chlorosalicylaldiminato)-2,3-propanediamine (2 mmol) to a solution of NiCl2. 6 H2O (2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant red solution was filtered. Red single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

All hydrogen atoms were positioned geometrically with C—H = 0.93–0.97 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing a 1-D infinite chain along the a-axis by the intermolecular C—H···O interactions. The intermolecular interactions are shown as dashed lines. Only the H atoms involved in hydrogen bonding are shown.
{4,4'-Dichloro-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethanylylidene)]diphenolato- κ4O,N,N',O'}nickel(II) top
Crystal data top
[Ni(C19H18Cl2N2O2)]F(000) = 896
Mr = 435.96Dx = 1.567 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2545 reflections
a = 6.9781 (3) Åθ = 2.5–27.4°
b = 23.2517 (11) ŵ = 1.36 mm1
c = 11.8395 (5) ÅT = 296 K
β = 105.828 (3)°Block, red
V = 1848.16 (14) Å30.22 × 0.15 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3354 independent reflections
Radiation source: fine-focus sealed tube2373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 25.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.755, Tmax = 0.888k = 2727
14131 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.024P)2 + 0.6017P]
where P = (Fo2 + 2Fc2)/3
3354 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Ni(C19H18Cl2N2O2)]V = 1848.16 (14) Å3
Mr = 435.96Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9781 (3) ŵ = 1.36 mm1
b = 23.2517 (11) ÅT = 296 K
c = 11.8395 (5) Å0.22 × 0.15 × 0.09 mm
β = 105.828 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3354 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2373 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 0.888Rint = 0.062
14131 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
3354 reflectionsΔρmin = 0.29 e Å3
237 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6314 (4)0.09890 (13)0.9031 (3)0.0331 (7)
C20.6332 (5)0.15815 (14)0.9279 (3)0.0418 (8)
H20.67820.17041.00540.050*
C30.5704 (5)0.19826 (14)0.8410 (3)0.0445 (9)
H30.57570.23720.85940.053*
C40.4986 (5)0.18048 (14)0.7248 (3)0.0437 (9)
C50.4879 (5)0.12370 (14)0.6975 (3)0.0391 (8)
H50.43590.11220.61990.047*
C60.5545 (4)0.08216 (13)0.7852 (3)0.0325 (7)
C70.5194 (4)0.02263 (13)0.7560 (3)0.0352 (8)
H70.44560.01410.67980.042*
C80.4941 (4)0.07694 (13)0.7879 (3)0.0374 (8)
H8A0.43340.09150.84680.045*
H8B0.38970.07280.71510.045*
C90.6463 (5)0.12107 (13)0.7696 (3)0.0373 (8)
C100.6756 (5)0.11497 (16)0.6468 (3)0.0580 (11)
H10A0.78270.13950.64010.087*
H10B0.55540.12590.58920.087*
H10C0.70710.07570.63410.087*
C110.5692 (5)0.18114 (14)0.7853 (3)0.0535 (10)
H11A0.57120.18670.86590.080*
H11B0.43530.18510.73640.080*
H11C0.65270.20940.76320.080*
C120.8481 (5)0.11072 (14)0.8595 (3)0.0378 (8)
H12A0.92170.08230.82830.045*
H12B0.92400.14620.87040.045*
C130.8949 (4)0.12409 (13)1.0628 (3)0.0351 (8)
H130.92120.16211.04760.042*
C140.9299 (4)0.10732 (14)1.1837 (3)0.0338 (8)
C150.9916 (4)0.14918 (15)1.2715 (3)0.0402 (8)
H150.99320.18771.25090.048*
C161.0493 (5)0.13369 (16)1.3869 (3)0.0453 (9)
C171.0546 (5)0.07581 (17)1.4183 (3)0.0490 (9)
H171.09700.06541.49700.059*
C180.9979 (5)0.03433 (15)1.3341 (3)0.0450 (9)
H181.00420.00411.35650.054*
C190.9299 (4)0.04858 (14)1.2136 (3)0.0352 (8)
Ni10.74438 (6)0.014738 (17)0.97955 (3)0.03310 (13)
N10.5800 (4)0.02007 (11)0.8250 (2)0.0333 (6)
N20.8306 (4)0.09081 (11)0.9745 (2)0.0316 (6)
O10.6943 (3)0.06300 (9)0.98952 (18)0.0407 (6)
O20.8753 (3)0.00713 (9)1.13730 (19)0.0426 (6)
Cl10.41277 (16)0.23188 (4)0.61498 (9)0.0684 (3)
Cl21.12556 (16)0.18517 (5)1.49697 (9)0.0697 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0326 (18)0.0283 (18)0.040 (2)0.0005 (15)0.0131 (15)0.0023 (16)
C20.047 (2)0.037 (2)0.044 (2)0.0008 (17)0.0160 (17)0.0098 (17)
C30.046 (2)0.028 (2)0.061 (3)0.0006 (16)0.0182 (18)0.0039 (18)
C40.040 (2)0.033 (2)0.056 (2)0.0042 (16)0.0111 (17)0.0100 (18)
C50.039 (2)0.040 (2)0.038 (2)0.0021 (16)0.0085 (15)0.0009 (16)
C60.0307 (18)0.0297 (18)0.039 (2)0.0019 (15)0.0129 (15)0.0005 (15)
C70.0370 (19)0.037 (2)0.0315 (18)0.0003 (16)0.0098 (14)0.0040 (15)
C80.0385 (19)0.035 (2)0.0336 (19)0.0068 (16)0.0021 (15)0.0027 (15)
C90.048 (2)0.033 (2)0.0322 (19)0.0043 (16)0.0130 (16)0.0067 (15)
C100.070 (3)0.065 (3)0.040 (2)0.002 (2)0.0174 (19)0.011 (2)
C110.063 (3)0.037 (2)0.056 (2)0.0097 (19)0.0098 (19)0.0074 (18)
C120.048 (2)0.034 (2)0.0355 (19)0.0008 (16)0.0196 (16)0.0063 (15)
C130.0365 (19)0.0305 (19)0.039 (2)0.0028 (15)0.0108 (15)0.0045 (16)
C140.0273 (17)0.038 (2)0.0367 (19)0.0046 (15)0.0089 (14)0.0038 (16)
C150.038 (2)0.042 (2)0.040 (2)0.0016 (17)0.0097 (16)0.0020 (17)
C160.038 (2)0.057 (3)0.040 (2)0.0024 (18)0.0091 (16)0.0106 (18)
C170.048 (2)0.067 (3)0.031 (2)0.003 (2)0.0074 (16)0.0037 (19)
C180.048 (2)0.047 (2)0.039 (2)0.0015 (18)0.0094 (16)0.0102 (18)
C190.0294 (18)0.042 (2)0.0334 (19)0.0013 (16)0.0064 (14)0.0018 (16)
Ni10.0394 (2)0.0284 (2)0.0311 (2)0.0014 (2)0.00896 (17)0.00520 (19)
N10.0383 (15)0.0279 (15)0.0336 (15)0.0024 (13)0.0094 (12)0.0069 (12)
N20.0363 (15)0.0295 (15)0.0292 (15)0.0029 (12)0.0095 (12)0.0054 (12)
O10.0572 (15)0.0327 (13)0.0316 (13)0.0017 (11)0.0111 (11)0.0057 (11)
O20.0556 (15)0.0330 (14)0.0354 (13)0.0010 (11)0.0061 (10)0.0073 (11)
Cl10.0813 (8)0.0419 (6)0.0727 (7)0.0029 (5)0.0050 (6)0.0173 (5)
Cl20.0797 (8)0.0730 (8)0.0478 (6)0.0004 (6)0.0027 (5)0.0190 (5)
Geometric parameters (Å, º) top
C1—O11.301 (3)C11—H11A0.9600
C1—C61.407 (4)C11—H11B0.9600
C1—C21.408 (4)C11—H11C0.9600
C2—C31.369 (4)C12—N21.474 (3)
C2—H20.9300C12—H12A0.9700
C3—C41.392 (5)C12—H12B0.9700
C3—H30.9300C13—N21.279 (4)
C4—C51.357 (4)C13—C141.440 (4)
C4—Cl11.748 (3)C13—H130.9300
C5—C61.401 (4)C14—C151.403 (4)
C5—H50.9300C14—C191.411 (4)
C6—C71.431 (4)C15—C161.363 (4)
C7—N11.282 (4)C15—H150.9300
C7—H70.9300C16—C171.394 (5)
C8—N11.469 (4)C16—Cl21.742 (3)
C8—C91.534 (4)C17—C181.366 (4)
C8—H8A0.9700C17—H170.9300
C8—H8B0.9700C18—C191.414 (4)
C9—C111.526 (4)C18—H180.9300
C9—C101.529 (4)C19—O21.305 (4)
C9—C121.535 (4)Ni1—O21.850 (2)
C10—H10A0.9600Ni1—O11.851 (2)
C10—H10B0.9600Ni1—N21.874 (2)
C10—H10C0.9600Ni1—N11.880 (2)
O1—C1—C6124.0 (3)H11A—C11—H11C109.5
O1—C1—C2118.8 (3)H11B—C11—H11C109.5
C6—C1—C2117.2 (3)N2—C12—C9113.5 (2)
C3—C2—C1121.8 (3)N2—C12—H12A108.9
C3—C2—H2119.1C9—C12—H12A108.9
C1—C2—H2119.1N2—C12—H12B108.9
C2—C3—C4119.7 (3)C9—C12—H12B108.9
C2—C3—H3120.1H12A—C12—H12B107.7
C4—C3—H3120.1N2—C13—C14125.1 (3)
C5—C4—C3120.4 (3)N2—C13—H13117.4
C5—C4—Cl1120.2 (3)C14—C13—H13117.4
C3—C4—Cl1119.3 (3)C15—C14—C19120.4 (3)
C4—C5—C6120.6 (3)C15—C14—C13118.9 (3)
C4—C5—H5119.7C19—C14—C13120.0 (3)
C6—C5—H5119.7C16—C15—C14120.4 (3)
C5—C6—C1120.3 (3)C16—C15—H15119.8
C5—C6—C7119.2 (3)C14—C15—H15119.8
C1—C6—C7120.0 (3)C15—C16—C17120.1 (3)
N1—C7—C6126.2 (3)C15—C16—Cl2121.0 (3)
N1—C7—H7116.9C17—C16—Cl2118.9 (3)
C6—C7—H7116.9C18—C17—C16120.4 (3)
N1—C8—C9113.8 (2)C18—C17—H17119.8
N1—C8—H8A108.8C16—C17—H17119.8
C9—C8—H8A108.8C17—C18—C19121.4 (3)
N1—C8—H8B108.8C17—C18—H18119.3
C9—C8—H8B108.8C19—C18—H18119.3
H8A—C8—H8B107.7O2—C19—C14124.1 (3)
C11—C9—C10110.1 (3)O2—C19—C18118.7 (3)
C11—C9—C8108.3 (3)C14—C19—C18117.2 (3)
C10—C9—C8110.5 (3)O2—Ni1—O183.80 (9)
C11—C9—C12110.3 (3)O2—Ni1—N292.76 (10)
C10—C9—C12108.0 (3)O1—Ni1—N2172.47 (10)
C8—C9—C12109.7 (2)O2—Ni1—N1172.29 (10)
C9—C10—H10A109.5O1—Ni1—N192.91 (10)
C9—C10—H10B109.5N2—Ni1—N191.30 (11)
H10A—C10—H10B109.5C7—N1—C8118.0 (3)
C9—C10—H10C109.5C7—N1—Ni1125.2 (2)
H10A—C10—H10C109.5C8—N1—Ni1116.2 (2)
H10B—C10—H10C109.5C13—N2—C12117.7 (3)
C9—C11—H11A109.5C13—N2—Ni1126.1 (2)
C9—C11—H11B109.5C12—N2—Ni1115.7 (2)
H11A—C11—H11B109.5C1—O1—Ni1127.3 (2)
C9—C11—H11C109.5C19—O2—Ni1126.8 (2)
O1—C1—C2—C3179.5 (3)C15—C14—C19—O2179.8 (3)
C6—C1—C2—C32.5 (4)C13—C14—C19—O29.0 (4)
C1—C2—C3—C41.4 (5)C15—C14—C19—C181.3 (4)
C2—C3—C4—C50.9 (5)C13—C14—C19—C18169.6 (3)
C2—C3—C4—Cl1178.3 (2)C17—C18—C19—O2179.1 (3)
C3—C4—C5—C62.0 (5)C17—C18—C19—C142.3 (5)
Cl1—C4—C5—C6179.3 (2)C6—C7—N1—C8167.1 (3)
C4—C5—C6—C10.7 (5)C6—C7—N1—Ni14.1 (4)
C4—C5—C6—C7172.5 (3)C9—C8—N1—C7116.4 (3)
O1—C1—C6—C5179.3 (3)C9—C8—N1—Ni171.7 (3)
C2—C1—C6—C51.5 (4)O1—Ni1—N1—C717.0 (2)
O1—C1—C6—C77.6 (4)N2—Ni1—N1—C7156.7 (2)
C2—C1—C6—C7170.2 (3)O1—Ni1—N1—C8154.3 (2)
C5—C6—C7—N1176.3 (3)N2—Ni1—N1—C832.0 (2)
C1—C6—C7—N111.9 (5)C14—C13—N2—C12165.8 (3)
N1—C8—C9—C11155.3 (3)C14—C13—N2—Ni16.0 (4)
N1—C8—C9—C1084.0 (3)C9—C12—N2—C13114.6 (3)
N1—C8—C9—C1234.9 (3)C9—C12—N2—Ni172.8 (3)
C11—C9—C12—N284.4 (3)O2—Ni1—N2—C1319.4 (3)
C10—C9—C12—N2155.2 (3)N1—Ni1—N2—C13154.1 (3)
C8—C9—C12—N234.8 (4)O2—Ni1—N2—C12152.6 (2)
N2—C13—C14—C15176.9 (3)N1—Ni1—N2—C1234.0 (2)
N2—C13—C14—C1912.1 (5)C6—C1—O1—Ni112.5 (4)
C19—C14—C15—C161.1 (4)C2—C1—O1—Ni1169.7 (2)
C13—C14—C15—C16172.0 (3)O2—Ni1—O1—C1165.5 (2)
C14—C15—C16—C172.5 (5)N1—Ni1—O1—C121.5 (2)
C14—C15—C16—Cl2179.8 (2)C14—C19—O2—Ni112.1 (4)
C15—C16—C17—C181.5 (5)C18—C19—O2—Ni1169.4 (2)
Cl2—C16—C17—C18179.3 (3)O1—Ni1—O2—C19164.2 (2)
C16—C17—C18—C190.9 (5)N2—Ni1—O2—C1922.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.443.266 (4)143
C12—H12A···O2ii0.972.493.346 (4)148
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C19H18Cl2N2O2)]
Mr435.96
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.9781 (3), 23.2517 (11), 11.8395 (5)
β (°) 105.828 (3)
V3)1848.16 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.22 × 0.15 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.755, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
14131, 3354, 2373
Rint0.062
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.081, 1.02
No. of reflections3354
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.443.266 (4)143
C12—H12A···O2ii0.972.493.346 (4)148
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2.
 

Acknowledgements

HK and EP thank PNU for financial support. RK also thanks the Islamic Azad University. MNT thanks SU University, Pakistan for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem. 23, 109–112.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1895–o1896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationKargar, H., Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, m1541–m1542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRayati, S., Ghaemi, A. & Notash, B. (2011). Acta Cryst. E67, m448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds