metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-Di-tert-butyl-2,2′,3,3′,4,4′,5,5′-octa­ethyl-1,1′-bis­­tannole

aDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-okubo, Saitama-city, Saitama 338-8570 Japan
*Correspondence e-mail: masaichi@chem.saitama-u.ac.jp

(Received 31 May 2011; accepted 14 June 2011; online 18 June 2011)

The title compound, [Sn2(C4H9)2(C12H20)2], has two 1-stannacyclo­penta­diene skeletons related by inversion symmetry located at the mid-point of the Sn—Sn bond [2.7682 (2) Å]. Thus, the asymmetric unit comprises one half-mol­ecule. The planarity of the stannacyclo­penta­diene ring is illustrated by the dihedral angle of 0.3 (1)°, defined by the C4 and C—Sn—C planes. To avoid steric repulsion, the two stannole rings are oriented in an anti fashion through the Sn—Sn bond. These structural features are similar to those of other bis­tannoles.

Related literature

For the synthesis and X-ray diffraction analysis of bi(1,1-stannole)s whose carbon atoms of the five-membered rings have phenyl groups, see: Saito et al. (2002[Saito, M., Haga, R. & Yoshioka, M. (2002). Chem. Commun. pp. 1002-1003.], 2005[Saito, M., Haga, R. & Yoshioka, M. (2005). Eur. J. Inorg. Chem. pp. 3750-3755.]). For related literature on bi-, oligo- and poly-(1,1-metallole)s, see: Haga et al. (2008[Haga, R., Saito, M. & Yoshioka, M. (2008). Chem. Eur. J. 14, 4068-4073.]); Kanno et al. (1998[Kanno, K., Ichinohe, M., Kabuto, C. & Kira, M. (1998). Chem. Lett. 27, 99-100.]); Kim & Woo (2002[Kim, B.-H. & Woo, H.-G. (2002). Organometallics, 21, 2796-2798.]); Saito & Yoshioka (2005[Saito, M. & Yoshioka, M. (2005). Coord. Chem. Rev. 249, 765-780.]); Saito et al. (2010[Saito, M., Kuwabara, T., Kambayashi, C., Yoshioka, M., Ishimura, K. & Nagase, S. (2010). Chem. Lett. 39, 700-701.]); Sohn et al. (1999[Sohn, H., Huddleston, R., Powell, D. R. & West, R. (1999). J. Am. Chem. Soc. 121, 2935-2936.], 2003[Sohn, H., Sailor, M. J., Magde, D. & Trogler, W. C. (2003). J. Am. Chem. Soc. 125, 3821-3830.]); Yamaguchi & Tamao (1998[Yamaguchi, S. & Tamao, K. (1998). J. Chem. Soc. Dalton Trans. pp. 3693-3702.]); Yamaguchi et al. (1997[Yamaguchi, S., Jin, R.-Z. & Tamao, K. (1997). Organometallics, 16, 2486-2488.], 1999[Yamaguchi, S., Jin, R.-Z. & Tamao, K. (1999). J. Am. Chem. Soc. 121, 2937-2938.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2(C4H9)2(C12H20)2]

  • Mr = 680.20

  • Monoclinic, P 21 /n

  • a = 8.7161 (5) Å

  • b = 16.5999 (9) Å

  • c = 11.7913 (6) Å

  • β = 100.827 (1)°

  • V = 1675.67 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 100 K

  • 0.25 × 0.10 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (XPREP; Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT, XSHELL, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.835, Tmax = 0.927

  • 9015 measured reflections

  • 3636 independent reflections

  • 3387 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.043

  • S = 1.04

  • 3636 reflections

  • 161 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—C1 2.1416 (15)
Sn1—C4 2.1475 (16)
Sn1—C5 2.1906 (16)
C1—Sn1—C4 83.75 (6)
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT, XSHELL, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT, XSHELL, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT, XSHELL, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XSHELL (Bruker, 2008)[Bruker (2008). APEX2, SADABS, SAINT, XSHELL, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]; software used to prepare material for publication: XCIF (Bruker, 2008)[Bruker (2008). APEX2, SADABS, SAINT, XSHELL, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.].

Supporting information


Comment top

The group 14 metalloles has received much attention as good precursors of their polymers that reveal interesting optical properties (Yamaguchi et al., 1998; Haga et al., 2008) as well as their anion species, which are heavier congeners of the cyclopentadienyl anion (Saito et al., 2005). After the synthesis of several oligo(1,1-silole)s and poly(1,1-silole)s (Yamaguchi et al., 1997, 1999); Kanno et al., 1998; Sohn et al., 1999), they have been used as building blocks of organic electroluminescent devices (Kim & Woo (2002)). Poly(1,1-germole)s have also been synthesized (Sohn et al., 2003). In contrast, as for tin analogues, only a few reports on the synthesis of oligo(1,1-stannole)s have appeared, so far (Haga et al., 2008). We report herein the molecular structure of the title compound, which is a novel bi(1,1-stannole) bearing ethyl groups on the carbon atoms of the five-membered rings.

The X-ray diffraction analysis reveals that the title compound, bis(1-tert-butyl-2,3,4,5-tetraethylstannacyclopentadienyl) (I), has two planar five-membered rings with C–C bond alternations. The molecule is centrosymmetric with an inversion center in the middle of Sn–Sn bond, and hence a half moiety of the molecule was refined. The two stannole rings are oriented in an anti fashion through the Sn–Sn bond to avoid steric repulsion. The Sn–Sn bond length of 2.7689 (2) Å is in a normal range of the corresponding single bond, as was observed in other bi(1,1-stannole)s (2.7844 (7) and 2.7822 (7) Å (Saito et al., 2002, 2005). The structural features of the title compound are therefore quite similar to those of other bi(1,1-stannole)s that have electronically neutral tin centers, and substituents on the ring carbon atoms little affect the structural feartures of bi(1,1-stannole)s.

Related literature top

For the synthesis and X-ray diffraction analysis of bi(1,1-stannole)s whose carbon atoms of the five-membered rings have phenyl groups, see: Saito et al. (2002, 2005). For related literature, see: Haga et al. (2008); Kanno et al. (1998); Kim & Woo (2002); Saito & Yoshioka (2005); Saito et al. (2010); Sohn et al. (1999, 2003); Yamaguchi & Tamao (1998); Yamaguchi et al. (1997, 1999).

Experimental top

A diethyl ether solution (0.55 mL) of tert-butyl chloride (0.94 M, 0.52 mmol) was added to a diethyl ether solution (7 mL) of 2,2',3,3',4,4',5,5'-octaethyl-1,1'-dilithiobistannole (Saito et al., 2010) (118.8 mg, 0.203 mmol) at room temperature, and the mixture was stirred for 3 h. After removal of volatile substances, the residue was degassed by freeze-pump-thaw cycles and sealed. In a glovebox, materials insoluble in hexane were removed by filtration and the filtrate was concentrated to provide a crude product. Recrystallisation of the crude product from diethyl ether afforded colourless crystals of bis(1-tert-butyl-2,3,4,5-tetraethylstannacyclopentadienyl) (107.7 mg, 0.154 mmol, 76%). (1) 1H NMR (C6D6, 400 MHz) δ 1.02 (t, J = 7 Hz, 12H), 1.19 (t, J = 7 Hz, 12H), 1.40(s, JSn–H = 73 Hz, 18H), 2.33(q, J = 7 Hz, 8H), 2.41–2.60(m, 8H); 13C NMR (101 MHz, C6D6) δ 18.44 (q, JSn–C = 13 Hz), 22.61 (t, JSn–C = 48 Hz), 26.85 (t, JSn–C = 54 Hz), 30.71 (s, JSn–C = 22, 314, 328 Hz), 32.54 (t), 145.74 (s, JSn–C = 26, 287, 301 Hz), 152.92 (s, JSn–C = 21, 63 Hz); 119Sn NMR (186 MHz, C6D6)δ -68.8 (JSn–C = 301 Hz, JSn–Sn = 948 Hz).

Refinement top

All H atoms were positionated geometrically, with C–H 0.96 and 0.97 A for methyl and methylene H atoms, and constrated to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C) for methyl and methylene H atoms, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSHEL (Bruker, 2008); software used to prepare material for publication: XCIF (Bruker, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms are omitted for clarity. The complete molecule is generated by the symmetry operation: -x, -y+2, -z+1.
[Figure 2] Fig. 2. The side view of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms are omitted for clarity.
1,1'-Di-tert-butyl-2,2',3,3',4,4',5,5'-octaethyl-1,1'-bistannole top
Crystal data top
[Sn2(C4H9)2(C12H20)2]F(000) = 700
Mr = 680.20Dx = 1.348 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6469 reflections
a = 8.7161 (5) Åθ = 2.5–28.1°
b = 16.5999 (9) ŵ = 1.51 mm1
c = 11.7913 (6) ÅT = 100 K
β = 100.827 (1)°Cube, colourless
V = 1675.67 (16) Å30.25 × 0.10 × 0.05 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3636 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode3387 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.017
Detector resolution: 8.333 pixels mm-1θmax = 27.0°, θmin = 2.1°
ϕ and ω scansh = 119
Absorption correction: multi-scan
(XPREP; Bruker, 2008)
k = 2121
Tmin = 0.835, Tmax = 0.927l = 1412
9015 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.020P)2 + 0.7365P]
where P = (Fo2 + 2Fc2)/3
3636 reflections(Δ/σ)max = 0.002
161 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Sn2(C4H9)2(C12H20)2]V = 1675.67 (16) Å3
Mr = 680.20Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.7161 (5) ŵ = 1.51 mm1
b = 16.5999 (9) ÅT = 100 K
c = 11.7913 (6) Å0.25 × 0.10 × 0.05 mm
β = 100.827 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3636 independent reflections
Absorption correction: multi-scan
(XPREP; Bruker, 2008)
3387 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.927Rint = 0.017
9015 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 1.04Δρmax = 0.43 e Å3
3636 reflectionsΔρmin = 0.42 e Å3
161 parameters
Special details top

Experimental. (SADABS; Bruker, 2008)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.025172 (11)0.980800 (6)0.390739 (8)0.01472 (4)
C10.08418 (18)1.07858 (9)0.28847 (13)0.0166 (3)
C20.03317 (18)1.08829 (9)0.19728 (13)0.0165 (3)
C30.17491 (18)1.03462 (9)0.18331 (13)0.0166 (3)
C40.18366 (18)0.97554 (9)0.26111 (14)0.0174 (3)
C50.20071 (18)0.88519 (10)0.40268 (14)0.0207 (3)
C60.2344 (3)0.86861 (15)0.28284 (18)0.0494 (6)
H6A0.26310.91790.24980.074*
H6B0.14280.84680.23470.074*
H6C0.31870.83070.28840.074*
C70.3492 (2)0.91665 (13)0.47898 (19)0.0412 (5)
H7A0.43190.87830.48010.062*
H7B0.33110.92450.55600.062*
H7C0.37810.96700.44890.062*
C80.1474 (3)0.80959 (13)0.4556 (3)0.0577 (7)
H8A0.05920.78720.40420.087*
H8B0.11820.82260.52800.087*
H8C0.23100.77100.46810.087*
C90.23347 (19)1.12690 (10)0.31206 (14)0.0207 (3)
H9A0.24431.15620.24280.025*
H9B0.32151.09040.33080.025*
C100.2376 (2)1.18665 (11)0.41124 (15)0.0285 (4)
H10A0.15391.22470.39150.043*
H10B0.33561.21470.42460.043*
H10C0.22601.15810.47990.043*
C110.02473 (19)1.15157 (10)0.10545 (13)0.0213 (3)
H11A0.03491.19740.14090.026*
H11B0.12941.17010.07350.026*
C120.0514 (2)1.11894 (11)0.00763 (14)0.0276 (4)
H12A0.15571.10130.03870.041*
H12B0.05471.16070.04820.041*
H12C0.00861.07440.02890.041*
C130.30873 (19)1.05102 (10)0.08346 (14)0.0229 (3)
H13A0.36471.00120.06150.027*
H13B0.26681.06980.01760.027*
C140.4225 (2)1.11386 (11)0.11409 (18)0.0348 (4)
H14A0.47021.09380.17550.052*
H14B0.50181.12460.04750.052*
H14C0.36691.16270.13850.052*
C150.32148 (19)0.92105 (10)0.26192 (15)0.0230 (3)
H15A0.40820.93950.20370.028*
H15B0.35270.92530.33640.028*
C160.2897 (2)0.83329 (11)0.23913 (18)0.0337 (4)
H16A0.26630.82790.16310.051*
H16B0.38020.80170.24460.051*
H16C0.20240.81470.29520.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01341 (6)0.01614 (6)0.01448 (6)0.00001 (4)0.00225 (4)0.00191 (4)
C10.0176 (7)0.0170 (7)0.0159 (7)0.0015 (6)0.0052 (6)0.0001 (6)
C20.0193 (7)0.0139 (7)0.0172 (7)0.0008 (6)0.0058 (6)0.0002 (6)
C30.0149 (7)0.0168 (7)0.0175 (7)0.0016 (6)0.0014 (6)0.0027 (6)
C40.0141 (7)0.0185 (7)0.0194 (8)0.0002 (6)0.0028 (6)0.0020 (6)
C50.0170 (8)0.0210 (8)0.0232 (8)0.0027 (6)0.0013 (6)0.0000 (6)
C60.0559 (14)0.0607 (15)0.0314 (11)0.0330 (12)0.0074 (10)0.0069 (10)
C70.0230 (10)0.0449 (12)0.0498 (12)0.0099 (8)0.0082 (8)0.0115 (10)
C80.0319 (12)0.0326 (11)0.112 (2)0.0118 (9)0.0221 (13)0.0330 (13)
C90.0193 (8)0.0216 (8)0.0210 (8)0.0044 (6)0.0036 (6)0.0011 (6)
C100.0302 (10)0.0268 (9)0.0270 (9)0.0092 (7)0.0015 (7)0.0042 (7)
C110.0240 (8)0.0190 (8)0.0203 (8)0.0009 (6)0.0027 (6)0.0041 (6)
C120.0343 (10)0.0299 (9)0.0195 (8)0.0047 (7)0.0075 (7)0.0035 (7)
C130.0210 (8)0.0226 (8)0.0222 (8)0.0001 (7)0.0030 (6)0.0014 (7)
C140.0234 (9)0.0293 (9)0.0472 (12)0.0069 (7)0.0054 (8)0.0003 (8)
C150.0178 (8)0.0241 (8)0.0268 (8)0.0037 (6)0.0033 (6)0.0017 (7)
C160.0355 (10)0.0252 (9)0.0433 (11)0.0132 (8)0.0146 (9)0.0065 (8)
Geometric parameters (Å, º) top
Sn1—C12.1416 (15)C9—H9A0.9700
Sn1—C42.1475 (16)C9—H9B0.9700
Sn1—C52.1906 (16)C10—H10A0.9600
Sn1—Sn1i2.7682 (2)C10—H10B0.9600
C1—C21.347 (2)C10—H10C0.9600
C1—C91.509 (2)C11—C121.534 (2)
C2—C31.507 (2)C11—H11A0.9700
C2—C111.520 (2)C11—H11B0.9700
C3—C41.355 (2)C12—H12A0.9600
C3—C131.518 (2)C12—H12B0.9600
C4—C151.505 (2)C12—H12C0.9600
C5—C81.513 (3)C13—C141.529 (2)
C5—C61.521 (3)C13—H13A0.9700
C5—C71.523 (2)C13—H13B0.9700
C6—H6A0.9600C14—H14A0.9600
C6—H6B0.9600C14—H14B0.9600
C6—H6C0.9600C14—H14C0.9600
C7—H7A0.9600C15—C161.516 (2)
C7—H7B0.9600C15—H15A0.9700
C7—H7C0.9600C15—H15B0.9700
C8—H8A0.9600C16—H16A0.9600
C8—H8B0.9600C16—H16B0.9600
C8—H8C0.9600C16—H16C0.9600
C9—C101.529 (2)
C1—Sn1—C483.75 (6)C1—C9—H9B109.1
C1—Sn1—C5110.28 (6)C10—C9—H9B109.1
C4—Sn1—C5120.31 (6)H9A—C9—H9B107.9
C1—Sn1—Sn1i116.51 (4)C9—C10—H10A109.5
C4—Sn1—Sn1i114.24 (4)C9—C10—H10B109.5
C5—Sn1—Sn1i109.75 (4)H10A—C10—H10B109.5
C2—C1—C9125.63 (14)C9—C10—H10C109.5
C2—C1—Sn1108.27 (11)H10A—C10—H10C109.5
C9—C1—Sn1126.08 (11)H10B—C10—H10C109.5
C1—C2—C3120.03 (13)C2—C11—C12112.17 (14)
C1—C2—C11121.33 (14)C2—C11—H11A109.2
C3—C2—C11118.62 (13)C12—C11—H11A109.2
C4—C3—C2120.22 (14)C2—C11—H11B109.2
C4—C3—C13121.47 (14)C12—C11—H11B109.2
C2—C3—C13118.26 (13)H11A—C11—H11B107.9
C3—C4—C15125.86 (15)C11—C12—H12A109.5
C3—C4—Sn1107.73 (11)C11—C12—H12B109.5
C15—C4—Sn1126.20 (11)H12A—C12—H12B109.5
C8—C5—C6111.14 (18)C11—C12—H12C109.5
C8—C5—C7109.49 (17)H12A—C12—H12C109.5
C6—C5—C7108.65 (17)H12B—C12—H12C109.5
C8—C5—Sn1111.26 (12)C3—C13—C14112.16 (14)
C6—C5—Sn1109.01 (12)C3—C13—H13A109.2
C7—C5—Sn1107.17 (11)C14—C13—H13A109.2
C5—C6—H6A109.5C3—C13—H13B109.2
C5—C6—H6B109.5C14—C13—H13B109.2
H6A—C6—H6B109.5H13A—C13—H13B107.9
C5—C6—H6C109.5C13—C14—H14A109.5
H6A—C6—H6C109.5C13—C14—H14B109.5
H6B—C6—H6C109.5H14A—C14—H14B109.5
C5—C7—H7A109.5C13—C14—H14C109.5
C5—C7—H7B109.5H14A—C14—H14C109.5
H7A—C7—H7B109.5H14B—C14—H14C109.5
C5—C7—H7C109.5C4—C15—C16113.80 (14)
H7A—C7—H7C109.5C4—C15—H15A108.8
H7B—C7—H7C109.5C16—C15—H15A108.8
C5—C8—H8A109.5C4—C15—H15B108.8
C5—C8—H8B109.5C16—C15—H15B108.8
H8A—C8—H8B109.5H15A—C15—H15B107.7
C5—C8—H8C109.5C15—C16—H16A109.5
H8A—C8—H8C109.5C15—C16—H16B109.5
H8B—C8—H8C109.5H16A—C16—H16B109.5
C1—C9—C10112.43 (13)C15—C16—H16C109.5
C1—C9—H9A109.1H16A—C16—H16C109.5
C10—C9—H9A109.1H16B—C16—H16C109.5
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Sn2(C4H9)2(C12H20)2]
Mr680.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.7161 (5), 16.5999 (9), 11.7913 (6)
β (°) 100.827 (1)
V3)1675.67 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.25 × 0.10 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(XPREP; Bruker, 2008)
Tmin, Tmax0.835, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
9015, 3636, 3387
Rint0.017
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.043, 1.04
No. of reflections3636
No. of parameters161
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.42

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XSHEL (Bruker, 2008), XCIF (Bruker, 2008).

Selected geometric parameters (Å, º) top
Sn1—C12.1416 (15)Sn1—C52.1906 (16)
Sn1—C42.1475 (16)Sn1—Sn1i2.7682 (2)
C1—Sn1—C483.75 (6)
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

This work was partially supported by Grant-in-Aids for Scientific Research (B) (No. 22350015 to MS) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. MS acknowledges a research grant from Mitsubishi Foundation. TK acknowledges the Sasakawa Scientific Research Grant from the Japan Science Society

References

First citationBruker (2008). APEX2, SADABS, SAINT, XSHELL, XCIF and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaga, R., Saito, M. & Yoshioka, M. (2008). Chem. Eur. J. 14, 4068–4073.  CrossRef PubMed CAS Google Scholar
First citationKanno, K., Ichinohe, M., Kabuto, C. & Kira, M. (1998). Chem. Lett. 27, 99–100.  CrossRef Google Scholar
First citationKim, B.-H. & Woo, H.-G. (2002). Organometallics, 21, 2796–2798.  CrossRef CAS Google Scholar
First citationSaito, M., Haga, R. & Yoshioka, M. (2002). Chem. Commun. pp. 1002–1003.  CrossRef Google Scholar
First citationSaito, M., Haga, R. & Yoshioka, M. (2005). Eur. J. Inorg. Chem. pp. 3750–3755.  CrossRef Google Scholar
First citationSaito, M., Kuwabara, T., Kambayashi, C., Yoshioka, M., Ishimura, K. & Nagase, S. (2010). Chem. Lett. 39, 700–701.  CrossRef CAS Google Scholar
First citationSaito, M. & Yoshioka, M. (2005). Coord. Chem. Rev. 249, 765–780.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSohn, H., Huddleston, R., Powell, D. R. & West, R. (1999). J. Am. Chem. Soc. 121, 2935–2936.  CrossRef CAS Google Scholar
First citationSohn, H., Sailor, M. J., Magde, D. & Trogler, W. C. (2003). J. Am. Chem. Soc. 125, 3821–3830.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYamaguchi, S., Jin, R.-Z. & Tamao, K. (1997). Organometallics, 16, 2486–2488.  CrossRef CAS Google Scholar
First citationYamaguchi, S., Jin, R.-Z. & Tamao, K. (1999). J. Am. Chem. Soc. 121, 2937–2938.  CrossRef CAS Google Scholar
First citationYamaguchi, S. & Tamao, K. (1998). J. Chem. Soc. Dalton Trans. pp. 3693–3702.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds